碳化钛基金属陶瓷的合成及其应用研究现状
- 格式:pdf
- 大小:269.48 KB
- 文档页数:5
钛碳化硅陶瓷材料的研究进展贾换 王娇 徐简 武国强(西安思源学院 陕西西安 710038)摘要:三元层状化合物钛碳化硅是一种结合金属和陶瓷性能的新型金属陶瓷,它具有较高的力学性能、优良的耐磨损性能、导热导电性能、良好的耐腐蚀和抗高温氧化性能等,被广泛应用于机电、化工、冶金和航空航天等领域。
该文首先综述了Ti3SiC2材料的结构、制备方法,其次对Ti3SiC2材料的制备工艺、力学性能等进行了介绍,最后对Ti3SiC2材料未来研究方向进行了展望。
关键词:Ti3SiC2制备 性能 第二相中图分类号:TQ175文献标识码:A 文章编号:1672-3791(2023)16-0120-04Research Progress of Ti3SiC2Ceramic MaterialsJIA Huan WANG Jiao XU Jian WU Guoqiang (Xi′an Siyuan University, Xi'an, Shaanxi Province, 710038 China)Abstract:The laminated Ti3SiC2is a new kind of metallic ceramic because they combine properties of metallic andceramic simultaneously. Due to the favourable high mechanical property, excellent wear resistance, thermal andelectrical conductivity and excellent high temperature oxidation resistance properties, Ti3SiC2ceramic materials areused in a wide range of fields such as electromechanical, chemical machinerymetallurgical and aerospace. Ti3SiC2materials preparation, structure and preparation method are reviewed. This paper summarizes properties, preparationmethods and the future research direction of Ti3SiC2composite materials.Key Words: Ti3SiC2; Preparation technology; Performance; Reinforced phaseMn+1AXn是三元层状化合物,如Ti3SiC2、Ti2A1C、Ti2SnC、Ti3A1C2等,其中最典型的是Ti3SiC2[1]。
毕业设计(论文)题目SPS烧结Ti(C,N)基金属陶瓷的工艺研究学生姓名学号专业材料成型及控制工程班级指导教师评阅教师完成日期2012 年5 月23 日学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全意识到本声明的法律后果由本人承担。
作者签名:2012年5月17日学位论文版权使用授权书本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
本学位论文属于1、保密□,在_________年解密后适用本授权书。
2、不保密□`。
(请在以上相应方框内打“√”)作者签名:年月日导师签名:年月日目录摘要 (4)1 绪论 (6)1.1 Ti(C,N)基金属陶瓷 (6)1.1.1 Ti(C,N)基金属陶瓷介绍 (6)1.1.2 Ti(C,N)基金属陶瓷的结构与性能 (6)1.1.3 Ti(C,N)基金属陶瓷的显微组织 (7)1.1.4 Ti(C,N)基金属陶瓷的发展趋势与运用 (7)1.2 放电等离子烧结(SPS烧结) (8)1.2.1 放电等离子烧结介绍 (8)1.2.2 SPS(放电等离子烧结)的技术装置、原理及特点 (8)1.2.3 SPS技术在材料制备中的发展和运用 (10)1.2 研究的内容 (11)1.3 研究的技术路线 (12)1.4 研究的目的和意义 (12)2 研究SPS烧结Ti(C,N)金属陶瓷的实验方法 (15)2.1 Ti(C,N)金属陶瓷基体成分设计 (15)2.2 金属陶瓷基体材料的制备工艺 (15)2.3 性能测试 (16)3 Ti(C,N)基金属陶瓷显微组织的形成及特点 (17)3.1 普通真空烧结Ti(C,N)金属陶瓷的组织结构特点 (17)3.2 SPS烧结Ti(C,N)基金属陶瓷显微组织的形成及特点 (18)4 SPS烧结Ti(C,N)基金属陶瓷工艺研究 (22)4.1 SPS烧结工艺 (22)4.2 烧结温度对金属陶瓷组织和性能的影响 (23)4.3 升温速率对金属陶瓷组织和性能的影响 (25)4.4 保温时间对金属陶瓷组织和性能的影响 (27)4.5 SPS烧结工艺的确定 (29)5 全文小结 (30)致谢 (31)参考文献 (32)SPS烧结Ti(C,N)基金属陶瓷的工艺研究学生:指导老师:摘要:采用SPS烧结工艺制备了Ti(C,N)基金属陶瓷,研究了烧结温度、升温速率和保温时间对Ti(C,N)基金属陶瓷显微组织和力学性能的影响,并用SEM观察其断口形貌。
碳化钛金属陶瓷材料
碳化钛,TiC,是一种极其坚硬(莫氏硬度)的耐火陶瓷材料,类似于碳化钨。
其外观为黑色粉末,晶体结构为氯化钠(面心立方)。
它以非常稀有的矿物khamrabaevite(俄语:Хамрабаевит)- (Ti,V,Fe)C 的形式存在于
自然界中。
碳化钛在1984 年在苏联(今吉尔吉斯斯坦)恰特卡尔区靠近乌兹别克斯坦边境的阿拉善山被发现。
碳化钛是一种重要的金属陶瓷材料,它具有高硬度、高熔点、耐磨损等特点,广泛应用于制造切削工具、耐磨部件、涂层材料等。
具体来说,碳化钛可以与TiN、WC、Al₂O₃等原料制成各类复相陶瓷材料,这些材料具有高熔点、高硬度、优良的化学稳定性,是切削工具、耐磨部件的优选材料。
碳化钛还可以用作表面涂层,是一种极耐磨损的材料,可以增强金刚石与基体金属之间的粘接力。
在刀具上沉积层碳化钛薄膜,就可以使刀具的使用寿命提高几倍。
此外,碳化钛金属陶瓷材料还具有很好的抗氧化性能,被用于高速线材的导轮和碳钢的切削加工。
含碳化钛的复相陶瓷刀具已经有比较广泛的应用。
以上信息仅供参考,如果想要了解更多关于碳化钛的信息,建议查阅相关文献或咨询专业人士。
工业技术科技创新导报 Science and Technology Innovation Herald55碳氮化钛基硬质合金有熔点高、强度高、耐磨性强、耐腐蚀及抗氧化等优良特性,常用于制备刀具及密封环类等耐磨材料,适用于机械、化工、汽车制造和航天等许多领域[1]。
碳氮化钛可用自蔓延法,氨解法、溶胶-凝胶法、等离子法及机械合金法等方法制备[2-6],从传统的制备工艺到近年来发展的新方法中,最容易实现规模化生产且经济有效的是碳热还原法。
1 碳热还原法制备碳氮化钛1.1 以TiO 2、C为原料于仁红等[7]以T i O 2粉和活性炭粉为原料合成了碳氮化钛粉末。
研究表明:在0.1 M Pa的N 2压力下,于1 700 ℃保温3 h后,制备出了碳氮化钛粉末。
陈帮桥等[8]以TiO 2和纳米碳黑为原料,在石墨管炉中得到了纳米晶碳氮化钛粉末。
结果表明:当配碳量为28%的混合物在1 700 ℃,保温3 h,得到了晶粒为52.6 n m的Ti(C,N)粉末。
1.2 以氢化钛、淀粉为原料李喜坤等人[9]以氢化钛、淀粉为原料,制备出碳氮化钛纳米粉末,通过控制合成温度及保温时间后,控制T i (C1-x Nx)中的碳氮比,得到不同x值的碳氮化钛。
1.3 以钛精矿、石墨为原料肖玄[10]以钛精矿和石墨为原料制取碳氮化钛。
研究表明,铁氧化物在钛精矿碳热还原的过程中优先还原,钛氧化物最终还原形成碳氮化钛。
1.4 以高钛渣、碳黑为原料李慈颖等人[11]以合成的高钛渣与碳黑为主要原料制取碳氮化钛,发现混合物在氮气气氛下,产物主要为T i(C,N),对工业中高钛渣的利用具有重要意义。
1.5 以TiO 2凝胶、聚乙烯吡咯烷酮为原料崔燚等[12]以高活性的TiO 2凝胶为钛源,以聚乙烯吡咯烷酮为碳源合成碳氮化钛,但该工艺的流程较复杂,能耗较大。
1.6 以TiO(O H)2溶胶和炭黑为原料肖汉宁等[13]以T i O (OH)2溶胶和炭黑为原料,在氨解溶胶-凝胶工艺以及碳热还原法下制备出了分散性能良好的T i(C,N)。
碳化钛陶瓷硬度
碳化钛陶瓷是一种非常重要的金属陶瓷材料,其硬度非常高,可达到2800~3200HV,相当于高速钢的两倍以上。
碳化钛陶瓷具有高熔点、高硬度、高耐磨性、优良的化学稳定性和良好的高温强度等特点,因此在航空航天、石油化工、汽车、电子、冶金等工业领域得到了广泛应用。
碳化钛陶瓷的硬度主要来自于其化学键合和晶体结构。
碳化钛陶瓷的晶体结构类似于碳化钨,属于面心立方结构,其硬度值很高,具有极佳的耐磨性和耐腐蚀性。
此外,碳化钛陶瓷的化学稳定性也非常好,可在高温和强腐蚀性的环境下使用。
在实际应用中,碳化钛陶瓷可以加工成各种形状和大小的零件,广泛应用于切削刀具、喷涂材料、耐磨件等领域。
由于其硬度很高,碳化钛陶瓷的加工非常困难,需要采用特殊的加工方法和工具。
总之,碳化钛陶瓷是一种具有优异性能的材料,其硬度高、耐磨性好、耐腐蚀性强等特点使其在许多领域中得到了广泛应用。
随着科技的不断发展,碳化钛陶瓷的应用前景将更加广阔。
金属陶瓷材料一、金属陶瓷的定义材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。
正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。
当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。
金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。
图1 金属陶瓷复合材料性能图1、金属陶瓷的概念金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。
从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。
金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。
由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该归入“金属陶瓷”,IE. Campbell就将“硬质合金”归入到“金属陶瓷”。
2、金属陶瓷的历史WC-Co基金属陶瓷作为研究最早的金属陶瓷,由于具有很高的硬度(HRA80~92),极高的抗压强度6000MPa(600kg/mm2),已经应用于许多领域。
但是由于W和Co资源短缺,促使了无钨金属陶瓷的研制与开发,迄今已历经三代:第一代是“二战”期间,德国以Ni粘结TiC生产金属陶瓷;第二代是20世纪60年代美国福特汽车公司添加Mo到Ni粘结相中改善TiC和其他碳化物的润湿性,从而提高材料的韧性;第三代金属陶瓷则将氮化物引入合金的硬质相,改单一相为复合相。
陶瓷颗粒增强金属基复合材料的制备方法及研究进展【摘要】陶瓷颗粒增强金属基复合材料具有优异的力学性能和热稳定性,因而受到广泛关注。
本文主要探讨了陶瓷颗粒增强金属基复合材料的制备方法及研究进展。
在分别介绍了研究背景、研究意义和研究现状。
在详细讨论了陶瓷颗粒的选择与表面处理、金属基体材料的选择与预处理,以及增强相的分散与复合方法。
结论部分总结了未来研究方向和发展前景,强调了陶瓷颗粒增强金属基复合材料在材料领域的重要性。
通过本文的研究,可以更好地理解和应用陶瓷颗粒增强金属基复合材料,推动该领域的进一步发展。
【关键词】陶瓷颗粒增强金属基复合材料、制备方法、研究进展、陶瓷颗粒选择、表面处理、金属基体材料、预处理、增强相分散、未来研究方向、发展前景、总结。
1. 引言1.1 研究背景金属基复合材料是一种集金属和陶瓷的优点于一体的高性能材料,具有良好的力学性能和热性能,在航空航天、汽车、能源等领域具有广泛的应用前景。
陶瓷颗粒作为增强相可以有效提高金属基复合材料的强度、硬度和磨损性能,因此备受关注。
在过去的研究中,人们主要关注于增强相的性能和分散性,以及金属基体与增强相的界面结合强度等问题。
当前对于陶瓷颗粒增强金属基复合材料的制备方法和研究仍存在一些挑战和不足之处,需要进一步深入研究和改进。
本文将针对该领域的研究现状进行综述,探讨目前存在的问题,提出未来的研究方向和发展前景,为相关研究提供参考和指导。
1.2 研究意义陶瓷颗粒增强金属基复合材料在工程材料领域具有重要的应用价值,其具有优异的力学性能、热性能和耐腐蚀性能,可以被广泛应用于航空航天、汽车制造、船舶建造等领域。
通过研究陶瓷颗粒增强金属基复合材料的制备方法,可以为相关领域提供高效、可靠的材料解决方案,推动相关行业的技术发展和创新。
陶瓷颗粒增强金属基复合材料的研究也可以促进材料科学领域的交叉融合,推动材料制备技术的进步。
深入探讨陶瓷颗粒增强金属基复合材料的研究意义,不仅可以拓展材料领域的研究范围,还可以为相关产业的发展提供有力支持。
Ti(C,N)基金属陶瓷强韧化技术的研究进展Ti(C,N)基金属陶瓷是一种非常具有发展前景和应用价值的新型材料,其独特的性能和优势使得其在诸多领域均有广泛的应用前景。
其中,它的强韧化技术是关键之一,对于其在工业应用领域的推广具有非常重要的作用。
本文通过综合分析相关文献资料,介绍Ti(C,N)基金属陶瓷强韧化技术的研究进展。
一、Ti(C,N)基金属陶瓷的概述Ti(C,N)基金属陶瓷是一种由钛、碳、氮等原子组成的高强度、高韧性、高温稳定性的新材料。
它具有金属的韧性和殊高的硬度和耐磨性,同时还具有陶瓷的高温、高硬度、高耐腐蚀性的优异性能,是一种典型的“金属+陶瓷”复合材料。
由于其优良的性能,Ti(C,N)基金属陶瓷在航空航天、汽车、船舶、刀具、模具等领域有着广泛的应用。
二、Ti(C,N)基金属陶瓷的制备及其烧结机制Ti(C,N)基金属陶瓷的制备通常采用粉末冶金法,包括机械合金化和热处理等步骤。
在粉末冶金法中,首先将Ti、C、N 等原料粉末混合,并经过球磨等方法进行机械合金化,再经高温反应制备出Ti(C,N)相的颗粒。
最后,通过热压或等离子烧结等高温处理技术使得颗粒粘结,形成致密的Ti(C,N)基金属陶瓷材料。
Ti(C,N)基金属陶瓷的烧结是其制备中的重点、难点之一。
近年来,烧结参数的优化和机理的研究对Ti(C,N)基金属陶瓷的强韧化优化起到了重要作用。
烧结温度、压力、时间、脱氧剂等因素均会影响烧结过程中晶粒的生长和相界面的稳定性,进而影响材料的力学性能和热学性能。
三、Ti(C,N)基金属陶瓷的强韧化机制Ti(C,N)基金属陶瓷具有良好的高温和高强度等优越性能,但其低韧性是限制其广泛应用的主要困难。
因此,强韧化成为了目前Ti(C,N)基金属陶瓷研究的主要方向之一。
主要强韧化机制为韧性增散机制和图案转化机制:(1)韧性增散机制韧性增散机制是指通过向Ti(C,N)基金属陶瓷中添加少量的可溶性增散相(如Ni、Fe、Co 等)以调节晶界能量,减缓晶粒生长速率,从而增加Ti(C,N)基金属陶瓷的韧性。
金属陶瓷复合材料的研究进展金属陶瓷复合材料是指以金属为基体,通过添加陶瓷颗粒或纤维等增强相,形成的具有金属和陶瓷两种性质的复合材料。
这种复合材料具有很高的综合性能,广泛应用于航空航天、汽车工业、电子工业等领域。
本文将对金属陶瓷复合材料的研究进展进行探讨。
一、金属陶瓷复合材料的分类金属陶瓷复合材料可以根据金属基体和陶瓷增强相的性质以及相互间的化学反应进行分类。
根据金属基体的性质,复合材料可以分为铝基复合材料、镁基复合材料、钛基复合材料等。
根据陶瓷增强相的性质,复合材料可以分为氧化物基、非氧化物基等。
根据金属和陶瓷之间的化学反应,复合材料可以分为无反应型、反应型等。
二、金属陶瓷复合材料的制备方法制备金属陶瓷复合材料的方法主要包括粉末冶金法、熔融渗透法、化学气相沉积法等。
粉末冶金法是最常用的制备方法之一,其过程包括原料粉末的混合、压制成型、烧结等步骤。
熔融渗透法则是将陶瓷颗粒放置在金属基体上,通过熔融金属的渗透作用,使陶瓷颗粒与金属基体结合。
化学气相沉积法是利用气相反应生成陶瓷薄膜,然后将金属基体浸入薄膜中形成复合材料。
三、金属陶瓷复合材料的性能与应用金属陶瓷复合材料具有独特的性能,包括高温抗氧化性能、耐磨性、耐腐蚀性、高强度和低密度等。
这些性能使得金属陶瓷复合材料在航空航天领域得到广泛应用,例如用于制造航空发动机叶片、导向叶片等。
在汽车工业中,金属陶瓷复合材料可以用于制造汽车引擎部件和刹车系统等。
此外,在电子工业中,金属陶瓷复合材料也可用于制造电子元件的封装材料。
四、金属陶瓷复合材料的挑战与展望尽管金属陶瓷复合材料在各个领域中已经取得了巨大的成功,但仍然面临一些挑战。
首先,制备过程中存在的难度和复杂性需要进一步解决。
其次,复合材料的性能一直在不断提高,但仍需要进行更深入的研究和改进。
最后,金属陶瓷复合材料的成本仍然较高,需要寻找更加经济有效的制备方法。
展望未来,金属陶瓷复合材料将继续发展,并在更多的领域中得到应用。
碳氮化钛基硬质合金金属陶瓷简介BRIEF INTRODUCTION OF CERMETS CUTTING TOOL TiCN基金属陶瓷具有良好的使用性能与WC基硬质合金相比它具有低密度、高硬度、对钢的摩擦系数小加工中显示出较高的红硬性、相近的强度、较低的腐蚀性和导热性切削时抗粘结磨损和抗扩散磨损在相同切削条件下TiCN基金属陶瓷刀具具有较高的寿命或在寿命相同的情况下可采用较高的切削速度被加工件有较好的光洁度。
因此TiCN基金属陶瓷在许多加工场合下可成功取代WC基硬质合金填补了WC基硬质合金和陶瓷之间的空白特别适用于钢材的半精加工和精加工及耐磨耐蚀零件。
TiCN substrate cermets cutting tool has very good application. Compared with tungsten carbide cutting tool cermets cutting tool has advantages of lower density harder much lower friction for machining steel better thermal stability when machining close toughness lower causticity and heat conduction better wear-resistance. Working in the same condition TiCN based cermets cutting tool has longer using life and can be used under faster cutting speed. We can get more finish work-piece with smoother surface using cermets cutting tool. From above we have used TiCN based cermets cutting tool to replace WC based carbide cutting tool in some fields successfully. It fills up the gap between WC based carbide and ceramic. It is suitable for semi-finishing and finishing machining of steel and wear part specially. TiCN基金属陶瓷采用精制高纯原料通过严格控制各个工艺环节而制备的具有优异特性的陶瓷制品具有高强度、高硬度、轻质抗腐蚀、抗氧化耐热性好等优异性能。
N i-S i金属间化合物/陶瓷复合材料的制备技术及其研究发展现状和发展趋势*江涛黄一丹(西安石油大学材料科学与工程学院西安710065)摘要 N i-S i金属间化合物具有很多优秀的性能,例如具有较高的力学性能㊁优秀的耐磨损性能和抗高温氧化性能等㊂N i-S i金属间化合物包括N i3S i㊁N i2S i和N i S i,陶瓷材料也具有很多优秀的性能㊂陶瓷材料具有较高的力学性能,良好的耐磨损性能和抗高温氧化性能,可以将N i-S i金属间化合物与陶瓷相复合制备N i-S i金属间化合物/陶瓷复合材料㊂N i -S i金属间化合物/陶瓷复合材料具有较高的力学性能和良好的耐磨损性能和抗高温氧化性能等㊂笔者首先叙述了N i-S i金属间化合物/陶瓷复合材料的制备技术㊁物相组成㊁显微结构㊁力学性能㊁耐磨损性能和抗高温氧化性能等,并叙述了N i-S i金属间化合物/陶瓷复合材料的研究发展现状和发展趋势,并对N i-S i金属间化合物/陶瓷复合材料的未来研究发展趋势和发展方向进行分析和预测㊂关键词 N i-S i金属间化合物陶瓷复合材料制备技术研究发展现状发展趋势中图分类号:T Q174.75文献标识码:A 文章编号:1002-2872(2023)11-0050-05F a b r i c a t i o nT e c h n o l o g y,R e s e a r c h a n dD e v e l o p m e n t S t a t u s a n dD e v e l o p m e n t T r e n d o f t h eN i-S i I n t e r m e t a l l i c s C o m p o u n d s/C e-r a m i c sM a t r i xC o m p o s i t e sJ i a n g T a o,H u a n g Y i d a n(S c h o o l o fM a t e r i a l s S c i e n c e a n dE n g i n e e r i n g,X i a nS h i y o uU n i v e r s i t y,X i a n710065,S h a a n x i,C h i-n a)A b s t r a c t:T h eN i-S i i n t e r m e t a l l i c s c o m p o u n d s e x h i b i t e dm a n y e x c e l l e n t p r o p e r t i e s,s u c ha s h i g hm e c h a n i c a l p r o p e r t y,e x-c e l l e n tw e a r r e s i s t a n c ea n dh i g ht e m p e r a t u r eo x i d a t i o nr e s i s t a n c e.T h eN i-S i i n t e r m e t a l l i c sc o m p o u n d s i n c l u d e d N i3S i, N i2S i a n dN i S i.C e r a m i c s e x h i b i t e dm a n y e x c e l l e n t p r o p e r t i e s.C e r a m i c s e x h i b i t e dh i g hm e c h a n i c a l p r o p e r t y,e x c e l l e n tw e a r r e s i s t a n c e a n dh i g h t e m p e r a t u r e o x i d a t i o n r e s i s t a n c e.S o t h eN i-S i i n t e r m e t a l l i c s c o m p o u n d sa n dc e r a m i c s c o u l db e c o m-b i n e d t o f a b r i c a t e i n t o t h eN i-S i i n t e r m e t a l l i c sc o m p o u n d s/c e r a m i c sm a t r i xc o m p o s i t e s.T h eN i-S i i n t e r m e t a l l i c sc o m-p o u n d s/c e r a m i c sm a t r i x c o m p o s i t e s e x h i b i t e d h i g hm e c h a n i c a l p r o p e r t y,e x c e l l e n tw e a r r e s i s t a n c e a n d h i g h t e m p e r a t u r e o x-i d a t i o n r e s i s t a n c e.I n t h i s p a p e r,t h e f a b r i c a t i o n t e c h n o l o g y,p h a s e c o m p o s i t i o n,m i c r o s t r u c t u r e,m e c h a n i c a l p r o p e r t y,w e a r r e s i s t a n c e a n dh i g ht e m p e r a t u r eo x i d a t i o nr e s i s t a n c eo f t h eN i-S i i n t e r m e t a l l i c sc o m p o u n d s/c e r a m i c s m a t r i xc o m p o s i t e s w e r e i n t r o d u c e d,t h e r e s e a r c ha n dd e v e l o p m e n t s t a t u sa n dd e v e l o p m e n t t r e n do f t h eN i-S i i n t e r m e t a l l i c s c o m p o u n d s/c e-r a m i c sm a t r i x c o m p o s i t e sw e r e i n t r o d u c e d.T h e f u t u r e r e s e a r c h a n dd e v e l o p m e n t t r e n d a n dd e v e l o p m e n t d i r e c t i o no f t h eN i -S i i n t e r m e t a l l i c s c o m p o u n d s/c e r a m i c sm a t r i x c o m p o s i t e sw e r e a n a l y z e da n d p r e d i c t e d.K e y w o r d s:N i-S i i n t e r m e t a l l i c s c o m p o u n d s;C e r a m i c s c o m p o s i t e s;F a b r i c a t i o n t e c h n o l o g y;R e s e a r c h a n d d e v e l o p m e n t s t a-t u s;D e v e l o p m e n t t r e n dN i-S i金属间化合物具有很多优秀的性能,例如具有较高的力学性能,优秀的耐磨损性能和抗高温氧化性能等㊂N i-S i金属间化合物包括N i3S i㊁N i2S i和N i S i,陶瓷材料也具有很多优秀的性能㊂陶瓷材料具有较高的力学性能,良好的耐磨损性能和抗高温氧化性能等㊂N i-S i金属间化合物与陶瓷材料具有良好的相容性,可以将N i-S i金属间化合物与陶瓷相复合制备N i-S i金属间化合物/陶瓷复合材料㊂本文首先叙述了N i-S i金属间化合物/陶瓷复合材料的制备技术㊁物相组成㊁显微结构㊁力学性能㊁耐磨损性能和抗高温氧化性能等,并叙述了N i-S i金属间化合物/陶瓷复合材料的研究发展现状和发展趋势,并对N i-S i金属间化合物/陶瓷复合材料的未来研究发展趋势和发展方向进行分析和预测㊂㊃05㊃陶瓷C e r a m i c s(研究与应用)2023年11月*作者简介:江涛(1978-),博士,副教授;研究方向为复合材料的制备和性能㊂1 N i-S i金属间化合物/陶瓷复合材料的制备技术N i-S i金属间化合物/陶瓷复合材料的制备技术主要采用粉末冶金工艺进行制备㊂其中粉末冶金工艺主要包括热压烧结工艺㊁常压烧结工艺㊁放电等离子烧结工艺㊁热等静压烧结工艺㊁热压反应烧结工艺㊁原位反应自生法制备工艺等㊂2 N i-S i金属间化合物/陶瓷复合材料的研究发展现状和发展趋势可以将N i-S i金属间化合物与陶瓷相复合制备N i-S i金属间化合物/陶瓷复合材料㊂陶瓷材料主要有碳化硅(S i C)㊁碳化钛(T i C)㊁氧化铝(A l2O3)㊁氮化硅(S i3N4)㊁碳化钨(W C)㊁碳化铌(N b C)等,所以可以将N i-S i金属间化合物加入到这些陶瓷材料中形成N i-S i金属间化合物/陶瓷复合材料,例如形成N i-S i/S i C复合材料,N i-S i/T i C复合材料,N i-S i/ A l2O3复合材料,N i-S i/S i3N4复合材料,N i-S i/W C 复合材料,N i-S i/N b C复合材料等㊂而上述的这些复合材料的制备技术㊁物相组成㊁显微结构㊁力学性能㊁耐磨损性能和抗高温氧化性能等,研究发展现状和发展趋势概述如下:2.1 N i-S i/S i C复合材料T i a n W B等[1]研究了N i-S i-T i粉末混合物对碳化硅陶瓷的钎焊㊂在许多工业应用中,通过传统的无压钎焊方法越来越需要大型S i C组件㊂在研究中使用含有0~10w t%T i的N i-S i-T i粉末混合物用于钎焊S i C陶瓷,进行差热分析(D T A)和润湿测试以确定合适的连接温度为1450ħ㊂对制备的S i C接头的微观结构,物相成分和机械强度进行了表征㊂对于不添加T i的钎焊组合物,中间层主要由N i S i和N i3S i2相组成㊂随着T i的加入,在夹层内除了N i-S i金属间化合物外新形成N i49T i14S i37相㊂目前钎焊时S i C 接头的抗弯强度在66~75M P a,试样一般从合金夹层与S i C基体的界面处断裂㊂G a oF e i等[2]研究了镍和碳化硅颗粒的固态反应制备出具有不同显微结构的N i-S i-C复合材料㊂各组织固相镍和碳化硅颗粒通过热压烧结工艺制备N i -S i-C复合材料㊂根据界面反应的程度,将复合材料分为三种类型,即部分的,完全的和过度的反应㊂对于部分反应(I型),复合材料的特征是基体和碳化硅之间的薄的反应层㊂完全反应(I I型)的复合材料的微观结构演变到各种不同的微观结构和组合物,取决于烧结温度㊂应避免过度反应(I I I型)㊂与部分反应的复合材料相比,完全反应的复合材料具有良好的力学性能㊂硬度和抗弯强度显著提高㊂I I型复合材料的力学行为与复合材料的组成成分和组织结构密切相关㊂在900ħ获得了复合材料对不锈钢最有前途的摩擦学性能㊂S e l v a n J S e n t h i l等[3]研究了采用激光熔覆工艺在纯钛表面制备S i C和N i-S i C涂层的制备工艺㊂研究了含量为100%的碳化硅和50%的镍+50%的纯钛的激光合金化的结果㊂100%和50%的N i+50%碳化硅合金化条件是由于诸如T i C,T i S i,T i5S i3和N i T i2各种金属间化合物相的存在获得高硬度HV800~ 1200㊂这些化合物存在于激光表面合金化是通过X 射线衍射分析(X R D)和N i,S i,C扩散验证,钛负责这些相的形成是由二次离子质谱(S I M S)研究确定㊂合金层的显微组织由枝晶组成,其密度高低取决于激光加工条件㊂在低功率密度的渗层深度约0.5mm的硬度恒定的水平,而在高功率密度的渗层深度触及1.6 mm最大与硬度较大的波动㊂2.2 N i-S i/T i C复合材料W a n g W e n j u a n等[4]研究了原位合成T i C x-N i (S i,T i)合金复合材料的制备及力学性能㊂通过无压烧结T i3S i C2(10v o l%和20v o l%)和N i作为前驱体,在烧结温度为1250ħ下保温时间为30m i n制备了具有优异机械性能的新型原位T i C x增强N i(S i,T i)合金复合材料㊂T i3S i C2颗粒分解成亚化学计量的T i C x 相,而额外的S i和来自T i3S i C2的部分T i原子扩散到N i基体中形成N i(S i,T i)合金㊂原位形成的T i C x相主要分散在N i(S i,T i)合金化的晶界上,形成坚固的骨架,细化金属基体的微观结构㊂20.6v o l%T i C x-N i (S i,T i)复合材料的维氏硬度可以达到(2.15ʃ0.04) G P a,屈服应力σ0.2%可以达到(466.8ʃ55.8)M P a和极限抗压强度可以达到(733.3ʃ78.4)M P a㊂T i C x-N i(S i,T i)复合材料的力学性能增强是由于T i C x骨架的原位形成,N i(S i,T i)合金的细化显微组织和固溶效应以及T i C x与N i(S i,T i)基体之间良好的润湿性所导致㊂C h i k e rN a b i l等[5]研究了N i和T i3S i C2粉末制备㊃15㊃(研究与应用)2023年11月陶瓷C e r a m i c s的原位T i C-N i(S i,T i)复合材料的微观结构和摩擦学行为㊂在此研究了T i3S i C2对由N i和T i3S i C2MA X相粉末对钢(100C r6)制成的原位T i C 增强N i(S i,T i)复合材料的微观结构和摩擦学性能的影响㊂在烧结温度为1080ħ下无压烧结4h的N i和T i3S i C2粉末被用来制备具有10w t%,20w t%和30w t%T i3S i C2的复合材料㊂通过扫描电子显微镜(S E M),X射线衍射(X R D)和拉曼光谱研究了这些复合材料的微观结构㊂在室温下对复合材料表面进行不同施加载荷下的标准球盘摩擦磨损试验㊂对于3种精细复合材料,T i3S i C2完全分解并转变为T i C相,而从T i3S i C2中释放的S i和T i原子扩散到N i基体中,形成N i(S i,T i)固溶体㊂与参考(N i)烧结复合材料相比,在N i基体中添加20w t%T i3S i C2将硬度提高了约250%㊂T i3S i C2颗粒的添加对这些复合材料对钢的摩擦学性能也有有益的影响㊂在所有施加载荷下,精细复合材料的磨损表面的特征在于存在润滑的F e3O4-αF e2O3摩擦膜㊂讨论了化学成分和不同施加载荷对三种精细复合材料磨损机制的影响㊂S h a hN e e lR等[6]研究了离心铸造T i C增强功能级铜复合材料的表征㊂研究分析了使用水平离心机铸造工艺制造的功能级C u-N i-S i/T i C复合材料的物理性能和抗磨损性能㊂在距外部1mm,8mm和13 mm的壁厚处径向进行的显微组织分析表明,颗粒分布梯度的增加使内部周边的硬度提高了41%,并且通过X射线衍射(X R D)分析确定了N i S i2相的形成㊂对复合材料的外壁(1~8mm)和内壁(9~15mm)进行拉伸载荷测试;后来的断裂分析表明,外部为延展性,内部为脆性㊂使用针盘式摩擦磨损试验机对内件的耐磨损性能进行了试验㊂使用信噪比确定最小磨损率的最佳摩擦参数(10N,2m s-1,500m)㊂使用方差分析预测每个有影响的参数的贡献及其相互作用㊂结果表明,滑动速度对磨损率的影响最大(45.56%),其次是外加载荷(21.82%)和滑动距离(14.63%)㊂测试样品的磨损分析显示机械混合层;后来由能谱分析(E D X)确认㊂D o n g YJ等[7]研究了激光熔覆T i C增强T i-N i -S i金属间化合物涂层的显微组织和干滑动耐磨损性能㊂采用T i C/T i-N i-S i合金粉末作为前驱体材料通过激光熔覆工艺在T A15钛合金基体上制备耐磨T i C增强T i-N i-S i金属间化合物复合涂层,T i C均匀分布在T i2N i3S i-N i T i-T i2N i多相金属间化合物基体中㊂采用光学显微镜(OM),扫描电子显微镜(SE M),X射线衍射仪(X R D)和能谱分析仪(E D S)对涂层的微观结构进行了表征㊂在室温下评价了激光熔覆T i C增强T i-N i-S i金属间化合物涂层的干滑动耐磨损性能㊂结果表明,T i C/(T i2N i3S i-N i T i-T i2N i)金属间化合物复合涂层表现出优异的耐磨损性能和粘附磨损性能㊂F a nD i n g等[8]研究了激光熔覆制备T i C增强金属间化合物基复合材料涂层的原位形成㊂采用激光熔覆技术在N i基高温合金基体上原位形成T i C颗粒增强N i3(S i,T i)金属间化合物复合涂层㊂实验结果表明,强大的冶金界面确保了涂层与基材之间的良好结合㊂复合涂层非常好,没有裂缝和气孔㊂采用扫描电子显微镜(S E M),能谱分析仪(E D S)和X射线衍射仪(X R D),研究了T i-C的添加对涂层显微组织和显微硬度的影响㊂涂层的显微组织主要由N i(S i),N i3(S i, T i)和T i C组成㊂涂层的平均显微硬度随着T i-C含量的增加而提高㊂当T i-C添加量为20w t%时,显微硬度达到780H V㊂远大于镍基高温合金基体㊂S u nY a o n i n g等[9]研究了激光熔覆工艺制备的N i3S i金属间化合物复合涂层的抗氧化腐蚀行为㊂已经通过循环氧化试验研究了在温度为1100ħ时,N i -S i-T i-C和N i-S i-C-N b原位增强复合涂层的高温抗氧化性能㊂进行了热重分析(T G),扫描电子显微镜(S E M)和X射线衍射仪(X R D),热重分析(T G)数据表明熔覆层达到了良好的耐氧化性能㊂动力学常数K p和氧化的样品表明,N b C加强熔覆层比T i C增强复合涂层具有更好的耐氧化性能,N b C加强熔覆涂层氧化物产品包括N i O,S i O2和铌,T i C增强复合涂层氧化产物为N i O,一些S i O2和T i O2㊂2.3 N i-S i/A l2O3复合材料C h e nH等[10]研究了机械合金化合成M o2N i3S i -A l2O3纳米复合材料的显微组织和力学性能㊂以M o O3,N i,S i和A l为起始材料,通过机械合金化合成M o2N i3S i-A l2O3纳米复合材料㊂机械合金化的粉末通过热压烧结固结制备M o2N i3S i-A l2O3纳米复合材料㊂通过扫描电子显微镜(S E M)和X射线衍射(X R D)研究了M o2N i3S i-A l2O3复合粉末的形貌和结构演变㊂详细研究了M o2N i3S i-A l2O3纳米复合材料固结产品的显微组织和力学性能㊂结果表明,研磨10h后得到M o2N i3S i-A l2O3复合材料㊂反应机理是机械诱导的自蔓延合成反应㊂研磨20h后㊃25㊃陶瓷C e r a m i c s(研究与应用)2023年11月M o2N i3S i和A l2O3的平均晶粒尺寸分别为15.9n m 和32.4n m㊂M o2N i3S i-A l2O3复合粉末在1000ħ的退火过程中是稳定的㊂热压烧结固结后,M o2N i3S i -A l2O3复合材料具有较高致密度(96.3%)和细晶粒(微米和亚微米范围)㊂M o2N i3S i-A l2O3复合材料的维氏硬度为13G P a,抗弯强度为533M P a和断裂韧性为6.29M P a㊃m1/2㊂同时,该M o2N i3S i-A l2O3复合材料在高温下具有更高的抗弯强度,在高达1000ħ时仍保持稳定的抗弯强度约为513M P a㊂2.4 N i-S i/S i3N4复合材料R a d h i k aN等[11]研究了采用离心铸造法制备了C u-11N i-4S i/10w t%S i3N4功能梯度复合材料,并研究了其力学行为和三体磨粒磨损行为㊂沿径向的显微结构分析表明,C u-11N i-4S i/10w t%S i3N4复合材料内周有高浓度的S i3N4颗粒,X射线衍射(X R D)分析证实存在引入的增强材料㊂在具有最高浓度(53v o l%)增强颗粒的C u-11N i-4S i/10w t%S i3N4复合材料的内周观察到最高的显微硬度(207H V),并且内部区域显示出更高的拉伸强度(425.58M P a)㊂基于L27正交阵列的磨粒磨损试验,仅在基于力学行为的内周边进行㊂通过信噪比和方差分析负载,速度和时间等参数对磨损率的影响㊂结果表明,外加载荷对磨损率的影响最大(60.45%),其次是速度和时间㊂对磨损样品进行扫描电子显微镜(S E M)分析,观察到磨损随着参数的增加而从轻微变为严重㊂这种C u-11N i-4S i/10w t%S i3N4复合材料适用于汽车材料㊂2.5 N i-S i/W C复合材料樊丁等[12]研究了激光熔覆制备W C p/N i-S i-T i 复合涂层㊂在N i基高温合金表面预置3种不同W C 含量的N i78S i13T i9(a t%)粉末,采用激光熔覆制备了W C和原位自生T i C复相陶瓷增强N i3(S i,T i)基复合涂层㊂利用扫描电镜(S E M),能谱分析仪(E D S)和X 射线衍射仪(X R D)对熔覆层组织进行分析,并测量了其熔覆层的显微硬度㊂结果表明,熔覆层与基体呈冶金结合,熔覆层组织主要由N i(S i)固溶体,N i3(S i,T i)金属间化合物和W C-T i C复相陶瓷组成㊂随W C添加量增加,涂层中复相陶瓷含量增多;孔隙率增大;碳化物形态演变历程为不规则形状,花瓣形状以及不规则形状和花瓣形状共存㊂2.6 N i-S i/N b C复合材料孙耀宁等[13]研究了激光非平衡制备N i-S i-N b -C涂层㊂以N i-S i-N b-C混合粉末作为预置合金,采用横流C O2激光器进行激光熔覆处理,在高温合金表面制备原位合成N b C颗粒增强N i3S i复合材料涂层㊂结果表明,采用合适的激光熔覆工艺参数,可获得N b C颗粒增强的以N i3S i金属间化合物及γ-N i 固溶体为主要组成相的复合涂层㊂尺寸约在24μm 的N b C颗粒弥散分布,与复合材料基体润湿良好,熔覆层致密,组织细小,与基材呈良好的冶金结合㊂晶体结构及动力学生长过程决定了N b C以不同的生长形态出现㊂S u nY a o n i n g等[14]研究了采用激光熔覆工艺制备的原位N b C增强N i3S i金属间化合物涂层的制备工艺过程㊂激光熔覆技术是用来形成N i3S i金属间化合物复合涂层的原位生成N b C颗粒增强镍基高温合金基体㊂激光熔覆技术的工艺参数进行了优化以获得包覆层㊂研究了N b C对N i3S i金属间化合物涂层的微观结构的影响㊂并对增强颗粒的形态进行了讨论㊂实验结果表明,一个很好的涂层和基体之间的结合,确保了一个强大的冶金界面㊂复合涂层是非常好的,没有裂缝和孔隙㊂涂层的微观结构,主要由N i (S i),N i3(S i,N b)和N b C的微粒组成,这N b C微粒是由于在激光熔覆过程中N b和C之间的原位反应产生的㊂N b C的颗粒均匀地分布在复合材料中㊂此外, N b C颗粒的最大尺寸超过4μm㊂3 N i-S i金属间化合物/陶瓷复合材料的未来研究发展趋势和发展方向可以将N i-S i金属间化合物与陶瓷相复合制备N i-S i金属间化合物/陶瓷复合材料㊂N i-S i金属间化合物/陶瓷复合材料主要包括N i-S i/S i C复合材料,N i-S i/T i C复合材料,N i-S i/A l2O3复合材料, N i-S i/S i3N4复合材料,N i-S i/W C复合材料,N i-S i/N b C复合材料等㊂还应该开展新型的复合材料例如N i-S i/A l N复合材料,N i-S i/Z r O2复合材料,N i -S i/T i B2复合材料,N i-S i/Z r B2复合材料,N i-S i/ Z r C复合材料,N i-S i/Z r N复合材料,N i-S i/T i N复合材料,N i-S i/T i(C,N)复合材料,N i-S i/S i A l O N 复合材料,N i-S i/M g A l O N复合材料研究开发工作㊂4结论与展望N i-S i金属间化合物和陶瓷都具有优秀的性能㊂㊃35㊃(研究与应用)2023年11月陶瓷C e r a m i c s可以将N i-S i金属间化合物与陶瓷相复合制备N i-S i金属间化合物/陶瓷复合材料㊂N i-S i金属间化合物/陶瓷复合材料具有优秀的性能㊂笔者首先叙述N i -S i金属间化合物/陶瓷复合材料的制备技术,物相组成,显微结构和力学性能,耐磨损性能和抗高温氧化性能等,并对N i-S i金属间化合物/陶瓷复合材料的未来发展趋势进行分析和预测㊂N i-S i金属间化合物/陶瓷复合材料的未来发展趋势是:(1)开发新型的氧化物,氮化物,碳化物和硼化物作为基体并与N i-S i金属间化合物相复合制备新型的N i-S i金属间化合物/陶瓷复合材料,例如制备N i -S i/氧化物陶瓷,N i-S i/氮化物陶瓷,N i-S i/碳化物陶瓷,N i-S i/硼化物陶瓷复合材料等㊂(2)为了提高N i-S i金属间化合物/陶瓷复合材料的力学性能,可以向复合材料中加入颗粒,晶须,短纤维等作为增强增韧相提高复合材料的力学性能㊂(3)还需要研究N i-S i金属间化合物/陶瓷复合材料的耐磨损性和抗高温氧化性以及耐腐蚀性等㊂(4)还需要研究N i-S i金属间化合物与陶瓷基体之间的界面结合性能和界面显微结构㊂(5)将T i C,T i N,T i(C,N),W C硬质合金等与N i -S i合金相复合形成N i-S i/硬质合金复合材料,使得N i-S i/硬质合金复合材料能够应用到耐磨损工程领域㊂N i-S i金属间化合物/陶瓷复合材料具有良好的耐磨损性能和耐高温性能以及抗高温氧化性能等可以应用到耐磨损工程领域,耐高温工程领域㊂因此N i -S i金属间化合物/陶瓷复合材料将广泛应用在工程领域㊂参考文献[1] T i a n W B,S u nZ M,Z h a n g P,e t a l.B r a z i n g o f s i l i c o nc a r b ide c e r a m i c sw i t hN i-S i-T i p o w d e rm i x t u r e s[J].J o u r n a l of t h eA u s t r a l i a nC e r a m i cS o c i e t y,2017,53(2):511-516.[2] G a oF e i,L uJ i n j u n,L i u W e i m i n.N i-S i-Cc o m p o s-i t e sw i t h v a r i o u sm i c r o s t r u c t u r e s v i a s o l i d s t a t e r e a c t i o n o f n i c k-e l a n ds i l i c o nc a r b i d e p a r t i c u l a t e[J].C o m p o s i t e sS c i e n c ea n d T e c h n o l o g y,2008,68(2):566-571.[3]S e l v a n J S e n t h i l,S u b r a m a n i a nK,N a t hAK.L a s e r s u r f a c e a l l o y i n g o f(p r e-p l a c e d)S i Ca n dN i-S i Cc o a t i n g o n c o mm e r-c i a l l yp u r e t i t a n i u m[J].M a t e r i a l s a n dM a n u f a c t u r i n g P r o c e s s e s, 1999,14(2):285-296.[4]W a n g W e n j u a n,Z h a i H o n g x i a n g,C h e n L i n,e ta l. P r e p a r a t i o na n dm e c h a n i c a l p r o p e r t i e so f i ns i t uT i C x-N i(S i, T i)a l l o y c o m p o s i t e s[J].M a t e r i a l sS c i e n c ea n dE n g i n e e r i n g A, 2014,616:214-218.[5] C h i k e rN a b i l,B e n a m o rA b d e s s a b o u r,H a d j iY o u c e f,e t a l.M i c r o s t r u c t u r e a n d t r i b o l o g i c a l b e h a v i o r of i n s i t uT i C-N i (S i,T i)c o m p o s i t e se l a b o r a t e df r o m N ia n d T i3S i C2p o w d e r s [J].J o u r n a l o fM a t e r i a l sE ng i n e e r i n g a n dP e r f o r m a n c e,2020,29 (3):1995-2005.[6] S h a hN e e lR,R a d h i k aN,S a m M a n u.C h a r a c t e r i z a-t i o no f c e n t r i f u g e c a s tT i Cr e i n f o r c e d f u n c t i o n a l g r a d e c o m p o s-i t eo fc o p p e r[J].M a t e r i a l s R e s e a r c h E x p r e s s,2019,6(9): 0965D1.[7] D o n g YJ,W a n g H M.M i c r o s t r u c t u r e a n dd r y s l i d i n g w e a r r e s i s t a n c e o f l a s e r c l a dT i Cr e i n f o r c e dT i-N i-S i i n t e r-m e t a l l i c c o m p o s i t e c o a t i n g[J].S u r f a c ea n dC o a t i n g sT e c h n o l o-g y,2009,204(5):731-735.[8] F a nD i n g,Z h a n g J i a n b i n,S u nY a o n i n g,e t a l.I n-s i t uf o r m a t i o no f T i C r e i n f o r c e di n t e r m e t a l l i c-m a t r i xc o m p o s i t e l a y e r s p r o d u c e db y l a s e rc l a d d i n g[J].K e y E ng i n e e r i n g M a t e r i-a l s,2007,336-338(2):1380-1382.[9] S u nY a o n i n g,Z h a n g X u d o n g,S u n W e n l e i,e t a l.O x i-d a t i o n c o r r o s i o nbe h a v i o r of c o m p o s i t e c l a d d i ng o f i n t e r m e t a l l i c c o m p o u n dN i3S i[J].K e y E n g i n e e r i n g M a t e r i a l s,2012,522:72 -75.[10] C h e n H.M i c r o s t r u c t u r ea n d m e c h a n i c a l p r o p e r t i e s o fM o2N i3S i-A l2O3n a n o c o m p o s i t e s y n t h e s i z e db y m e c h a n i c a l a l l o y i n g[J].J o u r n a l o fM a t e r i a l sR e s e a r c h,2016,31(21):3352 -3359.[11] R a d h i k aN,J e f f e r s o n JA n d r e w.S t u d i e s o nm e c h a n i-c a l a nd a b r a s i v ewe a r p r o p e r t i e s of C u-N i-S i/S i3N4f u n c t i o n-a l l yg r a d e d c o m p o s i t e[J].S i l i c o n,2019,11(2):627-641.[12]樊丁,孙明,孙耀宁,等.激光熔覆制备W C p/N i-S i -T i复合涂层[J].航空材料学报,2008,28(1):40-44.[13]孙耀宁,孙文磊,刘炳.激光非平衡制备N i-S i-N b -C涂层[J].中国激光,2009,36(12):3282-3286.[14] S u nY a o n i n g,F a nD i n g,Z h e n g Y u f e n g,e t a l.I n-s i-t uf o r m a t i o no fN b Cr e i n f o r c e d N i3S i i n t e r m e t a l l i cc o m p o u n d s b y l a s e rc l a d d i n g[J].K e y E n g i n e e r i n g M a t e r i a l s,2008,368-372:1351-1353.㊃45㊃陶瓷C e r a m i c s(研究与应用)2023年11月。
第一章绪论1.1 引言人类文明是伴随着新材料的发明和应用而发展的。
从早期的青铜器、铁器,到现在的磁性材料、高分子材料、半导体材料以及先进陶瓷材料,材料的发展无不起着改变时代的作用。
陶瓷材料是继金属材料、高分子材料之后出现的第三大类材料,一般具有弹性模量大、极不容易变形、热稳定性好、高温耐氧化能力强,以及重量轻、价格低廉等优点,因此,深受人们的青睐。
但是它有一个致命的缺点,那就是脆性大,限制了它的实际应用。
所以,陶瓷的韧化成为世界性范围的陶瓷材料研究的核心课题[1]。
而在陶瓷基体中引入金属粒子,通过使用金属粒子包覆陶瓷基体来达到增强增韧的方法促使了金属陶瓷的出现和对它的研究。
金属陶瓷既保持有陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又有较好的金属韧性和可塑性,是一类非常重要的工具材料和结构材料。
其用途极其广泛,几乎涉及到国民经济的各个部门和现代技术的各个领域,对工业的发展和生产率的提高起着重要的推动作用,对金属陶瓷的研究已成为材料研究领域中一个非常重要的研究课题。
近几年来,我国刀具行业在面向国内国际市场激烈竞争中,积极进行重点技术改造,引进国外先进技术和设备,在提高企业的技术制造能力和市场竞争活力方面有了长足的进步。
但是,必须清醒地看到,国内刀具行业在技术水平、生产工艺和制造设备等方面与国外工具企业相比,还存在较大差距,其刀具寿命、加工质量很难满足用户的要求。
进口刀具仍占主导地位,在一些大型汽车制造厂,国产化刀具只占总项目的10%左右。
因此,Ti(C, N)基金属陶瓷刀具材料在我国具有巨大的潜在市场。
1956年,Humenik等人发现向TiC-Ni金属陶瓷中加入Mo或Mo2C后,可改善Ni对TiC的润湿性,使TiC晶粒变细,材料强度大大提高[2, 3]。
当Mo以其它硬质相制成的固溶体形式加入时,反而降低了粘结相对碳化物的润湿性。
此后,在Ti(C, N)基金属陶瓷中,Mo元素成为不可或缺的组分。
1前言鉴于碳化钛具有熔点高、硬度高、抗热震性好及良好的耐热冲击性等各项优异的性能,因而作为难熔碳化物普遍应用于切削刀具、耐磨材料、坩埚和工业机械配件等众多领域[1,2]。
碳化钛粉末一般采用碳热还原法进行制备,以二氧化钛或钛作为钛源和炭黑等混合均匀后,在真空碳(石墨)管炉中于高温下反应即可生成。
也可应用其他制备方法,如高温自蔓延法等[3]。
碳化钛陶瓷材料的制备方法主要有:机械合金化法、原位合成法、高温自蔓延法、热喷涂法等等[3-7]。
在TiC陶瓷材料中添加金属材料组分,不仅可以保留陶瓷固有的耐磨性、高硬度、高强度及抗氧化等特性,还具有了金属组分的延展性,使复合材料的韧性得以提升[1,8]。
因此,本实验添加WC作为补强增韧相,粘结相金属Ni、Co和Mo于TiC基体材料中,采用真空烧结工艺和热压烧结工艺制备了碳化钛陶瓷李少峰(宁波东联密封件有限公司,宁波,315191)扫描电镜(SEM)对试样的表观形貌与断口形貌进行了观察,检测了其力学性能并分析了抗氧化性能。
结果显示:采用不同烧结工艺制备的碳化钛复合材料的力学性能及微观结构有较大差别,热压烧结工艺制备的试样各项性能较优,且试样的断裂面显微组织细密、晶界分布明显、裂纹扩张路线多样变化且走向清晰。
力学性能分别为:弯曲强度1139MPa,断裂韧性9.8MPa·m1/2,维氏硬度21.7GPa,相对密度99.2%。
在设定的条件氧化2h后,900℃时热压烧结制备的试样表面生成了对基体没有保护效用的非保护性氧化膜;而1150℃时试样表面形成了一层致密的对基体具有保护效果的保护性氧化膜。
碳化钨;复合材料;真空烧结;热压烧结;抗氧化性能:宁波市科技创新2025重大专项(2020Z112)。
(1983-),男,硕士,高级工程师,主要从事结构陶瓷研究。
Email:********************。
. All Rights Reserved.复合材料。
选用扫描电镜(SEM )察看了复合材料的表观形貌与断口形貌,分别检测了其力学性能,并对热压烧结工艺制备的碳化钛复合材料的抗氧化性能进行了研究。
碳陶复合材料的制备及应用碳陶复合材料是一种由碳材料和陶瓷材料组成的复合材料,具有优异的特性和广泛的应用领域。
碳材料具有良好的导电性、高强度、低密度等特点,而陶瓷材料具有优秀的耐磨、耐腐蚀、高温稳定等特性。
将这两种材料组合在一起,可以充分发挥各自的优点,实现更多应用领域的需求。
碳陶复合材料制备的方法主要有热压法、徐变热压法、化学气相沉积法、溶胶凝胶法等。
下面将分别介绍这几种方法。
1. 热压法:将碳材料和陶瓷材料粉末混合均匀后放置在高温高压环境下进行热压,使两种材料结合在一起。
该方法制备的碳陶复合材料具有较高的密度和力学性能,适用于制备高强度和抗磨损性能要求的材料。
2. 徐变热压法:先在碳材料表面通过懒增量(徐变)热压形成碳纤维预制体,然后再进行陶化烧结得到碳陶复合材料。
该方法能够避免直接热压对碳材料的烧结效果,提高了材料的抗裂性能和强度。
3. 化学气相沉积法:通过化学反应将碳原子和陶瓷原子沉积在基体上,形成碳陶复合材料。
该方法可以实现材料的均匀沉积,且可以沉积出复杂形状的材料。
但是该方法的制备周期长,成本较高。
4. 溶胶凝胶法:通过胶体化学反应制备复合材料。
将碳材料和陶瓷材料的前驱体溶液混合,形成凝胶,经过干燥和烧结处理得到碳陶复合材料。
该方法制备的材料具有较高的比表面积和孔隙率,适用于制备具有吸附、催化等性能要求的材料。
碳陶复合材料的应用非常广泛,以下是几个常见的应用领域:1. 航空航天领域:碳陶复合材料具有优异的耐高温、抗磨损和轻质化等特性,常用于飞机发动机叶片、航天器热结构件等部件。
2. 汽车工业:碳陶复合材料具有良好的热导率和抗磨损性能,可用于发动机零部件、刹车盘等。
3. 电子行业:碳陶复合材料具有良好的导电性和热导率,可用于制备电子封装材料、散热器等。
4. 医疗领域:碳陶复合材料具有低密度、机械性能和生物相容性,常用于人工关节、人工骨等医疗器械。
5. 纺织行业:碳陶复合材料可用于制备高性能的纤维材料,如碳纤维、复合材料纺丝等。
北京科技大学科技成果——多孔碳化钛-钛金属陶瓷梯度材料成果简介北京科技大学特种陶瓷研究室开发出一种多孔结构的碳化钛-钛金属陶瓷梯度材料,其应用前景极其广阔。
这种金属陶瓷是燃烧合成的多孔碳化钛-钛梯度材料,其多孔结构的孔隙率可达50%多。
孔隙率和孔隙大小,分布还可以根据需要在一定范围内设计。
由于在高温烧结过程其表面可形成氧化钛膜,使其耐高温的性能好,因此可作为耐高温材料。
碳化钛是一种导电材料,在通电发热时,即使温度升高到1000摄氏度以上,材料特性也不会发生任何变化。
因此,此多层多孔碳化钛材料可以作为高温发热源,分解在焚化炉都难以分解的二氧吲哚。
由于这种多层多孔的碳化钛-钛材料空隙率可达50%多,其比重可比最轻的金属镁还要轻。
因为这种多层多孔的碳化钛-钛是梯度材料,强度和刚度可以在一定范围内设计。
而且碳化钛-钛材料与人体的相容性好,因此很适合用做人造骨骼。
人的骨骼是多孔结构的,血管和神经通过骨骼的孔隙提供养分和控制骨骼的活动,因此,这种多孔的碳化钛-钛梯度材料是人造骨骼的极好材料。
由于这种碳化钛新材料的表面有一层氧化钛膜,它具有光催化的机能,同时多孔的碳化钛用来制作过滤器具有很强的吸附能力,可以有效地吸附浮游生物,它可以用来制造更好的水净化装置。
泡沫碳化钛做催化剂,用电催化方法可净化焦碳化学工业的含酚废水。
酚对水域的污染仅次于石油产品和重金属,居第三位。
本项目产品的基本工艺为燃烧合成工艺。
不用高温烧结炉。
可制作复杂形状和较大尺寸的制品。
应用范围可广泛用作生物医用材料,环保材料等。
经济效益及市场分析本项目产品市场广阔,可产生显著的经济效益和社会效益。
最小投资100万元。
回收期少于3年。
合作方式技术转让、技术入股或者其它合作方式。
陶瓷颗粒增强金属基复合材料的制备方法及研究进展陶瓷颗粒增强金属基复合材料是一种具有优异性能和广泛应用前景的新型材料。
它通过在金属基体中添加陶瓷颗粒来增强材料的硬度、强度和耐磨性,同时保持金属基体的良好导电性和导热性能。
本文将介绍陶瓷颗粒增强金属基复合材料的制备方法以及在研究中取得的一些进展。
制备陶瓷颗粒增强金属基复合材料的方法主要有粉末冶金法、溶液浸渗法、电沉积法、电子束熔化沉积法等。
其中粉末冶金法是最常用的制备方法之一。
该方法将金属粉末和陶瓷颗粒混合后进行压制成型,再通过烧结或熔化处理将其获得一定形状的复合材料。
溶液浸渗法是将金属基体浸渍在含有陶瓷颗粒的溶液中,通过溶液中陶瓷颗粒的沉淀在金属基体上形成复合材料。
电沉积法是在金属基体表面通过电极或电解质中的陶瓷颗粒进行沉积。
电子束熔化沉积法是将金属粉末和陶瓷粉末进行混合后,通过电子束熔化沉积在金属基体上形成复合材料。
以上方法各有优劣,研究人员可以根据需要选择适合的方法进行制备。
陶瓷颗粒增强金属基复合材料在材料科学领域中有着广泛的应用。
钛基复合材料在航空航天、汽车制造和医疗器械等领域中有着重要的应用,陶瓷颗粒的添加可以提高材料的硬度和强度,增加材料的耐磨性和耐腐蚀性。
陶瓷颗粒增强金属基复合材料还可以用于制备高温结构材料,例如钨铁合金和钨铜合金等。
在陶瓷颗粒增强金属基复合材料的研究中,主要关注材料的成分设计、制备工艺和性能表征等方面。
研究人员通过优化金属基体和陶瓷颗粒的配比、粒度和分布等参数来调控材料的力学性能和热物理性能。
研究人员还对材料的界面结构和界面相互作用进行了深入的研究,以提高材料的界面连接强度和阻尼性能。
通过这些研究工作,陶瓷颗粒增强金属基复合材料的性能得到了显著的改善,为其在工程实践中的应用提供了有力支持。
陶瓷颗粒增强金属基复合材料具有广泛的应用前景,其制备方法和研究进展一直是材料科学领域的研究热点。
随着研究工作的不断深入,相信陶瓷颗粒增强金属基复合材料将在各个领域中展现出更大的潜力和价值。