数学公式符号大全
- 格式:docx
- 大小:13.00 KB
- 文档页数:1
数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
markdown 数学公式大全1. 行内公式:使用美元符号 `$` 包裹公式,例如 $y = mx + b$。
2. 行间公式:使用双美元符号 `$$` 包裹公式,例如 $$y =\frac{a}{b+c}$$。
3. 上下标:使用下划线 `_` 表示下标,使用插入符号 `^` 表示上标,例如 $x_1$ 和 $y^2$。
4. 求和符号:使用 `\sum` 表示求和符号,例如$\sum_{i=1}^n x_i$。
5. 积分符号:使用 `\int` 表示积分符号,例如$\int_{0}^{\infty} e^{-x} dx$。
6. 极限符号:使用 `\lim` 表示极限符号,例如 $\lim_{x \to \infty} \frac{1}{x}$。
7. 分数形式:使用 `\frac{numerator}{denominator}` 表示分数形式,例如 $\frac{1}{2}$。
8. 根式:使用 `\sqrt[n]{x}` 表示根式,例如 $\sqrt[3]{8}$。
9. 向量:使用 `\vec{v}` 表示向量,例如 $\vec{v}$。
10. 矩阵:使用`\begin{matrix} ... \end{matrix}`表示矩阵,例如$$ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} $$11. 其他常用符号:使用 `_` 表示下标,使用 `\neq` 表示不等于,使用 `\leq` 表示小于等于,使用 `\geq` 表示大于等于,使用 `\times` 表示乘号,使用 `\div` 表示除号,使用 `\in` 表示属于,使用 `\notin` 表示不属于,使用 `\rightarrow` 表示右箭头,使用 `\leftarrow` 表示左箭头,使用 `\leftrightarrow` 表示双向箭头。
小学数学符号及公式小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径定义定理公式三角形的面积=底×高÷2。
公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
数学公式符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
(完整版)常用数学符号大全1. 加号(+):表示两个数相加,例如 2 + 3 = 5。
2. 减号():表示两个数相减,例如 5 3 = 2。
3. 乘号(×):表示两个数相乘,例如2 × 3 = 6。
4. 除号(÷):表示两个数相除,例如6 ÷ 2 = 3。
5. 等号(=):表示两个数相等,例如 2 + 3 = 5。
6. 不等号(≠):表示两个数不相等,例如2 + 3 ≠ 6。
7. 大于号(>):表示一个数大于另一个数,例如 5 > 3。
8. 小于号(<):表示一个数小于另一个数,例如 3 < 5。
9. 大于等于号(≥):表示一个数大于或等于另一个数,例如 5 ≥ 3。
10. 小于等于号(≤):表示一个数小于或等于另一个数,例如3 ≤ 5。
11. 分数(/):表示两个数相除,例如 1/2 表示 1 除以 2。
12. 平方根(√):表示一个数的平方根,例如√4 = 2。
13. 立方根(∛):表示一个数的立方根,例如∛8 = 2。
14. 开方(^):表示一个数的指数,例如 2^3 = 8。
15. 对数(log):表示一个数的对数,例如 log10(100) = 2。
16. 倒数(1/x):表示一个数的倒数,例如 1/2 表示 2 的倒数。
17. 绝对值(|x|):表示一个数的绝对值,例如 | 3 | = 3。
18. 三角函数(sin, cos, tan):表示正弦、余弦和正切函数,例如sin(30°) = 0.5。
19. 反三角函数(arcsin, arccos, arctan):表示反正弦、反余弦和反正切函数,例如arcsin(0.5) = 30°。
20. 积分(∫):表示求一个函数的不定积分,例如∫(x^2)dx= (1/3)x^3 + C。
21. 微分(d/dx):表示求一个函数的导数,例如 d/dx(x^2) =2x。
数学中的符号与公式数学作为一门精确且普遍的学科,离不开各种符号和公式的运用。
这些符号和公式不仅仅是一种简洁的表达方式,更是数学思维的核心与灵魂。
本文将探讨数学中常见的符号与公式,以及它们在各个数学分支中的应用。
一、基本算术符号1. 加法符号:+加法符号是数学中最基本的算术符号之一,用于表示两个数的和。
比如 2 + 3 = 5,表示2和3相加等于5。
2. 减法符号:-减法符号常用于表示两个数的差。
比如 5 - 2 = 3,表示5减去2的结果为3。
3. 乘法符号:×乘法符号用于表示两个数的乘积。
比如 2 × 3 = 6,表示2乘以3的结果为6。
4. 除法符号:÷除法符号表示两个数的商。
比如 6 ÷ 2 = 3,表示6除以2的结果为3。
以上这些基本算术符号是数学运算中最基础且最常见的符号,它们在日常生活中也得到广泛应用。
二、代数符号1. 等于符号:=等于符号用于表示等式两边的值相等。
比如 2 + 3 = 5,表示2 + 3的结果等于5。
2. 不等于符号:≠不等于符号表示不等关系。
比如2 + 3 ≠ 6,表示2 + 3的结果不等于6。
3. 大于符号:>大于符号表示大于关系。
比如 5 > 2,表示5大于2。
4. 小于符号:<小于符号表示小于关系。
比如 2 < 5,表示2小于5。
这些代数符号常用于比较和表示数与数之间的关系,是解方程和不等式等数学问题中必不可少的工具。
三、几何符号1. 等于号:=等于号在几何学中用于表示两个量、线段或角等的相等关系。
比如AB = CD,表示线段AB和线段CD的长度相等。
2. 平行符号:||平行符号用于表示两条直线互不相交、且方向相同的关系。
比如AB || CD,表示线段AB与线段CD平行。
3. 垂直符号:⊥垂直符号表示两条直线或线段之间的垂直关系。
比如 AB ⊥ CD,表示线段AB垂直于线段CD。
这些几何符号在几何学中有着重要的作用,能够准确地描述平行、垂直等关系。
数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学公式符号大全引言数学是一门研究数量、结构、变化以及空间等概念的学科。
在数学中,公式是表达数学关系或规律的一种符号表示方式。
数学公式符号的正确使用和理解对于学习和应用数学具有重要意义。
本文将介绍一些常见的数学公式符号,帮助读者更好地理解数学表达和推理。
希腊字母希腊字母是用于表示数学中常见概念和变量的符号。
以下是一些常见的希腊字母及其对应的大写和小写形式:•α (Alpha): \(\alpha\) 或 \(A\)•β (Beta): \(\beta\) 或 \(B\)•γ (Gamma): \(\gamma\) 或 \(Γ\)•δ (Delta): \(\delta\) 或 \(Δ\)•ε (Epsilon): \(\epsilon\) 或 \(E\)•ζ (Zeta): \(\zeta\) 或 \(Z\)•η (Eta): \(\eta\) 或 \(H\)•θ (Theta): \(\theta\) 或 \(Θ\)•ι (Iota): \(\iota\) 或 \(I\)•κ (Kappa): \(\kappa\) 或 \(K\)•λ (Lambda): \(\lambda\) 或 \(Λ\)•μ (Mu): \(\mu\) 或 \(M\)•ν (Nu): \(u\) 或 \(N\)•ξ (Xi): \(\xi\) 或 \(Ξ\)•ο (Omicron): \(\omicron\) 或 \(O\)•π (Pi): \(\pi\) 或 \(Π\)•ρ (Rho): \(\rho\) 或 \(P\)•σ (Sigma): \(\sigma\) 或 \(Σ\)•τ (Tau): \(\tau\) 或 \(T\)•υ (Upsilon): \(\upsilon\) 或 \(Υ\)•φ (Phi): \(\phi\) 或 \(Φ\)•χ (Chi): \(\chi\) 或 \(X\)•ψ (Psi): \(\psi\) 或 \(Ψ\)•ω (Omega): \(\omega\) 或 \(Ω\)这些希腊字母在数学中广泛使用,代表不同的数学符号、常数和变量。
高中数学公式符号大全sA= N+N+╮+-×÷±<>•∶∴∵∷≰∫∮∝∞∧∨º¹²³ ´ ¶ µ≠≤≥≈≡‖=≌∸≮≯∑∏∪∩ⅰ⊿≲√∟㎗㎖¢∠≱%‰℅°℃℉′〒¤▚µ㎎㎏㎐㎑㎒㎓㎔㎕㎗$£¥㎘□■ X¹ X² X³ 1°1′1〃↑ ↓ ← → ↖↗↙↘㊣◉⊕≰▚ ▬ △▖☆★◇◆□▔▽▘§¥£※■□∵∴θω ░ ▒▞▝▟▢◈♤▥‛♨▣♧▤♡▦▩▣▧▨▤▥▪ ▫ ▛ ▜ ☏☎☜☞◑◐▭ ° ☑₪╮,、~%#*‧;∶… ¨ ,• ˙ ‘ ’〃′ εїз ™ ✿。◕‿◕。◉▝▞▗▙▧▨◐◑↔ ↕ ㊊㊋㊌㊍㊎㊏㊐▀▄ █ ▌▕ (ε.メ)▣▤▥▦▩♭☀ஐ☈➽〠〄㍿㊚㊛㊙℗♯♩♫♬¤큐≡:,⊆⊂⊇⊃试比较cos1°与tan44°的大小。
1、几何符号≱‖∠≲≰≡≌△° |a| ≱∸∠↛‖|2、代数符号? ∝∧∨~∫ ≤ ≥ ≈ ∞ :〔〕〈〉《》「」『』】【〖3、运算符号{× ‚ √ ± ≠ ≡≮≯4、集合符号∪∩ⅰΦ ? ¢sA= N+N+{ } [ ] ()5、特殊符号∑ π(圆周率)@#☆★◈●◉◇◆□▔▓⊿※¥Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ω ∏6、推理符号ⅬⅭⅮⅯ↖↗↘↙∴∵∶∷T ? ü7、标点符号` ˉ ˇ ¨ 、· ‘’8、其他& ; § ℃№ $£¥‰ ℉☈☇≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ↚√ ∝∞ ↛∠↜‖∧∨∩∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲指数0123:o123 〃? ? ?符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥ 大于等于≤ 小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ⅰA a属于集合ACard(A) 集合A中的元素个数|a| ≱∸△∠∩∪≠ ∵∴≡± ≥ ≤ ⅰⅬⅭⅮⅯ↖↗↘↙‖∧∨¼ ½ ¾§≳≴≵≶≷≸≹≺≻≼α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏∑↚√∝∞↛∠↜‖∧∨∩∪∫∮∴∵∶∷∸≈≌≈≠≡≤≥≤≥≮≯⊕≰≱⊿≲为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成√(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高1 几何符号≱‖∠≲≰≡ ≌△2 代数符号∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶3运算符号× ‚ √ ±4集合符号∪∩ ⅰ5特殊符号∑ π(圆周率)6推理符号|a| ≱∸△∠∩ ∪≠ ≡ ± ≥ ≤ ⅰ←↑ → ↓ ↖↗↘↙‖∧∨&; §≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε δ ε ζ η θ ι κ λμ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ∕ √ ∝∞ ∟ ∠↜‖∧∨∩ ∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲℃指数0123:º¹²³符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm≱n m与n互质a ⅰA a属于集合A#A 集合A中的元素个数∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,如果f(n)是有结构式,f(n)应外引括号;∑(n=p,q ; r=s,t)f(n,r) 表示∑(r=s,t)[∑(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号;∏(n=p,q ; r=s,t)f(n,r) 表示∏(r=s,t)[∏(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;lim(x→u)f(x) 表示f(x) 的x 趋向u 时的极限,如果f(x)是有结构式,f(x)应外引括号;l im(y→v ; x→u)f(x,y) 表示lim(y→v)[lim(x→u)f(x,y)],如果f(x,y)是有结构式,f(x,y)应外引括号;∫(a,b)f(x)dx 表示对f(x) 从x=a 至x=b 的积分,如果f(x)是有结构式,f(x)应外引括号;∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,如果f(x,y)是有结构式,f(x,y)应外引括号;∫(L)f(x,y)ds 表示f(x,y) 在曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∫∫(D)f(x,y,z)dζ 表示f(x,y,z) 在曲面D 上的积分,如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;∮(L)f(x,y)ds 表示f(x,y) 在闭曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∮∮(D)f(x,y,z)dζ 表示f(x,y,z) 在闭曲面 D 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,如果A(n)是有结构式,A(n)应外引括号;∪(n=p,q ; r=s,t)A(n,r) 表示∪(r=s,t)[∪(n=p,q)A(n,r)],如果A(n,r)是有结构式,A(n,r)应外引括号;∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集,如果A(n)是有结构式,A(n)应外引括号;∩(n=p,q ; r=s,t)A(n,r) 表示∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;。
数学符号及读法大全常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷±+-× ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙‖α β γ δ ε ζ η θ Δ大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec yacsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值∑表示求和,通常是某项指数。
数学符号大全图解数学物理里面的公式符号读法:Αα:阿尔法 lph Ββ:贝塔 BetΓγ:伽玛 GmmΔδ:德尔塔 DelteΕε:艾普西龙 EpsilonΖζ:捷塔 ZetΕη:依塔EtΘθ:西塔 ThetΙι:艾欧塔 IotΚκ:喀帕 Kpp∧λ:拉姆达 LmbdΜμ:缪MuΝν:拗NuΞξ:克西iΟο:欧麦克轮 Omicron∏π:派PiΡρ:柔 Rho∑σ:西格玛 SigmΤτ:套TuΥυ:宇普西龙 UpsilonΦφ:fi PhiΧχ:器 ChiΨψ:普赛 PsiΩω:欧米伽 Omeg(1)数量符号:如:i,2+i,x,自然对数底e,圆周率∏。
(2)运算符号:如加号(+),减号(-),乘号(或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N 个元素中每次取出R个元素所有不同的组合数(C),幂(M),阶乘(!)等。
符号意义∞无穷大PI圆周率,x,函数的绝对值∪集合并∩集合交≥大于等于≤小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数小数部分 x - floor(x)∫f(x)δx不定积分∫[:b]f(x)δx到b的定积分P为真等于1否则等于0∑[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况如:∑[n is prime][n ) 求极限f(z)f关于z的m阶导函数C(n:m)组合数,n中取mP(n:m)排列数m,nm整除nm⊥nm与n互质∈属于集合#集合中的元素个数初中物理公式:物理量(单位)公式备注公式的变形速度V(m/S)v=S:路程/t:时间重力G (N) G=mg m:质量 g:9.8N/kg或者10N/kg 密度ρ(kg/m3)ρ=m/V m:质量 V:体积合力F合(N)方向相同:F合=F1+F2方向相反:F合=F1—F2方向相反时,F1>F2浮力F浮(N)F浮=G物—G视G视:物体在液体的重力浮力F浮(N)F浮=G物此公式只适用物体漂浮或悬浮浮力F浮(N)F浮=G排=m排g=ρ液gV排G排:排开液体的重力m排:排开液体的质量ρ液:液体的密度V排:排开液体的体积(即浸入液体中的体积)杠杆的平衡条件F1L1=F2L2F1:动力L1:动力臂F2:阻力L2:阻力臂定滑轮F=G物S=hF:绳子自由端受到的拉力G物:物体的重力S:绳子自由端移动的距离h:物体升高的距离动滑轮F=(G物+G轮)S=2hG物:物体的重力G轮:动滑轮的重力滑轮组F=(G物+G轮)S=nhn:通过动滑轮绳子的段数机械功W(J)W=FsF:力s:在力的方向上移动的距离有用功W有总功W总W有=G物hW总=Fs适用滑轮组竖直放置时机械效率η=100%功率P(w)P=W:功t:时间压强p(P)P=F:压力S:受力面积液体压强p(P)P=ρgh ρ:液体的密度h:深度(从液面到所求点的竖直距离)热量Q(J)Q=cm△t c:物质的比热容 m:质量△t:温度的变化值燃料燃烧放出的热量Q(J) Q=mq m:质量q:热值常用的物理公式与重要知识点一.物理公式单位)公式备注公式的变形串联电路电流I()I=I1=I2=……电流处处相等串联电路电压U(V)U=U1+U2+……串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I()I=I1+I2+……干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)=++……欧姆定律I=电路中的电流与电压成正比,与电阻成反比电流定义式I=Q:电荷量(库仑)t:时间(S)电功W(J)W=UIt=PtU:电压I:电流t:时间P:电功率电功率P=UI=I2R=U2/RU:电压I:电流R:电阻电磁波波速与波长、频率的关系C=λνC:物理量单位公式名称符号名称符号质量 m 千克 kg m=pv温度t摄氏度°C速度v米/秒m/sv=s/t密度 p 千克/米3 kg/m3 p=m/v力(重力) F 牛顿(牛) N G=mg压强P帕斯卡(帕)PP=F/S功W焦耳(焦)JW=Fs功率P瓦特(瓦)wP=W/t电流I安培(安)I=U/R电压U伏特(伏)VU=IR电阻R欧姆(欧)R=U/I电功W焦耳(焦)JW=UIt电功率 P 瓦特(瓦) w P=W/t=UI 热量 Q 焦耳(焦) J Q=cm(t-t°) 比热 c 焦/(千克°C)J/(kg°C) 真空中光速 3108米/秒g9.8牛顿/千克15°C空气中声速340米/秒初中物理公式汇编力学部分】1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F(压力差)(2)、F浮=G-F(视重力)(3)、F浮=G(漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1L1=F2L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/n(竖直方向)11、功:W=FS=Gh(把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/nF(竖直方向)(2)、η=G/(G+G动)(竖直方向不计摩擦)(3)、η=f/nF(水平方向)热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R(纯电阻公式)5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2(分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2[R=R1R2/(R1+R2)](4)、I1/I2=R2/R1(分流公式)(5)、P1/P2=R2/R1。
数学公式符号念法数学是一门需要符号来表示和表达的学科。
精确的数学语言通过符号和公式来描述数学概念、关系和运算。
这些符号是数学家们长期发展和制定的,它们具有明确的含义和规定的读法。
下面我将为你介绍一些常见的数学公式符号的念法。
1.希腊字母在数学中,希腊字母被广泛使用来表示各种数学对象和概念。
以下是一些常见的希腊字母及其念法:- α (Alpha):阿尔法- β (Beta):贝塔- γ (Gamma):伽马- δ (Delta):德尔塔- ε (Epsilon):伊普西隆- ζ (Zeta):西塔- η (Eta):伊塔- θ (Theta):西塔- ι (Iota):约塔- κ (Kappa):卡帕- λ (Lambda):兰姆达-μ(Mu):缪-ν(Nu):纳-ξ(Xi):克西- ο (Omikron):奥密克戎-π(Pi):派- ρ (Rho):罗- σ (Sigma):西格玛- τ (Tau):陶- υ (Upsilon):宇普西隆- φ (Phi):斐- χ (Chi):喀- ψ (Psi):普西- ω (Omega):欧米伽2.运算符号数学中的运算符号表示着各种数学运算。
以下是一些常见的运算符号及其念法:-+:加--:减-×:乘-÷:除-≠:不等于-<:小于->:大于-≤:小于等于-≥:大于等于-√:开方-^:乘方-!:阶乘-∑:求和-∏:求积-∫:求积分-∂:偏导数-∆:增量-∞:无穷3.数学符号数学中的符号用于表示数学对象和关系。
以下是一些常见的数学符号及其念法:-∈:属于-∩:交集-∃:存在-∀:任意-∅:空集-⇒:蕴含-⇔:等价-∴:所以-∵:因为-∝:与成正比-∠:角-∥:平行-⊥:垂直-≡:恒等-≈:约等于4.特殊符号还有一些特殊的数学符号,它们通常用于表示特定的数学概念或操作。
以下是一些常见的特殊符号及其念法:-√-1:虚数单位,记作“i”-e:自然对数的底数-π:圆周率-Σ:序列求和符号-δ:德尔塔函数-φ:黄金分割率以上是一些常见的数学公式符号的念法,它们在数学学科中具有重要的作用,可以帮助数学家们准确地表达和交流数学思想和结论。
数学符号、希腊字母:α——阿尔法β——贝塔γ——伽马Δ——德尔塔ξ——可sei ψ——可赛ω——奥秘噶µ——⽶哟λ——南⽊打σ——西格玛τ——套φ——fai2、数学运算符:∑—连加号∏—连乘号∪—并∩—补∈—属于∵—因为∴—所以√—根号‖—平⾏⊥—垂直∠—⾓⌒—弧⊙—圆∝—正⽐于∞—⽆穷∫—积分≈—约等≡—恒等3、三⾓函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体序号⼤写⼩写英⽂注⾳国际⾳标注⾳中⽂注⾳1 Αα alpha a:lf 阿尔法2 Ββ beta bet 贝塔3 Γγ gamma ga:m 伽马4 Δ δ delta delt 德尔塔5 Εε epsilon ep`silon 伊普西龙6 Ζζ zeta zat 截塔7 Ηη eta eit 艾塔8 Θθ thet θit 西塔9 Ιι iot aiot 约塔10 Κκ k appa kap 卡帕11 Λλ lambda lambd 兰布达12 Μ µ mu mju 缪13 Νν nu nju 纽14 Ξξ xi ksi 克西15 Οο omicron omik`ron 奥密克戎16 Ππ pi pai 派17 Ρρ rho rou ⾁18 Σσ sigma `sigma 西格马19 Ττ tau tau 套20 Υυ upsilon jup`silon 宇普西龙21 Φφ phi fai 佛爱22 Χχ c hi phai 西23 Ψψ psi psai 普西1 Αα alpha a:lf 阿尔法2 Ββ beta bet 贝塔3 Γγ gamma ga:m 伽马4 Δ δ delta delt 德尔塔5 Εε epsilon ep`silon 伊普西龙6 Ζζ zeta zat 截塔7 Ηη eta eit 艾塔8 Θθ thet θit 西塔9 Ιι iot aiot 约塔10 Κκ kappa kap 卡帕11 ∧λ lambda lambd 兰布达12 Μ µ mu mju 缪13 Νν nu nju 纽磁阻系数14 Ξξ xi ksi 克西15 Οο omicron omik`ron 奥密克戎16 ∏π pi pai 派17 Ρρ rho rou ⾁18 ∑ σ sigma `sigma 西格马19 Ττ tau tau 套20 Υυ upsilon jup`silon 宇普西龙21 Φφ phi f ai 佛爱22 Χχ chi phai 西23 Ψψ psi psai 普西⾓速;24 Ωω omega o`miga 欧⽶伽希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΔδ:德尔塔DelteΕε:艾普西龙Epsilonζ:捷塔ZetaΖη:依塔EtaΘθ:西塔ThetaΙι:艾欧塔IotaΜµ:缪MuΝν:拗NuΞξ:克西XiΟο:欧麦克轮Omicron∏π:派PiΡρ:柔Rho∑σ:西格玛SigmaΤτ:套TauΥυ:宇普西龙UpsilonΦφ:fai PhiΧχ:器ChiΨψ:普赛PsiΩω:欧⽶伽Omega数学符号⼤全2008年01⽉29⽇星期⼆ 15:25因为⾃然科学的讨论经常要⽤到数学,但⽤⽂本⽅式只能表达L!t d5w x r ^ |$s Y 左右结构的数学公式,上下结构、根式、指数等都很难表达。
「小学数学公式」小学数学公式大全1.加法和减法公式:-加法公式:a+b=c-减法公式:a-b=c2.乘法和除法公式:-乘法公式:a×b=c-除法公式:a÷b=c3.平方和立方公式:-平方公式:a²=b-立方公式:a³=b4.数列公式:-等差数列公式:an = a₁ + (n - 1) × d-等比数列公式:an = a₁ × r^(n-1)5.相关性质公式:-数字交换律:a+b=b+a-数字结合律:(a+b)+c=a+(b+c)-数字分配律:a×(b+c)=a×b+a×c6.数学运算符号公式:-大于符号:a>b-小于符号:a<b-大于等于符号:a≥b-小于等于符号:a≤b7.分数运算公式:-分数加减法公式:a/b±c/d=(a×d±b×c)/(b×d) -分数乘法公式:(a/b)×(c/d)=(a×c)/(b×d)-分数除法公式:(a/b)÷(c/d)=(a×d)/(b×c)8.百分数公式:-百分数转换为小数公式:百分数%=小数/100-小数转换为百分数公式:百分数%=小数×1009.面积和体积公式:-矩形面积公式:面积=长×宽-三角形面积公式:面积=底边×高/2-圆面积公式:面积=π×半径²-立方体体积公式:体积=长×宽×高10.几何图形周长公式:-矩形周长公式:周长=2×(长+宽)-三角形周长公式:周长=边₁+边₂+边₃-圆周长公式:周长=2×π×半径。
常用公式数学符号数学是一门基础学科,它使用大量的数学符号和公式。
这些符号和公式在数学中扮演着重要的角色,是理解数学概念、证明数学定理和解决数学问题的基础。
在本文中,我们将介绍一些常用的数学符号和公式,帮助读者更好地掌握数学基础知识。
1. 加法符号(+):表示两个或多个数相加。
例如:a + b = c,表示a与b的和为c。
2. 减法符号(-):表示从某个数中减去另一个数。
例如:a - b = c,表示从a中减去b得到c。
3. 乘法符号(× / *):表示两个或多个数相乘。
例如:a × b = c,表示a与b的积为c。
4. 除法符号(÷ / /):表示将某个数除以另一个数。
例如:a ÷ b = c,表示将a除以b得到c。
5. 幂符号(↑ / ^):表示一个数的乘方。
例如:a↑n表示a的n次方。
6. 开方符号(√):表示开方运算,即求一个数的平方根。
例如:√a表示求a的平方根。
7. 绝对值符号│ │:表示一个数的绝对值。
例如:│a│表示a 的绝对值。
8. 平方符号(□):表示一个数的平方。
例如:□a表示a的平方。
9. 括号()[]):用于分组、隔离和约束运算对象。
10. 逗号(,):用于分隔数学表达式中的不同部分。
11. 指数符号₊:表示将一个小写字母或数字置于另一个符号或数字的右上角,表示该数字或字母的指数。
例如:a₊表示a的指数为正数。
12. 对数符号lg / ln / log:表示对数运算,即求一个数的自然对数或以某个数为底数的对数。
例如:lg x表示求x的自然对数,ln x表示求x的对数,log a x表示求以a为底x的对数。
13. 集合符号{}:用于表示一组数的集合。
14. 角符号< / >/ σ:用于表示角度或弧度。
15. 比例符号:用于表示两个量之间的比例关系。
16. 微分符号δ / △:表示一个函数在某一点上的微小变化量。
17. 导数符号:用于表示函数的斜率或变化率。
数学公式及符号大全一、基础符号1.数字0-9:0,1,2,3,4,5,6,7,8,92.加法:+3.减法:-4.乘法:×或*5.除法:÷或/6.等于:=7.不等于:≠8.大于:>9.小于:<10.大于等于:≥11.小于等于:≤12.正无穷大:∞13.正无穷小:ο14.±:±15.百分号:%16.小数点:.二、代数符号1.变量:a,b,c,...,x,y,z2.常数:A,B,C,...,X,Y,Z3.集合:\(∅\)(空集),ℕ(自然数集),ℤ(整数集),ℚ(有理数集),ℝ(实数集),ℂ(复数集)4.符号:^(乘方),√(平方根),\(∑\)(求和),∏(求积),\(,\)(取绝对值),\(!\)(阶乘),\(∘\)(复合函数)三、三角函数及特殊函数符号1. 三角函数:sin (正弦), cos (余弦), tan (正切), cot (余切), sec (正割), csc (余割)2. 反三角函数:arcsin (反正弦), arccos (反余弦), arctan (反正切), arccot (反余切), arcsec (反正割), arccsc (反余割)3. 双曲函数:sinh (双曲正弦), cosh (双曲余弦), tanh (双曲正切), coth (双曲余切), sech (双曲正割), csch (双曲余割)4. 反双曲函数:arcsinh (反双曲正弦), arccosh (反双曲余弦), arctanh (反双曲正切), arccoth (反双曲余切), arcsech (反双曲正割), arccsch (反双曲余割)5. 对数函数:log (常用对数), ln (自然对数), lg (以10为底的对数)6. 特殊函数:exp (指数函数), erfc (实际互补误差函数), gamma (伽玛函数), erf (误差函数), Sinc (正弦积分函数), DiracDelta (狄拉克函数),Heaviside (海维赛德函数)四、微积分符号1. 极限:lim (极限)2. 微分:d(微分符号),dx(表示自变量x的微小增量)3.积分:∫(积分符号),+C(积分常数)4.偏导数:∂(偏导符号)5.梯度:∇(梯度符号)6.整除:,(整除符号)五、矩阵及线性代数符号1. 矩阵: \(A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}\)2.转置:\(A^T\)(矩阵A的转置)3.矩阵乘法:A×B(矩阵A与矩阵B的乘积)4. 行列式:det(A) (矩阵A的行列式)5.逆矩阵:\(A^{-1}\)(矩阵A的逆矩阵)6. 向量:\(\vec{a}, \vec{b}, \vec{c}\)六、集合论符号1.空集:∅2.包含:⊆(子集),⊂(真子集),∈(属于),∉(不属于)3.交集:∩(交),∪(并)4. 补集:\(\bar{A}\) (集合A的补集), A' (亦表示集合A的补集)七、概率统计符号1.概率:P(A)(事件A的概率)2.期望:E(X)(随机变量X的期望)3. 方差:Var(X) (随机变量X的方差)4.标准差:σ(标准差符号)5. 协方差:Cov(X, Y) (随机变量X和Y的协方差)6.相关系数:ρ(相关系数符号)7.分布:N(μ,σ^2)(正态分布,均值为μ,方差为σ^2)八、几何符号1.平行:,(平行符号)2.垂直:⊥(垂直符号)3.同位角:≌(同位角符号)4.三角形:△(三角形符号)5.直角:∠(直角符号)6.弧:∡(弧符号)。
markdown数学公式大全以下是 Markdown 中常用的数学公式:1. 上标和下标:- 上标:用 `^` 表示,例如:`a^2` 表示 `a` 的平方。
- 下标:用 `_` 表示,例如:`a_1` 表示 `a` 的第一个下标。
2. 分数:- 使用 `\frac{分子}{分母}` 表示分数,例如:`\frac{1}{2}` 表示 $\frac{1}{2}$。
3. 根号:- 使用 `\sqrt{被开方数}` 表示根号,例如:`\sqrt{2}` 表示$\sqrt{2}$。
4. 希腊字母:- 使用 `\alpha` 表示 $\alpha$,`\beta` 表示 $\beta$,以此类推。
5. 上下括号:- 使用 `\overbrace{表达式}` 表示上括号,例如:`a+\overbrace{b+c}` 表示 $a+(b+c)$。
- 使用 `\underbrace{表达式}` 表示下括号,例如:`a+\underbrace{b+c}` 表示 $a+(b+c)$。
6. 矩阵:- 使用 `\begin{matrix} 数字 & 数字 \\ 数字 & 数字 \end{matrix}` 表示 $2\times2$ 的矩阵,例如:`\begin{matrix} 1 & 2 \\ 3 & 4\end{matrix}` 表示 $\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}$。
7. 求和符号:- 使用 `\sum_{i=1}^{n} 表达式` 表示求和符号,例如:`\sum_{i=1}^{n} i` 表示 $\sum_{i=1}^{n} i$。
8. 积分符号:- 使用 `\int_{a}^{b} 表达式` 表示积分符号,例如:`\int_{0}^{1} x^2 dx` 表示 $\int_{0}^{1} x^2 dx$。
9. 极限符号:- 使用 `\lim_{n \to \infty} 表达式` 表示极限符号,例如:`\lim_{n \to \infty} \frac{1}{n}` 表示 $\lim_{n \to \infty}\frac{1}{n}$。
常用公式数学符号希腊字母
在数学中,常用的公式和符号有很多,其中也包括希腊字母。
下面是一些常见的公式和希腊字母的用法:
1. 常用公式:
二次方程,ax^2 + bx + c = 0,其中 a、b、c 为常数,x 为未知数。
三角函数,sin(x)、cos(x)、tan(x) 分别表示正弦、余弦和正切函数。
对数函数,log(x) 表示以 10 为底的对数函数,ln(x) 表示以自然对数 e 为底的对数函数。
指数函数,e^x 表示以 e 为底的指数函数。
级数,Σ 表示求和符号,表示将一系列数相加。
极限,lim 表示极限,表示函数在某点或无穷远处的趋势。
积分,∫ 表示积分,表示函数的面积或曲线下的总体积。
2. 希腊字母:
α(Alpha): 在数学中常用于表示角度、系数等。
β(Beta): 通常用于表示角度、系数等。
γ(Gamma): 常用于表示角度、系数等。
δ(Delta): 常用于表示差异、变化量等。
ε(Epsilon): 通常用于表示一个很小的正数。
θ(Theta): 常用于表示角度。
λ(Lambda): 常用于表示特征值、波长等。
μ(Mu): 通常用于表示平均值、系数等。
π(Pi): 常用于表示圆周率。
ρ(Rho): 常用于表示密度、相关系数等。
σ(Sigma): 常用于表示标准差、总和等。
ω(Omega): 通常用于表示角速度、角频率等。
这只是一小部分常见的公式和希腊字母,数学中还有很多其他的公式和符号。
希望这些信息对你有所帮助。
数学公式符号大全
数学公式符号大全包括以下内容:
1.几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆心)、≌(全等)、△(三角形)等。
2.代数符号:∝(成正比)、∧(和)、∨(或)、~(近似于)、∫(积分)、∑(求和)、∪(并集)、∩(交集)等。
3.运算符号:+(加号)、-(减号)、×(乘号或·)、÷(除号)、∪(并集)、∩(交集)、√(根号)、|a|(绝对值)等。
4.关系符号:=(等于号)、≈(近似符号)、≠(不等于号)、>(大于号)、<(小于号)、≥(大于或等于号)、≮(不大于号)、≯
(不小于号)等。
5.推理符号:∵(因为)、∴(所以)、←(向左箭头)、↑(向上箭头)、→(向右箭头)、↓(向下箭头)等。
6.特殊符号:∑、π、⊙、∆、√、√ ̄、∣、∠、≌、∑、≈等。
7.运算符号:∪、∩、∈、∉、⊆、⊄、⊅、∍等。
8.特殊符号:∑、π、∣、√ ̄、△等。
9.运算符号:∪、∩、∈等。
10.推理符号:∵、∴等。
以上是数学公式符号大全的一部分,具体使用时需要根据不同的情况选择合适的符号。