浅谈磨削裂纹
- 格式:pdf
- 大小:111.29 KB
- 文档页数:3
图1 细线状裂纹
图2 网状裂纹
感谢:浙江双环传动机械股份有限公司郝丰林、袁志峰、刘生磊、刘晓龄、廖林林、王美峰、马辉、闫瑞楠、王甲,上汽集团楚大风、张亚,上海ZF钱蔚灵、宋连军,重汽覃波,中船重
图3 齿顶部金相组织
图4 节圆处金相组织
量、大小、分布情况确定,具体
说明如表1所示。
残留奥氏体等级按其含量多
少确定,马氏体等级按其针体大
小确定,具体说明如表2所示。
通过对故障齿轮进行金相、
性能分析,齿轮金相组织及热处
图5 裂纹齿轮金相
图6 导致磨削裂纹的鱼骨图分析。
中频淬火后丝杆为什么会有磨削裂纹在机械加工制造中,丝杆是一种常用的机械元件,常用于传递和变换旋转运动的装置。
它主要由导程和螺纹两部分组成,螺纹是丝杆最关键的部分,难度也是最大的。
针对丝杆的性能要求,常常采用中频淬火工艺来提高其硬度和耐磨性。
然而,中频淬火后的丝杆在磨削过程中很容易出现磨削裂纹,严重影响产品的性能和使用寿命。
为什么会发生这种情况呢?一、淬火过程中的应力中频淬火工艺是一种能够快速提高金属件硬度的工艺,其实原理是通过感应加热,使钢材表面快速升温,再用冷却剂快速冷却,使钢材强化。
不过,淬火过程中由于材料的收缩率和类型等因素会产生一定的应力,这种应力可能会导致丝杆中存在微小缺陷,例如孔、裂纹,通过淬火工艺中应力的作用,会使得这些缺陷进一步扩大,形成裂纹。
二、丝杆材质的影响丝杆由于加工工艺的原因会存在不同的材质,例如碳钢、合金钢等。
而不同的材质具有不同的力学性能,也会因此产生不同的磨削裂纹,如果丝杆的材质硬度相对较低,在磨削过程中,很容易因为磨削力过大产生裂纹。
三、磨削加工过程中的影响丝杆磨削加工是一种将钢材表面去掉一部分金属,实现丝杆形状、尺寸、加工精度等一系列工艺过程。
但在磨削过程中,由于磨粒和磨轮的特殊形状和硬度,会在钢材表面产生不同的热影响区,如淬火带、回火区和碳化区等。
而磨削力会使得由淬火带到表面产生的应力集中,进一步扩大可能存在的缺陷,导致表面磨削裂纹。
总之,中频淬火后丝杆为什么会有磨削裂纹很大程度上是由制造工艺和材质的影响所决定的,而在制造时这些影响必须得到严格的控制,例如掌握合适的淬火工艺和钢材材质,合理处理磨削过程中产生的应力等。
只有这样丝杆才能在性能和使用寿命等方面得到充分的保障。
磨削烧伤裂纹的产生及控制文章简述了磨齿的原理和方法,主要研究磨削裂纹的形态及产生裂纹的原因,及提出提高含碳量从标准的0.8%~0.9%提高到1%~2%。
并从热处理和冷加工方面,如工艺参数、冷却介质、工作环境,磨具等方面提出一系列防止磨齿裂纹的措施。
标签:磨削烧伤;裂纹;塑性变形;磨削余量;磨削用量磨齿是齿轮精加工的一种方法,磨齿不仅能纠正齿轮预加工产生的各项误差,而且能加工淬硬的齿轮,加工精度高。
1 磨齿的原理和方法锥砂轮磨齿原理。
在这里我们提到的都是指外齿轮,锥砂轮磨齿是按照齿轮和齿条的啮合原理进行的。
砂轮相当于假象齿条上的一个齿,齿轮的节圆沿齿条的节线作纯滚动。
被磨齿轮装在头架的主轴上,沿节线一面作横向往复移动,一面通过传动机构使被磨齿轮随主轴绕自身轴线作反复转动,被磨齿轮的移动和转动必须保持一定的相对关系,齿轮旋转一转,其移动距离应等于被磨齿轮节圆的圆周长,这样就可以磨出要求的渐开线齿形。
在磨斜齿轮时,砂轮和齿轮的相对运动相当于斜齿条的啮合原理进行的。
斜齿条的倾斜角等于斜齿轮的螺旋角,砂轮往复运动的斜线和齿轮轴线之间的夹角也应等于这一倾斜角;砂轮锥面的角度应等于斜齿条的法向齿形角。
磨完一个齿槽后,应进行分度磨下一个齿槽,工件的分度运动是当工件从一端展成到另一端时,进行一次分度,也可以进行双行程分度,即当工件展成一个往复后,进行一次分度。
为了磨出齿轮整个宽度上的齿面,砂轮还必须沿齿轮轴向进行往复运动。
2 磨齿烧伤裂纹的产生我们公司使用从德国引进的数控磨齿机,这种磨齿机的生产效率低于其他磨齿机,可以同时磨削轮齿的两面,砂轮刚性好,磨削用量也较大,所以难免产生磨削烧伤、裂纹。
这两种常见现象均属于磨齿工序的表面质量问题,它是由齿轮的材料、热处理的方式和磨削三个方面的原因所产生的现象。
从表面上看这一问题与生产效率相矛盾,然而没有质量就没有效益,这是我们都清楚的,众所周知的。
所以它是对应统一的关系。
磨齿过程中,裂纹主要是金属晶体产生塑性变形。
CF250齿圈端面磨削裂纹原因分析李加荣(江苏奔航齿轮有限公司江苏淮安223001)摘要:本文通过对CF250齿圈端面磨削裂纹的产生原因的分析,探讨了端面磨削裂纹产生与磨削工艺、磨轮材料及热处理工艺的关系,并提出了解决办法。
2009年12月12日我公司在磨CF250.37.203齿圈(如下图)内止口时有21件端面发现严重的裂纹,有个别零件甚至有剥落现象。
本批质量问题的出现,数量大,情况严重,引起了全公司上下的一致重视。
为此,我们组织相关人员对此现象进行分析。
一、产品简图如下生产工艺如下:1、热处理工艺热处理加工采用渗碳淬火工艺,具体工艺参数如下:设备:UBE600型可控气氛多用炉渗碳淬火渗碳工艺:920℃碳势Cp1.05,4小时,920℃碳势Cp0.8,0.5小时,降温至810℃保温30分钟(降温及淬火保温段碳势Cp=0.8)淬入100℃分级淬火油40分钟清洗,低温回火烘箱,CF250齿圈简图 180℃±10℃保温3小时。
T处为为磨加工面2、磨加工工艺设备:M2120砂轮型号:WA60AVPDA 125X45X50砂轮转速:6000r/min零件转速:500r/min进刀量:0.05mm冷却液种类:M-2磨削液冷却液冲击方向:距磨削点处约20mm的齿轮内表面二、相关检验结果1、产品材料:20CrMnTi具体成份如下表:从实物金相组织看,表面有少量未转变的淬火马氏体,说明回火不太充分。
3、我们还对对渗碳淬火后磨前零件进行解剖检查,未发现裂纹,其金相结果同产生裂纹的实物检查,对热前零件进行检查,也未发现原材料中有锻造缺陷。
三、检查结果分析:1、从原材料的检查结果看,材料符合要求,也未发现锻造问题;2、从对热后磨前的零件检查结果看,没有产生淬火裂纹;3、从硬度检查及金相检查结果看,所得硬度和金相组织均很优良,说明热处理渗碳淬火工艺完全符合要求,但回火不太充分,可能与所用回火烘箱密封性能差有关。
万方数据第5期周志雄等:陶瓷材料磨削裂纹成因分析一109一区时,作用其上的载荷也逐渐减少,在这个显微塑变及其产生的残余应力的作用下,沿径向裂纹的横向出现横向裂纹,并延伸至材料表面形成裂纹区的断裂从基本剥落【2]。
2.3疲劳裂纹的扩展动力对于弹塑性陶瓷材料而言,疲劳裂纹的扩展不是一个连续过程,而是一个钝化启裂与稳定扩展交替进行的过程。
疲劳裂纹的扩展,实际上是裂尖局部区域即断裂过程区内材料的不断分离。
因此,它首先必须满足切断裂尖原子或分子结合的条件,另外,裂纹的稳定扩展除受裂尖前缘局部条件控制外,还受裂尖前端耗散区能流的全局状态控制。
随着裂纹的扩展,一些输入能量转变成储存在弹性卸载区内的残余应力能;一些因发热和材料的再组织而被耗散;其余则转变为材料的表面能。
2.4磨削热裂纹的扩展动力由于陶瓷的散热能力差,即使磨削时使用冷却液进行冷却;磨削区的显微塑变和摩擦会在磨削表面引起很高的磨削温度。
由此在表面产生的热压应力为毋,,且有毋,=竺{掣。
当这p部分热影响区的表面冷却,不可恢复的表面塑性变形将产生残余拉应力∞r,以rm盯sr如果达到材料的断裂极限,磨削表面就产生热裂纹。
该微裂纹与磨痕方向没有确定的取向关系。
裂纹的主要形式有:表面尺寸较小,向次表面延伸较深的压痕效应;表面尺寸较大的细长网状热裂纹;沿晶粒扩展的晶界间隙裂纹;不连续显微塑变裂纹。
3实验结果及分析王西彬等在常用磨削用量条件下得到以下SEM观测结果【4】:3.12Y—PSz的磨削热裂纹(如图2)部分稳定相变增韧z曲:陶瓷2Y—PSZ的晶粒细小,含有较高的亚稳态四方相t’(c+£’含量达45%),具有良好的增韧效果,在实验陶瓷中断裂韧性‰值较大,强度盯s较高,磨削表面平整光滑,为典型的显微塑变磨削特征。
没有发现明显的径向裂纹和不连续显微塑变裂纹。
当磨削速度提高到30m/s时。
磨削温度升高,在光整的磨痕周围会出现如图所示的裂纹,是一种典型的磨削热裂纹。
整体硬质合金刀具磨削裂纹的原因分析及其工艺改进1 引言整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。
在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。
而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。
众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。
这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。
这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。
因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。
2 整体硬质合金刀具磨削裂纹的原因分析1.整体硬质合金刀具的磨削加工特点硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。
硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。
因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。
一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。
热处理淬火裂纹和磨削裂纹齿轮生产中常常产生淬火裂纹及磨削裂纹,最终导致产品报废,所以分析研究裂纹产生的原因、影响因素及其克服的办法是重要而有意义的。
1、淬火裂纹1.1 淬火裂纹的类型淬火裂纹的类型,或特征与淬火内应力密切相关(图1)。
图1 淬火裂纹类型及形成裂纹的内应力其中特别应指出的是最为常见的纵向裂纹和横向裂纹。
(1)纵向裂纹(见图中的左上)这类裂纹主要发生在淬透工件,以组织应力为主在表面形成拉应力,而且三向应力中切向应力大于轴向应力(图2)(2)横向裂纹(见图中的左上第二图)这类裂纹主要发生在未淬透工件,最终在表面形成压应力,而在层下相应存在一定的拉应力,而且三向应力中轴向应力大于切向应力(图3)1.2 淬火裂纹的裂面特征淬火裂纹的裂痕面无杂色。
水淬时可能有红锈斑,油淬时有油渍。
图3 含ω(C)1%,ω(V)0.2%钢圆柱试样(Ф18mm)自800℃水淬后未淬透的心部大小对残留应力的影响因为淬火裂纹发生在250℃以下(Ms点以下),因而裂痕面不会有氧化。
若裂痕面有氧化或脱碳,则应视为锻造裂纹,或淬火前就存在的裂纹,在淬火后加深、扩大。
1.3 淬火裂纹的影响因素(1)合金元素合金元素的影响见图4。
C、Cr、Mo及Mn元素含量到一定程度即易引起淬火裂纹,P是最强的影响元素。
(2)钢的淬透性图5是钢淬裂倾向与淬透性的关系,即随着淬透性的提高,淬裂倾向增大。
(3)钢的Ms点当钢材的Ms点大于320℃,几乎不产生淬火裂纹(图6),这是因为在比较高的温度发生的马氏体转变立即得到回火,组织应力被降低。
(4)淬火温度通常,淬火温度越高越容易产生裂纹,然而,此现象与淬火深度亦即工件大小有密切的关系。
从图7来分析三种情况:a、第Ⅰ区,小工件淬火温度越高,淬火裂纹越易发生。
这是因为小工件温度越高,心部越容易淬硬,组织应力型占主导,表面拉应力增大。
b、第Ⅱ区,大工件淬火温度越高,越不容易产生淬火裂纹,这是因为对大工件,心部淬不透,所以其温度越高,能淬硬的心部体积增大,硬度提高,使表面压应力降低,相应,过渡区的拉应力也下降。
磨削烧伤1.磨削烧伤的分类磨削时,由于磨削区域的瞬时高温(一般为900 - 1500 C)形成零件层组织发生局部变化,并在表面的某些部分出现氧化变色,这种现象称为磨削烧伤。
磨削烧伤对零件质量性能影响很大,在实际加工过程中应尽量避免。
磨削烧伤有多种不同的分类方法。
根据烧伤外观不同,可分为全面烧伤(整个表面被烧伤)、斑状烧伤(表面上出现分散的烧伤斑点)、均匀线条状烧伤、周期线条状烧伤;按表层显微组织的变化可分为回火烧伤、淬火回火烧伤;还可根据烧伤深度分为浅烧伤(烧伤厚度v 0.05mm)、中等烧伤(烧伤层厚度在0.005~0.01mm 之间)、深度烧伤(烧伤层厚度〉0.01mm)。
在生产中,最常见的是均匀的或周期的线条状烧伤。
由于在磨削烧伤产生时往往伴有表面氧化作用,而在零件表面生成氧化膜。
又因为氧化膜的厚度不同而使其反射光线的干涉状态不同;因此呈现出多种颜色。
所以,人们通常用磨削表面的颜色来判断烧伤的程度。
对钢件来说,随烧伤的加强,颜色一般呈现白、黄、褐、紫、兰(青)的变化。
不同磨削深度下,加工表面的烧伤颜色和氧化膜厚度。
值得注意的是:烧伤颜色仅反映了较严重的烧伤现象,而当零件表面颜色不变时,其表面组织也可能已发生了烧伤变化,这类烧伤通常不易鉴别,所以对零件使用性能危害更大。
目前,人们为了更好地控制烧伤的程度,已根据表面组织的变化时烧伤进行了分级,一般从0-8 共分九级,其中,0级最轻,8级烧伤最严重。
1.烧伤产生机理轴承套圈在磨加工中,由于磨粒对工件的切削、刻划和摩擦作用,使金属表面产生塑性变形,由工件内部金属分子间相对位移产生内摩擦而发热;砂轮切削时,相对于工件的速度很高,与工件表面产生剧烈的外摩擦而发热,又因为每颗磨料的切削都是瞬间的,其热量生成也在瞬间,又不能及时传散,所以在磨削区域的瞬时温度较高,一般可达到800〜1500 C, 如果散热措施不好,很容易造成工件表面的烧伤,也就是在工件的表层(一般有几十微米到击败微米)发生二次淬火及高温回火,破坏了工件表面的组织,肉眼可以看出严重的烧伤。