消声器声学分析系统的开发
- 格式:pdf
- 大小:313.18 KB
- 文档页数:5
基于b的汽车排气消声器性能仿真研究的开题报告一、研究背景随着汽车产业的发展,汽车市场对汽车的噪声和排放标准越来越高。
其中,排气消声器是降低汽车噪声和排放的一种重要装置。
因此,对汽车排气消声器的研究与分析具有重要的意义。
目前,虚拟仿真技术已经成为汽车部件的设计和开发中的重要手段之一,因此,利用虚拟仿真技术开展汽车排气消声器性能仿真研究,具有重要的现实意义和应用价值。
二、研究内容与研究目标本研究将基于b软件平台,对汽车排气消声器的性能进行仿真研究,包括流场分析、声场分析和振动分析等方面。
具体研究内容如下:1.基于三维模型和有限体积法建立汽车排气消声器的物理模型;2.基于传热传质理论,分析消声器内部的流场特性;3.基于声学理论,分析消声器的声学性能;4.基于结构力学理论,分析消声器的振动特性;5.通过数值模拟与实验结果的比对和分析,验证b平台的计算精度和稳定性。
本研究的目标是,通过对汽车排气消声器性能的虚拟仿真分析,为汽车排气消声器的优化设计和性能改进提供基础和理论支持。
三、研究方法和技术路线1.建立汽车排气消声器的三维物理模型;2.进行流场分析,采用有限体积法求解流体动力学方程,计算消声器内部的流场特性;3.进行声学性能分析,采用有限元法求解声学方程,计算消声器的声学性能;4.进行振动分析,采用有限元法求解结构力学方程,计算消声器的振动特性;5.将流场、声学和振动分析的仿真结果进行综合,并与实验结果进行比较分析;6.得出汽车排气消声器性能优化方案,并进行仿真验证。
四、研究意义和创新点1.通过虚拟仿真技术分析研究汽车排气消声器的性能,为汽车排气消声器的优化设计和性能改进提供理论支持;2.利用b软件平台开展汽车排气消声器性能仿真分析,对该软件的计算精度和稳定性进行验证;3.通过仿真分析得出消声器的优化方案,为实际生产和应用中的汽车排气消声器提供更加优化的性能。
五、预期成果1.建立汽车排气消声器的三维可视化模型;2.对消声器内部的流场、声场和振动特性进行分析并提出优化方案;3.验证b软件平台在汽车排气消声器性能仿真分析方面的计算精度和稳定性;4.撰写汽车排气消声器性能仿真研究论文,并参加相关学术会议进行交流和分享;六、计划进度第一年:完成研究方案的设计和模型建立;第二年:完成流场分析和声学性能分析的仿真计算;第三年:完成振动分析的仿真计算,撰写成果论文并参加学术会议进行交流和分享。
复杂消声器的三维声学性能数值模拟及其优化设计的开题报告一、课题背景随着工业生产、交通运输和家庭生活等领域的不断发展,环境噪声污染问题也越来越严重。
消声技术是解决噪声污染问题的一项有效手段,其主要目的是通过减弱噪声的传播和反射来达到降噪的效果。
在消声技术中,消声器是最为常用的降噪装置之一。
目前,消声器的设计和优化主要依赖于经验和试验,而这种方法需要大量的人力、物力和时间,且很难保证获得最优的设计方案。
因此,数值模拟成为了消声器设计和优化的重要方法。
随着数值模拟技术的不断发展和成熟,使用数值模拟进行消声器设计和优化具有非常大的潜力和优势。
二、研究内容本研究将重点开展复杂消声器的三维声学性能数值模拟及其优化设计研究,具体内容包括:1. 建立复杂消声器的三维声学模型,并采用数值方法进行声场仿真。
2. 针对消声器设计中的关键问题,如流体动力学特性、耦合效应、材料特性等进行研究和分析。
3. 运用优化算法对复杂消声器的设计进行优化,寻求最佳设计方案。
4. 使用实验验证数值模拟的准确性和可靠性。
三、研究意义本研究的意义在于:1. 通过数值模拟,可以更加深入地了解复杂消声器的声学性能,帮助优化设计方案,提高消声器的降噪效果。
2. 建立可靠、高效的消声器设计方法,减少试验和实验,降低制造成本,提高消声器的竞争力。
3. 为消声器的应用提供技术支持,为环境噪声污染治理贡献力量。
四、研究方法本研究主要采用数值模拟和数值优化的方法。
具体步骤如下:1. 建立复杂消声器的三维声学模型。
2. 采用声学数值方法(如有限元法、边界元法等)进行声场求解。
3. 分析消声器的流体动力学特性、耦合效应、材料特性等,对设计方案进行优化。
4. 采用优化算法(如遗传算法、粒子群算法等)进行设计优化。
5. 结合实验数据进行验证和校准,验证数值模拟的准确性。
五、预期成果本研究预期达到的成果包括:1. 给出复杂消声器的三维声学模型,完成声场仿真和分析。
科学与财富前言:现代社会发展中,汽车排气噪声成为影响人们正常生活的不良因素之一,究其根本,主要是受到汽车排气消声系统的影响,消声器作为汽车不可缺少的一部分,其性能好坏直接决定其噪声高低。
因此,加强对汽车排气消声器性能及声学特性的研究具有重要意义。
一、排气消声器性能评价方法消声器作为一种能够有效阻挡声音传播,且能够确保气流顺利排出的设备,是汽车不可缺少的一部分。
目前,汽车排气消声器主要包括三个类型:阻性、抗性及排空三种消声器,其中抗性消声器应用范围比较广,本文主要结合抗性消声器进行性能预测。
针对消声器性能评价指标主要包括消声、空气动力及机械性能评价。
传统排气消声器性能评价方法主要采取传递矩阵法,并将其作为基础,构建插入损失及压力损失模型,为排气消声器性能评价奠定坚实的基础,通过消声器性能测试,了解和掌握其消声实际情况,能够更好地指导设计人员进行优化设计[1]。
二、排气消声器性能评价模型构建由于传递矩阵法需要大量试验研究给予支持,缺少优化设计,在设计方面存在一定局限性,使得体积偏大,不仅严重浪费物力、人力,而且在很大程度延长了开发周期,且设计效果不尽人意。
基于此,本文主要结合VB 和MATLAB进行软件评价模型设计,并从两个方面入手:(一)插入损失方面针对消声器插入损失计算,要将各个消声元件传递矩阵及总矩阵结合到一起,且为了方便调试程序等工作,将插入损失计算涉及的数据信息,存放至数据库当中。
由此可见,插入计算子模块主要包括总传递矩阵子模块及计算消声器插入子模块两部分。
在具体性能评价过程中,针对特定的频带中心频率,计算各个元件元件传递矩阵流程为选择声学元件类型———选择对应数据库———计算传递矩阵三个环节。
通过这三个环节,能够有效节省人力、物力,以最少投入,最快得出相应结果,进而实现插入损失试验目标。
(二)压力损失方面一般情况下,压力损失主要包括气流与管壁之间的摩擦、消声系统结构发生变化两方面,针对排气消声系统压力损失计算,主要按照以下流程图,如图1。
高压气体排放消声器的声学设计与优化研究摘要:高压气体排放消声器是工业生产中用来减少高压气体排放过程中产生的噪音的装置。
本文针对高压气体排放消声器的声学设计与优化进行研究,首先介绍了高压气体排放消声器的工作原理和应用领域。
随后,讨论了消声器的声学设计指标和声学设计方法,包括声学特性分析、声学模拟和实验测试等。
然后,探讨了消声器的优化方法,包括材料选择、结构设计和参数优化等。
最后,展望了高压气体排放消声器未来的发展方向。
一、引言随着工业生产的不断发展,高压气体排放噪音成为了一个严重的环境问题。
高压气体排放消声器作为一种常见的噪音控制设备,被广泛应用于工业领域。
它可以有效降低高压气体排放过程中产生的噪音,保障工作环境的安静和员工的健康。
二、高压气体排放消声器的工作原理高压气体排放消声器的工作原理基于声学反射和吸声原理。
当高压气体通过消声器时,声波会遇到吸声材料和反射板,其中一部分声波会被吸声材料吸收,另一部分声波会被反射板反射。
通过合理设计吸声材料和反射板的位置和参数,可以达到降低噪音的效果。
三、高压气体排放消声器的特点高压气体排放消声器具有以下特点:1. 高压气体排放消声器需要具备良好的吸声性能,能够有效地吸收高压气体排放过程中产生的噪音。
2. 高压气体排放消声器需要具备较高的耐压能力,能够承受高压气体的压力。
3. 高压气体排放消声器需要具备较高的耐用性,能够长时间稳定地工作。
4. 高压气体排放消声器需要具备较小的体积和较轻的重量,以便于安装和移动。
四、高压气体排放消声器的声学设计指标高压气体排放消声器的声学设计指标主要包括传声性能、吸声性能、压降、耐压能力和结构强度等方面。
传声性能是指消声器对声波的传递效果,可以通过传声损失系数来评估。
吸声性能是指消声器对声波的吸收效果,可以通过吸声系数来评估。
压降是指气体在消声器中的压力差,需要尽量小以减少能量损失。
耐压能力是指消声器能够承受的最大压力,需要根据实际情况进行选择。
汽车消声器的声学性能分析与结构优化摘要:随着我国社会的不断发展,汽车制造行业的生产制造水平也得到了显著提升,汽车消声器的应用不仅能够提高汽车的使用质量,还能够为提升汽车行业的发展速度奠定良好基础,所以应该对汽车消声器的声学性能进行全面的分析,并且明确其结构优化措施。
基于此,本文则通过分析相关测试数据,探究其结构优化策略。
关键词:汽车消声器;声学性能;结构优化引言:通过调查研究分析发现,交通噪声对于整个环境的噪声影响相对较大,并且对于人体健康也造成了严重的威胁,所以必须要对交通噪声问题给予高度的关注。
利用汽车消声器,不仅能够降低汽车的噪声,还能够改善整体的生活环境。
同时汽车消声器的经济成本相对较低,并且在安装的过程中较为便捷,所以应该对其声学性能进行全面的分析,并且要对其使用结构进行相应的优化,进而保证汽车消声器的应用效果得到显著的提升,为改善我国城市环境以及维护人们身体健康奠定良好的基础。
一、汽车消声器的声学性能分析目前要想明确汽车消声器的结构优化措施,要对其声学性能进行全面的分析。
通过对某品牌的汽车消声器进行相应的分析,发现其在实际使用过程中必须要对其结构进行全面的优化,才能够满足噪声的排放标准,因此应该利用数学模型的方式,对声学性能进行相应的仿真模拟,进而对其使用效果进行深入的研究。
在进行声学性能仿真模拟分析之前,首先要进行声学网格的划分,其仿真模拟模型中主要含有穿孔结构,所以需要使用声学网格的划分,对其穿孔结构进行全面的分析。
在本次实验探究过程中使用了六面体网格划分的方式,进而可以使其整体的计算速度得到显著提升,同时通过不断减少网格的数目,还能够使穿孔部分进行全面的细化,进而能够获得更多准确的数据以及质量相对较高的六面体网格。
在进行声学仿真的过程中,还应该对其网格单元数量进行全面的控制,一般同一个声波波长内需要包含六个网格单元,进而满足其计算的数据需求。
为了保证计算结果的精确度,需要对上限频率进行全面的控制,并且要明确边界条件的设置过程。
汽车消声器声学性能分析及结构改进建议作者:施忠良来源:《时代汽车》 2018年第5期摘要:利用声学分析软件LMS Virtual Lab与流体力学计算软件FLUENT建立模型,对汽车消声器结构与相关插入损失与传递损失进行分析,而后对消声器声学进行结构改进与优化,并分析相关优化建议的有效性。
关键词:汽车消声器;声学性能分析;结构改进建议随着社会的发展与人民生活水平的提高,汽车事业与交通工业迅速发展,汽车逐步变为社会的核心交通工具,如此也产生了越来越多的汽车噪音污染,而随着人们对生活品质的水平的提高,对汽车质量的需求也在提高,如何减少汽车噪音成为提高汽车技术性能与质量水平的核心指标之一。
其中,汽车的主要噪音源是发动机噪音,而发动机的主要噪音源则是排气噪音源,因而可以降低发动机的排气噪音、控制汽车的车外噪音的消声器的设计与改进对控制汽车噪音、提高汽车性能都具有极为重要的意义。
因此消声器的性能优劣直接影响着汽车性能的好坏。
而常见的评价消声器的消声性能评价指标主要有声压极差、插入损失与传递损失等,其中消声元件的消声效果的评价指标主要为传递指标,而消声系统的消声效果的评价指标主要为声压极差与插入损失。
1 汽车消声器声学性能分析消声器分析与研究的早期主要依据的是平面波理论,并在此理论的基础上发展出消声器声学性能分析的主要计算方法,即以平面波理论为基础的边界元、有限元法与传递矩阵法等。
但是,因为汽车排气消声器的内部结构均较为繁复,其内部声场在声波频率较高时为三维,因而仅使用一维的平面波理论检测会产生相应的误差,于是必须采取二维乃至三维的平面波检测方法来分析它们的声学性能。
而对于具有复杂的三维结构的消声器,如果仅是运用传统的阻力系数理论与平面波理论相关的计算方法,就会产生相对较大的误差。
因此,随着计算方法的技术发展,从而产生了消声器设计的新途径。
利用专业的声学分析软件建立消声器的三维模型,而后运用有限元法进行数值分析与计算,就可以有效的弥补以上各方法的不足。
机动车辆消声器的声学优化与设计策略一、引言机动车辆消声器作为汽车排气系统的重要组成部分,起到降低排气噪声和改善整体声学性能的关键作用。
在如今注重环境保护和乘坐舒适性的社会背景下,汽车消声器的声学优化和设计策略变得尤为重要。
本文将从消声器的声学原理出发,探讨机动车辆消声器的声学优化和设计策略。
二、机动车辆消声器的声学原理机动车辆消声器主要通过吸声和反射声两种作用方式来降低排气噪声。
其中,吸声是通过消声器内部的吸声材料将声能转化为热能,从而减小声波的能量;反射声则是通过消声器内部的多重腔室结构将声波反射、折射和干涉,以降低噪声的传播。
基于这些声学原理,我们可以设计出更加高效的机动车辆消声器。
三、机动车辆消声器的设计策略1. 吸声材料的选择:消声器内部的吸声材料是保证消声效果的关键。
常用的吸声材料包括玻璃纤维、陶瓷纤维、蜂窝状金属等。
在选择吸声材料时,需要考虑其吸声性能、耐高温性能、机械强度和耐久性等因素。
2. 多重腔室结构设计:消声器内部的多重腔室结构可以有效地增加声波的传播路径,提高声波的折射和干涉效果。
通过合理设计腔室的尺寸和形状,可以实现更好的声学性能。
3. 阻尼材料的应用:阻尼材料可以有效地减少声波在消声器内部的反射和干涉,进一步降低排气噪声。
常用的阻尼材料包括聚酰亚胺薄膜、海绵橡胶等。
在设计消声器时,适当添加阻尼材料可以提高整体性能。
4. 流体动力学优化:消声器内部的气体流动对声学性能也有重要影响。
通过流体动力学优化技术,可以减少气流噪声和气体振动,提高消声器的降噪效果。
5. 结构材料的选择:消声器的结构材料需要兼顾强度和重量的平衡。
常用的结构材料包括不锈钢、铝合金等。
通过合理选择材料可以实现消声器的轻量化和性能的平衡。
四、机动车辆消声器的声学优化1. 声学性能测试:在消声器设计完成后,需要进行声学性能测试以确保其满足设计要求。
常用的测试方法包括音压级测试、频率响应测试和声阻抗测试等。
通过测试结果的分析,可以对消声器进行进一步优化。
水管路消声器声学性能的时域计算及分析水管路消声器是一种能够有效减少管道内压力脉动和噪声的装置。
如何准确地计算和分析水管路消声器的声学性能是该领域的研究重点之一。
本文将介绍水管路消声器的时域计算及分析方法。
在水管路中,噪声主要来源于流体的脉动和涡旋流的冲击引起的压力波。
水管路消声器的基本原理是利用不同的结构和材料来改变声波的传播路径和反射特性,从而减少噪声的传播和反射。
因此,对水管路消声器的声学性能进行分析需要考虑各种声波的传播、干涉和反射等复杂的物理过程。
在时域计算中,可以采用传统的数值方法,如有限差分法或有限元法,来分析水管路消声器的声学特性。
其中,有限差分法是一种基于差分方程方法的数值计算方法,可以准确计算声波在水管路中的传播路径和干涉效应。
有限元法则是一种计算机模拟方法,它将复杂的声学问题分解成小的离散单元,通过组合这些离散单元来模拟整个系统。
通过这些数值方法,可以计算出水管路消声器的传递函数、声龄、反射系数等关键参数。
另一方面,在分析水管路消声器的声学性能时,也需要考虑结构和材料等因素的影响。
例如,在设计水管路消声器时,可以采用多级设计方案,以使声波的传播路径更加复杂,从而达到更好的消声效果。
在材料方面,可以选择具有特定声学性能的材料,如聚酰亚胺、聚苯乙烯、橡胶等,以提高消声器的效能。
总之,水管路消声器是减少水管路内噪声的重要装置,需要进行准确的声学性能分析和设计。
通过应用数值方法和考虑材料和结构等因素,可以有效地改善水管路消声器的消声效果,提高水管路的使用效率。
相关数据是指在特定领域或问题上收集的有关信息和数字。
对于不同领域的数据,分析方法和识别的趋势也会不同。
下面将以商业领域为例,列举一些相关数据并进行分析,帮助企业更好地了解市场和战略。
1. 销售和收益数据销售和收益数据是企业了解市场行情的重要指标,可以帮助企业识别市场趋势和业务表现。
例如,比较去年同期和今年同期的销售和收益数据,可以确定企业正在扩大业务,推动市场份额。
消声器设计与声学分析消声器是一种用来减少噪音的装置,通常被应用于机械设备、汽车、船舶等噪音源的降噪处理中。
消声器的设计和声学分析是为了降低噪音水平,提高声音质量,保护人员健康和环境安全。
消声器的设计通常包括结构设计、材料选择和内部构造三个方面。
结构设计包括外形结构和内部流动结构。
外形结构的设计通常采用其中一种特定形状,如膨胀腔、缩小管道等,以便达到声波的反射、散射和吸收。
内部流动结构主要是考虑流体的流动状态,使得噪音能够尽量被流体吸收或湍流衰减。
材料的选择对消声器的性能具有重要影响。
常用的消声材料包括吸声材料和隔声材料。
吸声材料一般具有多孔结构和表面复杂性,能够将声波能量转化为热能。
隔声材料主要是通过反射和散射声波来减少噪音的传播。
消声材料的选择通常需要考虑频率范围、材料成本、耐用性等因素。
消声器的内部构造是保证其有效工作的关键。
常见的内部构造包括腔体、吸声体、隔声板等。
腔体的设计通常是为了实现声波的反射和散射,而且要避免声波的共振现象。
吸声体的设计要考虑材料的吸声特性和吸声体的形状。
隔声板一般用于隔声材料的支撑和隔离。
声学分析是消声器设计的重要一环。
通过声学分析可以确定消声器的工作原理和性能参数。
常用的声学分析方法包括声学模型、数值模拟和实验测试。
声学模型通常通过理论计算和数学模型来预测消声器的声学效果。
数值模拟则利用计算机模拟技术,对消声器内部的声场进行数值模拟分析。
实验测试则利用实验室设备,对消声器的声波特性进行实验测试和测量。
总之,消声器设计与声学分析是实现噪音控制的重要步骤。
通过合理的设计和科学的分析,能够实现噪音的降低,提高声音质量,保护人员健康和环境安全。
随着科学技术的发展,消声器的设计和声学分析将会得到进一步的优化和改进,以满足不同环境和应用领域的需求。
48机械设计与制造Machinery Design&Manufacture第4期2021年4月汽车消声器的声学性能分析与结构优化顾倩霞,左言言,赵海卫,宋文兵(江苏大学振动噪声研究所,江苏镇江212013)摘要:针对某三缸发动机排气嗓声超出目标限值,将声学性能作为评价指标,利用b声学有限元樸块对排气消声器的声学性能进行仿真分析,对比传递损失试验结果对该声学软件的仿真精度作出评价:b软件在整个频段与试验值较为接近,能准确的反映消声器的声学性能。
根据原排气消声器的传递损失分析结果,提出亥姆霍兹共振腔结构及阻抗复合型结构等参数设计的前后端消声器优化方案。
最终对优化后的排气消声器进行尾管嗓声试验,确认排气噪声达标。
关键词:排气消声器;仿真分析;传递损失;尾管噪声中图分类号:TH16;TB535.2文献标识码:A文章编号:1001-3997(2021 )04-0048-05Acoustic Performance Analysis and Optimized Design of Vehicle MufflerGU Qian-xia, ZUO Yan-yan, ZHAO Hai-wei, SONG Wen-bing(Institute of Noise and Vibration of Jiangsu University,Jiangsu Zhenjiang212013, China)Abstract:Base on a three-cylinder engine exhaust noise exceeding target limit y according to the evaluation index of acoustic performance y the analysis of acoustic performance was conducted in acoustic FEM module o f software VirtuaL Comparing the transmission loss test results to evaluate the simulation accuracy of the acoustic software:the simulation results〇/*b software were close to the experimental value on entire frequency band and accurately reflection on the acoustic performanceof the muffler.The simulalion results are compared with the test results to confirm the simulation accuracy.According to the analysis results of the transmission loss of the original exhaust muffler^optimization solutions for front and rear mufflers designed with parameters such as Helmholtz resonator and impedance compound structure was proposed for the frequencyband with poor muffling effect.Finally,the tail pipe noise test was performed on the optimized exhaust muffler to confirm thatthe exhaust noise reached the standard.Key Words:Exhaust Muffler;Simulation Analysis;Transmission Loss;Tailpipe Noisel引言2原排气消声器测试数据分析据国外有关资料统计,交通噪声占整个环境噪声比例达到75%,是目前影响城市环境和人体健康的主要噪声来源。
消声器设计与声学分析消声器是一种用来减少噪声和改善声学环境的装置。
它通过吸音、隔声和散射等方法来减少声波的能量传播和反射,从而达到降低噪声的目的。
本文将对消声器的设计和声学分析进行详细介绍。
一、消声器的设计消声器的设计是基于声学原理和工程实践的结合。
在设计消声器时,需要考虑以下几个方面:1.噪声源的频谱特性:不同噪声源的频谱特性不同,需要根据具体的噪声源设计消声器。
例如,高频噪声需要使用高吸音系数的材料来吸收,低频噪声则需要使用大孔径或多层吸音材料来实现。
2.噪声源的功率谱密度:噪声的功率谱密度决定了需要吸收的能量大小。
根据噪声源的功率谱密度,可以选择合适的消声器材料和结构来实现消声效果。
3.消声器的尺寸和形状:消声器的尺寸和形状也对消声效果有很大的影响。
一般情况下,消声器的长度以波长的1/4为宜,这样可以实现最佳的吸音效果。
同时,消声器的形状也需要满足声学的要求,如避免尖角、平滑面等。
4.吸音材料的选择:消声器的吸音材料是实现消声效果的关键。
常用的吸音材料有吸声泡沫、玻璃纤维、聚酯纤维等。
根据不同的频率要求,可以选择不同吸音材料实现最佳的吸音效果。
5.散射元件的设计:在一些情况下,需要使用散射元件来扩散声波,实现声场均匀化。
散射元件可以采用不同形状的表面结构,如波纹板、棱镜板等,来实现声波的散射。
二、声学分析声学分析是对消声器性能进行评估和优化的过程。
通过声学分析,可以定量评估消声器的吸音效果和隔声效果,并对其进行优化。
声学分析的方法主要包括数值模拟和实验测量。
数值模拟是通过建立声场模型,应用声学原理进行计算,预测消声器的声学性能。
常用的数值模拟方法包括边界元法、有限元法和声线法等。
实验测量则是利用声学测量仪器对消声器进行实际测量,评估其吸音和隔声效果。
声学分析的指标主要包括声透射系数和声反射系数。
声透射系数是指声波通过消声器的能量传递的比例,反映了消声器的隔声效果。
声反射系数是指声波被消声器反射的比例,反映了消声器的吸音效果。
压缩机消声器的声学性能仿真分析及改进压缩机消声器的声学性能仿真分析及改进摘要:为使压缩机组消声器获得较好的消声性能,建立消声器的声学仿真模型,应用xxxxE软件对其声学性能进行分析,得出应用同样方法设计的不同消声器性能差异的原因,并对原消声器的结构进行改进. 试验表明改进后的消声器在主消频带上的性能得到明显改善.关键词:压缩机; 排气消声器; 声学性能; xxxxE中图分类号:TB535;TH45;TB115文献标志码:AAcoustic performance simulation and improvementon compressor’s muffler (1.School of Mechanical Eng., Shanghai Jiaotong Univ., Shanghai xxxx, China; Abstract: To improve the performance of the mufflers of compressors, the acoustic simulation model of muffler is built, the acoustic performance is analyzed by xxxxE, the reason of performance difference of different mufflers designed by the same method is found, and the original muffler structure is improved. The test shows that the acoustic performance is improved obviously on the main frequency band.Key words: compressor; discharge muffler; acoustic performance; xxxxE收稿日期:2009-08-20修回日期:2009-09-010引言某型号大冷量压缩机组(以下简称机组)的50 Hz消声器是对其60 Hz消声器结构进行修改得到的,消声性能较好,故对该型号小冷量机组的60 Hz消声器结构稍作修改,得到50 Hz消声器.然而,测试结果却表明该小冷量机组在50 Hz电源下运行时,在主消频带上直接采用60 Hz消声器消声性能反而更好.因此,应用xxxxE创建消声器的声学模型并结合试验数据分析此问题.1声学仿真分析模型1.1声波分解理论图1抗性消声器声学分析模型于是,入射波的RMS幅值Pi,Wi和Wt可用式(3)~(5)计算得到.Pi=Saa(3)Wi=P2iρcSi(4) 采用间接边界元法建立的消声器声学分析模型见图1.为对声学模型和分析方法进行验证确认,选择经典的、已有试验数据的两个消声器结构作为样本,进行如下的分析对比. 简单消声器含有1个膨胀室,它是构成消声器的基本声学单元.图2[5]为肯塔基大学对该消声器做的试验和仿真数据,如图2中的尺寸,图3为该消声器的声学边界元模型,图4为本文计算的TL数据.可以看出用xxxxE计算得到的TL数据与肯塔基大学的试验数据[5]的一致性很好,这说明本文所采用的声学模型及分析方法正确合理.图 2肯塔基大学的简单消声器试验及仿真数据图 3简单消声器的声学边界元模型图 4用户xxxxE计算得到的简单消声器的TL数据如图5中的尺寸,该消声器在膨胀室中含有内插管,其边界元模型见图6.肯塔基大学关于该消声器的试验和仿真数据[5]列于图5中,图7为本文计算得到的该消声器的TL数据.这些数据表明,对于复杂消声器,本文的仿真数据与肯塔基大学的数据一致性很好,说明所用声学模型及分析方法合理.图 5肯塔基大学的试验及仿真数据图 6复杂消声器的边界元模型图 7xxxxE计算得到的复杂消声器的TL数据1.3某型号压缩机组的消声器模型采用上述方法创建实际消声器的模型.图8是安装在消声器出口处的单向阀结构,图9是位于消声器入口处的排气通道.该消声器的声学分析模型包含整个排气通道和出口处的单向阀内截面,模型具体尺寸见图10和11.图 8单向阀的结构图 9内排气通道图10小冷量机组的消声器分析模型尺寸图11大冷量机组的消声器分析模型尺寸2仿真数据及分析2.1小冷量机组的50 xxxx图 13被测试机组的特征频率图 15大冷量机组测试时的特征频率2.2消声器入口处排气通道长度的影响图 16修改通道长度的消声器A1和A2的性能比较2.3安装位置的影响图 17消声器A1配B1的分隔器后的声学分析数据2.4通道中不含消声器的情况排气通道包含1个膨胀室,它可能也有部分消声功能.去掉消声器(膨胀室中的内插件)前后,在主消频带上排气通道的声学分析结果对比见图18和19.图 18含有和不含有消声器A1的排气通道的声学分析数据图 19含有和不含有消声器B1的排气通道的声学分析数据从上述分析数据可以看出,原消声器A1的性能不如消声器B1,但其结构就是从消声器B1延续而来,因此必定存在某个关键影响因素.下文对消声器结构中的加强筋板的影响进行探讨.2.5加强筋板的影响图 20不同结构消声器A1在其主消频带上的TL2.5.1消声器A1和消声器A2 A2在主消频带上的TL2.6压力损失对比应用FLUENT软件计算马赫数Ma=0.06时消声器A1去除加强筋板前后的压力损失,分别为9.3 kPa和8.5 kPa.消声器A1去除加强筋板后,压力损失比原消声器低0.8 kPa,这对机组的性能有益,同时经过消声器前后的流体分布不存在明显涡流.3验证试验图 22消声器对整机噪声的消声效果4结论及建议本文采用的声学模型及分析方法是合理的,今后的产品开发中,可以应用该方法进行螺杆压缩机内部类似消声器的设计评价及结构优化.参考文献: [2]CHUNG J Y, BLASER D A. Transfer function method of measuring in-duct acoustic properties. I. Theory[J]. J Acoustical Soc America, 1980, 68(3): 907-913. [4]xxxx A F. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts[J]. J Acoustical Soc America, 1988, 83(6): 2233-2239.[5]LMS. Sysnoise vibro-acoustics simulation, release notes & getting started manual[K]. 2003.[6]TAO Z, xxxx A F. A review of current techniques for measuringmuffler transmission loss[C]//SAE Paper 03NVC-38, Warrendale, USA: SAE Int, 2001.<!--。
HyperMesh软件在消声器声学特性分析中的应用张冬莲赵立峰杨亮重庆长安汽车工程研究总院重庆401120摘要:设计高消声性能、低压力损失的排气系统是噪声控制中的重要课题。
HyperMesh软件能对穿孔管、穿孔板、吸声材料等准确建模进而进行有限元仿真分析,是排气系统性能预测和改进设计的有效方法。
本文针对某发动机排气系统的前、后消声器进行了消声特性的三维传递损失仿真分析,并与试验数据进行了对比,得出传递损失的三维仿真结果与试验结果吻合较好。
因此在消声器的前期设计中可以通过分析消声器本身的消声特性来预测此消声器的消声作用并根据结果对消声器结构进行改进设计,从而指导实际工程问题。
关键词:排气消声器,有限元,传递损失,HyperMesh1 引言排气系统一直以来都是发动机最大的噪声源。
而消声元件本身的消声特性是控制噪声的关键所在,因此如何设计高消声性能、低压力损失的排气系统是噪声控制的根本。
本文以某轿车的排气系统为例,利用HyperMesh软件建立前后消声器的三维有限元模型,利用Sysnoise软件进行消声器的三维传递损失分析。
并在HyperMesh软件中通过将穿孔管、穿孔板上的小圆孔等效成四边形方孔和六边形方孔两种情况来研究穿孔管、穿孔板上孔的形状对传递损失的影响,以便在后期仿真分析中缩短建模时间、减小有限元单元数量及提高仿真精度。
2 排气系统声学特性三维有限元分析2.1三维有限元模型本文研究的排气系统主要包括两级消声器和连接消声器的进出口长管。
由于缺少三元催化器的相关结构参数,而且三元催化器主要用于改善发动机的排放,而不是消声性能和空气动力性能,所以排气系统建模时不考虑三元催化器。
消声器内部的穿孔管、穿孔板、吸声材料均采用实体建模。
排气系统的几何模型及前后消声器的有限元模型见图1、图2、图3。
2.2三维传递损失计算计算模型为图2、图3中的消声器有限元模型,其中紫色部分表示吸声材料所加位置。
入口施加了单位速度激励,出口施加了吸声系数为1的全部吸收边界,本文暂不考虑温度、流速对消声性能的影响,表1列出了空气及吸声材料的属性。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。