2014-2015年八年级数学下册第一次月考复习(3套)
- 格式:doc
- 大小:5.01 MB
- 文档页数:6
2015-2016年北师大版八年级下第一次月考数学试卷(带答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015-2016年北师大版八年级下第一次月考数学试卷(带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015-2016年北师大版八年级下第一次月考数学试卷(带答案)(word版可编辑修改)的全部内容。
2015—2016年八年级下第一次月考数学试卷一、选择题(每小题3分,共30分)1.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( )A.9㎝ B.12㎝C.12㎝或15㎝ D.15㎝2.如果ba>,那么下列各式一定正确..的是( )A. 22ba> B。
22ba< C. ba22-<- D 。
11-<-ba3.下列命题中正确的是 ( )A.有两条边分别相等的两个等腰三角形全等 B.两腰对应相等的两个等腰三角形全等C.有两条边分别相等的两个直角三角形全等 D.斜边和一条直角边对应相等的两个直角三角形全等4.下列图形中只能用其中一部分平移可以得到的是( ).A B C D5.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长为( )A. B。
1 C。
D.2(第5题图)(第6题图)6.函数y=kx+b(k、b为常数,k≠0)的图象如图所示,则关于x的不等式kx+b>0的解集为( ).A.x〉0 B.x〈0 C.x<2 D.x〉27.将不等式组的解集在数轴上表示出来,应是( ).13{xx≥≤A CB D8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为( ).A .-2B .21- C .-4 D .41-9.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )A 。
2014--2015年八年级下册第一学月数学试题时间120分钟,总分120分选择题(每小题3分,共30分)1、在有理数3a 、1+x x 、yx +51、b a b a --22中分式有 ( )A 、1个B 、2个C 、3个D 、4个2、若把分式y x xy+5中x 、y 都扩大3倍,那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍3、根据分式的基本性质,分式b a a--可变形为 ( )A 、b a a --B 、b a a +C 、b a a --D 、b a a+-4、若关于x 的方程1)(5332+-=-k x k x 的解为负数,则k 的值为( ) A .k>21 B .k<21 C .k=21 D .k>21且k ≠214.下列算式中正确的是 ( )A .(10一5×2)0=1B .C .D .0.000 16=1.6×104 6、将方程方程是去分母化简后,得到的132142+-=+-x x x ( )A 、x2-2x-3=0B 、x2-2x-5=0C 、x2-3=0D 、x2-5=07、A 地在河的上游,B 地在河的下游,若船从A 地开往B 地的速度为V1,从B 地返回A 地的速度为V2,则A 、B 两地间往返一次的平均速度为( )A .221V V + B .21212V V V V + C .21212V V V V + D .无法计算 8.已知点A (一3,2m 一1)在x 轴上,点B (n+1,4)在y 轴上,则点C (m ,n )在 ( )A .第一象限B .第二象限C .第三象限D .第四象限9.下表是弹簧挂重后的总长度L (cm )与所挂物体重量x (kg )之间的几个对应值,则可3310101=-33212--=A. L=2xB. L=2x+20C. L=x+20D. L=x10.一根粗细均匀、长为20cm 的蜡烛放在一个高为10cm 的烛台上,点燃后着火点与桌面的距离y (cm )和点燃时间t (小时)之间的函数关系用图象表示大致是( ) 二 填空题(每小题3分,共30分)1、()ba abba 2=+()()1=-y x x x2.方程4-x x =2+4-x a有增根,那么a= .3、在解分式方程:412--x x +2=x x 212+的过程中,去分母时,需方程两边都乘以最简公分母__________________。
八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
12014—2015学年度第二学期八年级数学下册第一次月考试卷考试时间:100分 总分:120分班级:____________ 姓名:____________ 分数:____________一.选择题(共10小题,每小题3分,满分30分)1.下列式子一定是二次根式的是 ( )A .2--xB .xC .22+xD .22-x 2.下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 3k 、4k 、5k (k >0)C. 6,8,11D. 5,12,23 3.把aba 123化简后得( )A .b 4 B .b 2 C .b 21D . b b 2 4.下列式子中,能与2进行合并的是( )A.4B.12 C.20 D.0.25.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积是( )A.24cm 2B.30cm 2C.40cm 2D.48cm 26.下列计算正确的是( )A .3232=+B .3936==+C . 35)23(3253--=-D .72572173=-7.下列逆命题成立的是( )A.若两数相等,则它们绝对值相等B.如果两个实数是正数,它们的积是正数C.等边三角形是锐角三角形.D.线段垂直平分线上的点与这条线段两个端点的距离相等8.若一个直角三角形的三边分别为a 、b 、c, 22144,25a b ==,则2c =( )A 、169B 、119C 、169或119D 、13或259.在直角坐标系中,点P (2-,3)到原点的距离是( )D.2 10.如下左图,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm二.填空题(本大题6小题,每小题4分,共24分)11.如果代数式13-x x +有意义,那么x 的取值范围是 12.若a <11=13.如图直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为 14. 已知三角形三边分别为cm cm cm 18,12,18,则它的周长为______cm 。
2025年人教版八年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且0<x1<x2,设y1-y2=a,则()A. a>0B. a<0C. a≥0D. a≤02、如图,在△ABC中,∠A,∠1,∠2的大小关系是( )A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠13、如果△ABC中,sinA=cosB=则下列最确切的结论是()A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形4、若分式鈭�52鈭�x的值为负数,则x的取值范围是()A. x<2B. x>2C. x>5D. x<鈭�25、函数y=3x+1的图象一定过点()A. (3,5)B. (-2,2)C. (4,9)D. (2,7)6、的平方根与-8的立方根之和为()A. -4B. 0C. -6或2D. -4或07、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A. 13B. 14C. 15D. 168、如果有意义,那么的取值范围是()A.B.C.D.9、下列图形中,既是轴对称图形又是中心对称图形的是()A. 平行四边形B. 圆C. 正五边形D. 等腰三角形评卷人得分二、填空题(共8题,共16分)10、(2015秋•迁安市期末)如图,已知线段AB,分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC,E为AC的中点,连接DE,当线段AB=4,∠ACB=60°时,△CED周长是____.11、9.电子钟镜子里的像如图所示,实际时间是____________.12、等腰三角形的顶角为120鈭�底边上的中线长为4cm则腰长为 ______cm.13、点P(-2,5)关于x轴对称点坐标为____,关于y轴对称点坐标为____.14、某中学初二(1)班的学生人数为40名,某次数学考试的成绩统计如下:。
甘肃省平凉市静宁县城关中学2014-2015学年八年级数学下学期第一次月考试题一、选择题(本大题共10分每小题3分共30分)1.如果有意义,那么字母x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<12.若Rt△ABC中,∠C=90°且c=10,a=8,则b=()A.8 B.6 C.9 D.73.下列各式一定是二次根式的是()A.B.C.D.4.下列各组数中以a,b,c为边的三角形不是Rt△的是()A.a=2,b=3,c=4 B.a=5,b=12,c=13C.a=6,b=8,c=10 D.a=3,b=4,c=55.下列根式中,与是同类二次根式的是()A. B. C.D.6.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.B.C.D.7.下列根式中属最简二次根式的是()A.B.C.D.8.下列计算错误的是()A.B.C. D.9.已知a<b,则化简二次根式的正确结果是()A.B.C.D.10.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2二、填空题:(每小题4分,共32分)11.比较大小:﹣3﹣2.12.命题“等腰三角形的两个底角相等”的逆命题是.13.已知a=,则代数式a2﹣1的值为.14.若,则m﹣n的值为.15.在实数范围内分解因式:x2﹣5= .16.若6,8,10之间满足的等量关系是62+82=102,则边长为6,8,10的三角形是.17.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.18.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.三.解答题(一)(本大题共5小题共38分)解答时,应写出必要的文字说明、证明过程或演算步骤.19.如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).20.计算(1)(2);(3)(4).21.先化简,再求值:(x+2),其中x=.22.若x,y是实数,且y=++,求的值.23.如图,一架长2.5m的梯子,斜靠在一竖直的墙上,这时,梯底距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,则梯子的底端将滑出多少米?四、解答题(二)(本大题共5小题共50分)解答时,应写出必要的文字说明、证明过程或演算步骤.24.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.25.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.26.若△ABC的三边a、b、c满足条件a2+b2+c2+50=6a+8b+10c,试判断△ABC的形状.27.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.28.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.2014-2015学年甘肃省平凉市静宁县城关中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10分每小题3分共30分)1.如果有意义,那么字母x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<1【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.【解答】解:由题意得:x﹣1≥0,解得x≥1,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.若Rt△ABC中,∠C=90°且c=10,a=8,则b=()A.8 B.6 C.9 D.7【考点】勾股定理.【分析】在直角三角形ABC中,利用勾股定理可得b=,代入数据可得出b的长度.【解答】解:∵∠C=90°,∴b===6;故选:B.【点评】此题考查了勾股定理的知识,属于基础题,解答本题的关键是掌握勾股定理在解直角三角形中的运用.3.下列各式一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的概念和性质,逐一判断.【解答】解:A、二次根式无意义,故A错误;B、是三次根式,故B错误;C、被开方数是正数,故C正确;D、当b=0或a、b异号时,根式无意义,故D错误.故选:C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.4.下列各组数中以a,b,c为边的三角形不是Rt△的是()A.a=2,b=3,c=4 B.a=5,b=12,c=13C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A选项中,∵22+32=42,∴2,3,4不能作为直角三角形的三边长;B、C、D选项的三个数都满足这种关系,能作为直角三角形的三边长.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.【点评】本题主要考查了同类二次根式,解题的关键是熟记化简根式的方法.6.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.B.C.D.【考点】勾股定理.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C 到AB的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=4,AC=3,∴AB=5,设AB边上的高为h,则S△ABC=ACBC=ABh,∴h=,故选:C.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.7.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【分析】结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.【解答】解:A、×=7,原式计算正确,故本选项错误;B、÷=,原式计算正确,故本选项错误;C、+=8,原式计算正确,故本选项错误;D、3﹣=2,原式计算错误,故本选项错误.故选D.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的加减法则和乘除法则.9.已知a<b,则化简二次根式的正确结果是()A .B .C .D .【考点】二次根式的性质与化简. 【专题】计算题.【分析】由于二次根式的被开方数是非负数,那么﹣a 3b≥0,通过观察可知ab 必须异号,而a <b ,易确定ab 的取值范围,也就易求二次根式的值.【解答】解:∵有意义,∴﹣a 3b≥0, ∴a 3b≤0, 又∵a<b , ∴a<0,b ≥0,∴=﹣a.故选A .【点评】本题考查了二次根式的化简与性质.二次根式的被开方数必须是非负数,从而必须保证开方出来的数也需要是非负数.10.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .3cm 2B .4cm 2C .6cm 2D .12cm 2【考点】勾股定理;翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE ,在直角△ABE 中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B 与点D 重合,∴BE=ED. ∵AD=9cm=AE+DE=AE+BE. ∴BE=9﹣AE ,根据勾股定理可知AB 2+AE 2=BE 2. 解得AE=4.∴△ABE 的面积为3×4÷2=6.故选C . 【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方. 二、填空题:(每小题4分,共32分)11.比较大小:﹣3< ﹣2.【考点】实数大小比较.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.12.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.13.已知a=,则代数式a2﹣1的值为 1 .【考点】实数的运算.【分析】把a=代入a2﹣1直接计算即可.【解答】解:当a=时,a2﹣1=()2﹣1=1.故本题答案为:1.【点评】本题考查实数的运算和代数式的求值,主要考查运算能力.14.若,则m﹣n的值为 4 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.在实数范围内分解因式:x2﹣5= (x+)(x﹣).【考点】实数范围内分解因式.【分析】直接利用平方差公式分解因式得出即可.【解答】解:原式=(x+)(x﹣).故答案是:(x+)(x﹣).【点评】此题主要考查了利用平方差公式分解因式,熟练掌握平方差公式是解题关键.16.若6,8,10之间满足的等量关系是62+82=102,则边长为6,8,10的三角形是直角三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行判断即可.【解答】解:∵62+82=102,∴边长为6,8,10的三角形是直角三角形.故答案为:直角三角形.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.17.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是16 .【考点】勾股定理;三角形内角和定理.【分析】根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.【解答】解:设一份是x,则三个角分别是x,2x,3x.再根据三角形的内角和定理,得:x+2x+3x=180°,解得:x=30°,则2x=60°,3x=90°.故此三角形是有一个30°角的直角三角形.根据30°的角所对的直角边是斜边的一半,得,最长边的长度是16.【点评】此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.18.一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是cm.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:将长方体展开,如图1所示,连接A、B,根据两点之间线段最短,AB==cm;如图2所示, =4cm,∵<4,∴蚂蚁所行的最短路线为cm.故答案为:【点评】本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.三.解答题(一)(本大题共5小题共38分)解答时,应写出必要的文字说明、证明过程或演算步骤.19.如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).【考点】勾股定理;实数与数轴.【专题】作图题.【分析】根据勾股定理,作出以1和4为直角边的直角三角形,则其斜边的长即是;再以原点为圆心,以为半径画弧与数轴的正半轴的交点即为所求.【解答】解:所画图形如下所示,其中点A即为所求.【点评】本题考查勾股定理及实数与数轴的知识,要求能够正确运用数轴上的点来表示一个无理数,解题关键是构造直角三角形,并灵活运用勾股定理.20.计算(1)(2);(3)(4).【考点】二次根式的混合运算.【分析】(1)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;(2)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;(3)按照二次根式运算法则进行计算后,再化简,即可得出结论;(4)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论.【解答】解:(1)原式=4+3﹣2+4=7+2.(2)原式=(2﹣)﹣(2+)=2﹣﹣2﹣=﹣3.(3)原式=2﹣3=2﹣=4﹣=﹣.(4)原式=(4﹣)﹣(﹣)=4﹣﹣+=3.【点评】本题考查了二次根式的混合运算,解题的关键是牢记二次根式运算的规则以及熟练运用二次根式化简的方法.21.先化简,再求值:(x+2),其中x=.【考点】分式的化简求值.【专题】计算题.【分析】先把分式因式分解,约分化简为最简形式,再把数代入求值.【解答】解:原式=(x+2)(3分)=;(6分)x=时,.(8分)【点评】此题是分式与整式的乘法运算,分子、分母能因式分解的先因式分解;注意应该把x+2看成一个整体.22.若x,y是实数,且y=++,求的值.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1≥0且1﹣x≥0,解得x≥1且x≤1,所以,x=1,y=,所以, ==﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.23.如图,一架长2.5m的梯子,斜靠在一竖直的墙上,这时,梯底距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,则梯子的底端将滑出多少米?【考点】勾股定理的应用.【分析】根据图形得到两个直角三角形,将问题转化为直角三角形问题利用勾股定理解答.【解答】解:如图AB=CD=2.5米,OB=0.7米,AC=0.4,求BD的长.在Rt△AOB中,∵AB=2.5,BO=0.7,∴AO=2.4,∵AC=0.4,∴OC=2,∵CD=2.5,∴OD=1.5,∵OB=0.7,∴BD=0.8.即梯子底端将滑动了0.8米.【点评】此题主要考查学生利用勾股定理角实际问题的能力,注意做题时要先弄清题意.四、解答题(二)(本大题共5小题共50分)解答时,应写出必要的文字说明、证明过程或演算步骤.24.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【考点】勾股定理.【专题】计算题.【分析】在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,∵S△ABC=ABCD=ACBC,∴CD===4.8.【点评】此题考查了勾股定理,以及三角形面积求法,熟练掌握勾股定理是解本题的关键.25.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.【考点】二次根式的化简求值;整式的加减—化简求值.【分析】观察可知:(1)式是完全平方和公式,(2)是平方差公式.先转化,再代入计算即可.【解答】解:(1)当x=+1,y=﹣1时,原式=(x+y)2=(+1+﹣1)2=12;(2)当x=+1,y=﹣1时,原式=(x+y)(x﹣y)=(+1+﹣1)(+1﹣+1)=4.【点评】先化简变化算式,然后再代入数值,所以第一步先观察,而不是直接代入数值.26.若△ABC的三边a、b、c满足条件a2+b2+c2+50=6a+8b+10c,试判断△ABC的形状.【考点】配方法的应用;非负数的性质:偶次方.【专题】计算题.【分析】利用一次项的系数分别求出常数项,把50分成9、16、25,然后与(a2﹣6a)、(b2﹣8b)、(c2﹣10c)分别组成完全平方公式,再利用非负数的性质,可分别求出a、b、c的值,然后利用勾股定理可证△ABC实直角三角形.【解答】解:∵a2+b2+c2+50=6a+8b+10c,∴a2﹣6a+9+b2﹣8b+16+c2﹣10c+25=0,即(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴△ABC是直角三角形.【点评】本题考查了配方法的应用、勾股定理、非负数的性质,解题的关键是注意配方法的步骤,在变形的过程中不要改变式子的值.27.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.【考点】分母有理化.【专题】阅读型.【分析】(1)(2)仿照题目所给的分母有理化的方法进行计算;(3)将每一个二次根式分母有理化,再寻找抵消规律.【解答】解:(1)===﹣;(2)===﹣;(3)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.【点评】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.28.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【考点】勾股定理;全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.【点评】本题考查三角形全等的判定方法,及勾股定理的运用.。
八年级数学试卷一、选择题(每小题4分,共40分)1.下列各式﹣3x ,,,﹣,,,中,分式的个数为()A.4B.3C.2D.12.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤3.分式无意义,则x的值()A.1B.﹣1 C.0D.±14.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c35.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍6.方程=﹣的解是()A.1B.﹣1 C.2D.无解7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.08.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.(2006•永州)当x=_________时,分式的值为0.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是_________.13.科学记数法得N=﹣3.25×10﹣5,则原数N=_________.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为_________.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为_________.16.(2009•鸡西)若关于x的分式方程无解,则a=_________.三、解答题(17题每小题4分,18,19,每小题6分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3 (2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)18.先化简,再求值:(1),其中:x=﹣2.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.(3)先化简,再求值:,其中a=.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:四、解答题(20,21,22,每小题8分,23题10分,24题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.1考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:下列各式﹣3x,,,﹣,,,中,分式有:,,,,∴分式的个数为4个.故选A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=﹣2x是一次函数;②自变量次数不为1,故不是一次函数;③y=﹣2x2自变量次数不为1,故不是一次函数;④y=2是常数;⑤y=2x﹣1是一次函数.所以一次函数是①⑤.故选A.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.分式无意义,则x的值()A.1B.﹣1 C.0D.±1考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义,即|x|﹣1=0,解得x的取值.解答:解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c3考点:最简公分母.分析:解答本题关键是要求出三个分式的分母的最小公倍数,即是分式的最简公分母.解答:解:3,2,8的最小公倍数为24,a2b,ab2,a3bc3的最小公倍数为a3b2c3,∴分式的最简公分母为24a3b2c3,故选C.点评:本题考查最简公分母的知识,比较简单,同学们要熟练掌握.5.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍考点:分式的基本性质.分析:依题意分别用kx和ky去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用kx和ky去代换原分式中的x和y,得===,可见新分式是原分式的k倍.故选A.点评:解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.方程=﹣的解是()A.1B.﹣1 C.2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2=x+1﹣3(x﹣1),去括号得:2=x+1﹣3x+3,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.0考点:分式方程的增根.专题:计算题.分析:已知方程两边都乘以x﹣4去分母后,求出x的值,由方程有增根,得到x=4,即可求出a的值.解答:解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选A点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.8.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.考点:点的坐标;解一元一次不等式组.专题:证明题.分析:让点P的横坐标小于0,纵坐标大于0列不等式求值即可.解答:解:∵点P(m﹣1,2m+1)在第二象限,∴m﹣1<0,2m+1>0,解得:﹣<m<1.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的等量关系为:顺流时间+逆流时间=9小时.解答:解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.点评:未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.解答:解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.点评:考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题(每小题4分,共24分)11.(2006•永州)当x=﹣2时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.解答:解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是.考点:分式的基本性质.分析:不改变分式的值就是依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.解答:解:分子分母上同时乘以100得到,故分式的分子、分母的系数都化为整数的结果是.点评:本题主要考查分式的基本性质的应用,是一个基础题.13.科学记数法得N=﹣3.25×10﹣5,则原数N=﹣0.0000325.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“﹣3.25×10﹣5中﹣3.25的小数点向左移动5位就可以得到.解答:解:﹣3.25×10﹣5=﹣0.0000325,故答案为:﹣0.0000325.点评:本题主要考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为(2,2)或(﹣6,6).考点:点的坐标.分析:由点P到两坐标轴的距离相等得到(2x﹣2)=±(﹣x+4),解得x的值,从而得到点P的坐标.解答:解:∵点P到两轴的距离相等,∴2x﹣2=﹣x+4或2x﹣2=﹣(﹣x+4),即x=2或x=﹣2,代入点P坐标(2,2)或(﹣6,6).故答案为:(2,2)或(﹣6,6).点评:本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为﹣1.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣1=0且m﹣1≠0,解得m=±1且m≠1,所以m=﹣1.故答案为:﹣1.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.16.(2009•鸡西)若关于x的分式方程无解,则a=1或﹣2.考点:分式方程的解.专题:计算题;压轴题.分析:分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解答:解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.三、解答题(17题每小题16分,18,19,20题每小题16分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3(2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)解答:解:(1)原式=1﹣÷﹣(﹣1)=1﹣1+1=1;(2)原式==﹣=﹣1;(3)原式=+•=﹣=;(4)原式=m﹣2n﹣4•m6n3=m4n﹣1=.18.(6分)先化简,再求值:,其中:x=﹣2.考点:分析:解解:,答:=,=,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a 的值代入求值.(3)先化简,再求值:,其中a=.:解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.解答:解:原式=+•=+=,当a=1+时,原式===.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?解答:解;(1)根据图象得出:明明离开山脚时间为40分钟爬得最高,爬了600米;(2)爬山8分钟和30分钟时进行休息,分别休息了(10﹣8)=2(分钟)和35﹣30=5(分钟);(3)爬山第30分钟到第40分钟,爬了600﹣400=200(米);(4)下山时,平均速度是:=30米/秒.(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.四、解答题(21,22,23每小题8分,24题10分,25题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.解答:解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣因为这个解是正数,所以﹣>0,即a<﹣1.又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3.所以a的取值范围是a<﹣1且a≠﹣3.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.解答:解:(1)根据题意得:8+1.8(x﹣3)=1.8x+2.6;(2)1.8x+2.6=14,x=6.∴坐出租车到少年科技馆距离大于6公里,车费够.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.专题:计算题.分析:(1)利用描点法画函数图象;(2)根据图象写出直线与坐标轴的交点坐标;(3)根据三角形面积根式计算.解答:解:(1)当x=0时,y=3;当y=0时,x=,描点如图:(2)函数图象与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3);(3)此函数的图象与坐标轴围成的三角形的面积=×3×=.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.解答:解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2解答:解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,由题意得:12x+10y+8(10﹣x﹣y)=100∴y=10﹣2x.(2)10﹣x﹣y=10﹣x﹣(10﹣2x)=x故装C种车也为x 辆.∴解得2≤x≤4.x为整数,∴x=2,3,4故车辆有3种安排方案,方案如下:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车.(3)设销售利润为W(万元),则W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400∴W是x的一次函数,且x增大时,W减少,∴x=2时,W max=400﹣28×2=344(万元).参与本试卷答题和审题的老师有:sks;lanchong;星期八;HJJ;zhjh;weibo;gsls;438011;Liuzhx;gbl210;lk;137-hui;孙廷茂;wdxwwzy;马兴田;733599;sd2011;lanyan;csiya;蓝月梦;nhx600;lantin(排名不分先后)菁优网2014年3月17日。
八年级数学下册第一次月考试卷一、选择题(每题4分,共40分)1.下列不等式中,是一元一次不等式的是()。
A. x + 3 > 0B. x^2 - 4 > 0C. xy > 1D. |x| - 1 < 0(虽然含绝对值,但可转化为两个一元一次不等式组求解)答案:A、D(若考虑D可转化为两个一元一次不等式则选A、D,若严格按照一元一次不等式定义则只选A)2.若 a > b,则下列不等式一定成立的是()。
A. a + c < b + cB. a - c > b - dC. ac > bc(c为正数时成立,c为负数或0时不成立)D. a/c > b/c(c为正数时成立,c为负数时不成立)答案:此题无正确答案(或根据题目要求,若必须选一个最接近的,可以讨论,但通常这种题目应确保有唯一正确答案)3.下列图形中,是轴对称图形但不是中心对称图形的是()。
A. 等边三角形B. 平行四边形C. 正方形D. 圆答案:A4.若关于 x 的一元一次不等式组 { x - a > 0, 3 - 2x > -1 } 的解集为 x < 2,则 a 的取值范围是()。
A. a ≤ 2B. a < 2C. a = 2D. a > 2答案:B5.下列计算正确的是()。
A. 3a + 2b = 5abB. 5a2 = 3C. 7a + a = 7a^2D. -2(a - b) = -2a + 2b答案:D6.若 |x - 3| + |x + 2| 的最小值为 a,则 a =()。
A. 1B. 3C. 5D. 6答案:C(考虑数轴上点x到-2和3的距离之和最小)7.下列多项式能用完全平方公式分解的是()。
A. x^2 - 4B. x^2 + 4x - 4C. x^2 + 4x + 16D. x^2 - 4x + 4答案:D8.在平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为()。
2014---2015学年度第二学期阶段性学业水平检测八年级数学试题(第一次月考)一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A .150B .被抽取的150名考生C .被抽取的150名考生的中考数学成绩D .我市2013年中考数学成绩3.下列式子一定是二次根式的是( ) A.2--x B.x C.22+x D.22-x 4.下列运算正确的是( )A .B .C .D .5.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .30x =4015x +B .3015x -=40xC .30x =4015x -D .3015x +=40x6.一个正方形和两个等边三角形的位置如图所示,若∠3 = 50°,则∠1+∠2 =( ) A .90° B .100° C .130° D .180°7.如图,在平行四边形ABCD 中,AB=3cm , BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( )A .1cm <OA <4cmB .2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm8.分式方程)1)(1(11+-=--x x m x x 有增根,则m 的值为( ) A .0和2 B .1 C .1和-2 D .2二、填空题9.若31=a b ,则a a b =+ .10.将一批数据分成5组,列出分布表,其中第一组与第五组的频率分别是0.1、0.2,第二与y yx y x y=----2233x y x y +=+22x y x y x y+=++221y x x y x y+=--第6题图第7题图第四组的频率之和是0.5,那么第三组的频率是 .13.若式子6-x 在实数范围内有意义,则x 的取值范围是 .[来源:21世纪教育网] 15.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=140°,则∠AOE 的大小为 .16.对于非零的两个实数a 、b ,规定a ⊙b a b 11-=.例如2⊙31213-=.如果1⊙(x+1)=0,那么x 的值为 .17.已知x 为整数,且分式1)1(22-+x x 的值为整数,则x 可取的所有值为 .18.如图,△AOB 为等边三角形,点B 的坐标为(-4,0),过点C (4,0)作直线l 交AO 于D ,交AB 于E ,点E 在某反比例函数图象上,当△ADE 和△DCO 的面积相等时,那么该反比例函数的解析式为=y . 三、解答题21.计算:(1)12218+-(2)25341122÷⨯22.先化简,再求值:21--x x ÷(232-++x x ),然后从不等式组⎩⎨⎧-≥≤-2202x x 的解集中,选取一个你认为符合题意的整数x 的值代入求值.23.某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A .读普通高中; B .读职业高中; C .直接进入社会就业; D .其它)进行数据统计,并绘制了两幅不完整的统计图(a )、(b ). 请问:(1)该县共调查了 名初中毕业生; (2)将两幅统计图中不完整的部分补充完整;(3)若该县2013年初三毕业生共有3105⨯人,请估计该县今年的初三毕业生中读普通高中的学生人数24.y 是x 的反比例函数,且当x=4时, y=3. (1) 写出y 与x 的函数关系式;(2)画出函数的图象,并根据图像写出当x<-2时y 的取 值范围.xO25.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2 班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐 款”提出一个用分式方程解决的问题,并写出解题过程.27.如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A(-2,-5),C(5,n),交y 轴于点B ,交x 轴于点D . 21世纪教育网版权所有(1)求反比例函数x m y =和一次函数b kx y +=的表达式; (2)当x 取何值时,(3) 连接OA ,OC .求△AOC 的面积.29.如图,正方形ABCD和正方形CEFG各有两个顶点在坐标轴上,其中A(0,1),B(2,0),E、F两点同在x轴上,双曲线y=kx(k>0)经过边AD的中点P和边CE的一点Q.(1)求该双曲线所表示的函数关系式;(2)探索点Q是否恰为CE的中点?请说明理由.30.已知直线12y x=与双曲线(0)ky kx=>交于A B,两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(0)ky kx=>上一点C的纵坐标为8,求AOC△的面积;(3)过原点O的另一条直线l交双曲线(0)ky kx=>于P Q,由点A B P Q,,,为顶点组成的四边形面积为24,求点P31.如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)点P在何处时,四边形AECF是矩形.说明理由;(2)当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形,.。
陶乐中学2014-2015学年度第二学期八年级数学三月份考试卷一、选择题(每题只有一个答案,每小题3分,共30分) 1. 如图字母B 所代表的正方形的面积是 ( ) 。
A. 12 B. 13 C. 144 D. 1942. 在15,61,211,40中最简二次根式的个数是( )A. 1个B. 2个C. 3个D. 4个 3. 下列几组数中,不能作为直角三角形三边长度是( )。
A. a=7, b=24, c=25 B. a=1.5, b=2, c=2.5 C. a=32, b=2, c=45D. a=15, b=8, c=17 4.下列二次根式中,与3能合并的是( ) A .24 B .32 C .96D .435. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( )A. 25B. 12.5C. 9D. 8.5 6.下列计算正确的是()A3232--=-- B .a a 3313= C .a a =33D .a a 333= 7. 如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A. 12米 B. 13 C. 14米 D. 15米 8.下列计算正确的是( ) A .0(2)0-=B .239-=- C.3= D=9.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元B 、225a 元C 、150a 元D 、300a 元10. 已知01b 2a =-++,那么2007)b a (+的值为( ).A 、-1B 、1C 、20073D 、20073- 二、填空题(每题3分,共24分).11. 当x_______时,式子52-x 有意义。
10.已知一个Rt △的两边长分别为3和4,则第三边长的平方是 12.实数a 在数轴上的位置如图所示,化简||()a a -+-=122________13. 在Rt △ABC 中,∠C=90°(1)若a=5,b=12,则c=____;(2)若b=8,c=17, 则S △ABC = 。
S 3S 2
S 1C
B A 2014—2015学年度第二学期
八年级数学 第一次月考复习(一)
考试时间:100分 总分:120分
班级:____________ 姓名:____________ 分数:____________ 一.选择题(共10小题,每小题3分,满分30分)
1.下列根式中属最简二次根式的是( )
A
B
C
D
2.以下各组数为三角形的三条边长,其中能作成直角三角形的是 ( )
A .2,3,4
B .4,5,6
C .1,2,3
D .2,2,4 3.若b b b -3962=+-,则b 的值为( )
A .0
B .0或1
C .b ≤3
D .b ≥3
4
是整数,则正整数n 的最小值是( )
A .2
B .3
C .4
D .5 5
=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x
D. 2x ≥
6. 等腰直角三角形的斜边长为a ,则其直角边为( )
A 22a B.a 2 C.2a
D.
a 4
2
7. 化简
6
1
51+的结果为( ) A .
3011 B .33030 C .30
330 D .1130 8、等边三角形的边长为2,则该三角形的面积为( ) A
:
::3 9.下列计算错误..
的是 ( ) A
B
C
= D
.3=
10
.已知1
a a
+
=1a a -的值为( )
A
.± B .8 C
. D .6
二.填空题(本大题6小题,每小题4分,共24分)
11、如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为123,,S S S ,且
1234,8,S S S ===则
13.某次的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是______米.
14.已知a+b =-3,ab =2,
= ;
15.要在一个长方体中放入一细直木条,现知长方体的长为2,则放入木盒的细
木条最大长度为 ________。
16、如图,直线l 过正方形ABCD 的顶点B ,点A 、C 到直线l
的距离 分别是1和2,则正方形的边长是 .
三.解答题(一)(本大题3小题,每小题6分,共18分) 17.计算题:
(1) (2
18.计算题: (1)- (2)(3+2)(3-2)-|1-2|.
A B
C
D
l
1
2
19.计算:
(1
)22
2)(2
-(2)()()2014
2013
2
5
2
5+
∙
-
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.若8
a,小数部分是b,求2ab-b2的值.
21.化简求值:2a(a+b)-(a+b)2,其中a
b
五.解答题(三)(本大题3小题,每小题9分,共27分)
23.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°。
(1)求∠BAC的度数。
(2)若AC=2,求AD的长。
24、小宇手里有一张直角三角形纸片ABC,他无意中将直角边AC折叠了一下,恰好使AC落在斜边AB 上,且C点与E点重合,(如图)小宇经过测量得知两直角边AC=6cm,BC=8cm,他想用所学知识求出CD 的长,你能帮他吗?
A
E
B
2014—2015学年度第二学期
八年级数学 第一次月考复习(二)
考试时间:100分 总分:120分
班级:____________ 姓名:____________ 分数:____________ 一.选择题(共10小题,每小题3分,满分30分) 1
A .x ≠3
B .x <3
C .x >3
D .x ≥3 2.下列计算错误..
的是 ( ) A
B
C
= D
.3= 3. 下列二次根式,不能与12合并的是( )
A.48
B.18
C.3
1
1 D.75- 4.图中字母所代表的正方形的面积为144的选项为( )
A B C D
5.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cm 6.如下图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m , 如果在楼梯上铺地毯,那么至少需要地毯( )
A.5m
B.6m
C.7m
D.8m 7. 若最简二次根式a a 241-+与是同类二次根式,则a 的值为( )
A.43-
=a B.3
4
=a C.1=a D.1-=a 8.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和 小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离
为( )
A .600米 B. 800米 C. 1000米 D. 1400米
9. 已知两条线段长分别为,,75那么能与它们组成直角三角形的第三条线段长是( )
A.
2 B. 32 C. 12 D.322或
10.35
==
) A .2 B .1 C .4 D .3 二.填空题(本大题6小题,每小题4分,共24分)
11.计算:825-= .
12.比较大小:--(填“>”或“<”=).
13.在 Rt △ABC 中,斜边AB=2,则AB 2
+BC 2
+AC 2
= 14. 直角三角形的两条直角边长分别为 、,则这个直角三角形的斜边长为________,
面积为________ .
15.观察下列各式:①√1+1/3=2√1/ 3;②√2+1/ 4=3√1/4;③√3+1/5=4√1/5.....
请用含n (n ≥1)的式子写出你的猜想的规律:_________
16.如图所示,大正方形的面积是13,小正方形的面积为1,直角三角形的较短边为
y ,较长边为x ,那么(x+y)2
的值为________
三.解答题(一)(本大题3小题,每小题6分,共18分) 17. 计算:(1(2
18.
19.
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.已知x=2-√3,y=2+√3,求下列代数式的值:
(1)x2+2xy+y2(2)x2-y2
21.直角三角形的三边分别为a-b,a,a+b,其周长为24cm,求三角形的三边和面积.
22.在平静的湖面上,有一支红莲,高出水面0.5米,一阵风吹来,红连吹到一边,花朵齐及水面,已知红莲移动的水平距离为1.5米,求水深和红连的高度.(6) 五.解答题(三)(本大题3小题,每小题9分,共27分)
2
2
2
)
(1)(
x x
x
+
+-
.
24.如图,长方形ABCD中,折痕为EF,将此长方形沿EF折叠,使点B与点D重合,已知AB=3cm ,AD =9cm .求EF的长。
25.如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,AD=
16。
(1)求CD、BD的长;
(2)求证:△ABC是直角三角形。
D
C
A
2014-2015学年八年级下册数学第一次月考复习试卷
(时间:90分钟 满分:100分)班级: 姓名:
考号:
21.(6分)已知:x=1
3+,y=1
3-,求下列各式的值(1)x2+2xy+y2(2) x2-y2
23.(8分)如图,在△ABC中,∠C=30°,∠BAC=105°,AD⊥BC,垂足为D,AC=2cm,求BC的长(答案可带根号)。