浅谈磨削裂纹
- 格式:pdf
- 大小:111.29 KB
- 文档页数:3
图1 细线状裂纹
图2 网状裂纹
感谢:浙江双环传动机械股份有限公司郝丰林、袁志峰、刘生磊、刘晓龄、廖林林、王美峰、马辉、闫瑞楠、王甲,上汽集团楚大风、张亚,上海ZF钱蔚灵、宋连军,重汽覃波,中船重
图3 齿顶部金相组织
图4 节圆处金相组织
量、大小、分布情况确定,具体
说明如表1所示。
残留奥氏体等级按其含量多
少确定,马氏体等级按其针体大
小确定,具体说明如表2所示。
通过对故障齿轮进行金相、
性能分析,齿轮金相组织及热处
图5 裂纹齿轮金相
图6 导致磨削裂纹的鱼骨图分析。
中频淬火后丝杆为什么会有磨削裂纹在机械加工制造中,丝杆是一种常用的机械元件,常用于传递和变换旋转运动的装置。
它主要由导程和螺纹两部分组成,螺纹是丝杆最关键的部分,难度也是最大的。
针对丝杆的性能要求,常常采用中频淬火工艺来提高其硬度和耐磨性。
然而,中频淬火后的丝杆在磨削过程中很容易出现磨削裂纹,严重影响产品的性能和使用寿命。
为什么会发生这种情况呢?一、淬火过程中的应力中频淬火工艺是一种能够快速提高金属件硬度的工艺,其实原理是通过感应加热,使钢材表面快速升温,再用冷却剂快速冷却,使钢材强化。
不过,淬火过程中由于材料的收缩率和类型等因素会产生一定的应力,这种应力可能会导致丝杆中存在微小缺陷,例如孔、裂纹,通过淬火工艺中应力的作用,会使得这些缺陷进一步扩大,形成裂纹。
二、丝杆材质的影响丝杆由于加工工艺的原因会存在不同的材质,例如碳钢、合金钢等。
而不同的材质具有不同的力学性能,也会因此产生不同的磨削裂纹,如果丝杆的材质硬度相对较低,在磨削过程中,很容易因为磨削力过大产生裂纹。
三、磨削加工过程中的影响丝杆磨削加工是一种将钢材表面去掉一部分金属,实现丝杆形状、尺寸、加工精度等一系列工艺过程。
但在磨削过程中,由于磨粒和磨轮的特殊形状和硬度,会在钢材表面产生不同的热影响区,如淬火带、回火区和碳化区等。
而磨削力会使得由淬火带到表面产生的应力集中,进一步扩大可能存在的缺陷,导致表面磨削裂纹。
总之,中频淬火后丝杆为什么会有磨削裂纹很大程度上是由制造工艺和材质的影响所决定的,而在制造时这些影响必须得到严格的控制,例如掌握合适的淬火工艺和钢材材质,合理处理磨削过程中产生的应力等。
只有这样丝杆才能在性能和使用寿命等方面得到充分的保障。
磨削烧伤裂纹的产生及控制文章简述了磨齿的原理和方法,主要研究磨削裂纹的形态及产生裂纹的原因,及提出提高含碳量从标准的0.8%~0.9%提高到1%~2%。
并从热处理和冷加工方面,如工艺参数、冷却介质、工作环境,磨具等方面提出一系列防止磨齿裂纹的措施。
标签:磨削烧伤;裂纹;塑性变形;磨削余量;磨削用量磨齿是齿轮精加工的一种方法,磨齿不仅能纠正齿轮预加工产生的各项误差,而且能加工淬硬的齿轮,加工精度高。
1 磨齿的原理和方法锥砂轮磨齿原理。
在这里我们提到的都是指外齿轮,锥砂轮磨齿是按照齿轮和齿条的啮合原理进行的。
砂轮相当于假象齿条上的一个齿,齿轮的节圆沿齿条的节线作纯滚动。
被磨齿轮装在头架的主轴上,沿节线一面作横向往复移动,一面通过传动机构使被磨齿轮随主轴绕自身轴线作反复转动,被磨齿轮的移动和转动必须保持一定的相对关系,齿轮旋转一转,其移动距离应等于被磨齿轮节圆的圆周长,这样就可以磨出要求的渐开线齿形。
在磨斜齿轮时,砂轮和齿轮的相对运动相当于斜齿条的啮合原理进行的。
斜齿条的倾斜角等于斜齿轮的螺旋角,砂轮往复运动的斜线和齿轮轴线之间的夹角也应等于这一倾斜角;砂轮锥面的角度应等于斜齿条的法向齿形角。
磨完一个齿槽后,应进行分度磨下一个齿槽,工件的分度运动是当工件从一端展成到另一端时,进行一次分度,也可以进行双行程分度,即当工件展成一个往复后,进行一次分度。
为了磨出齿轮整个宽度上的齿面,砂轮还必须沿齿轮轴向进行往复运动。
2 磨齿烧伤裂纹的产生我们公司使用从德国引进的数控磨齿机,这种磨齿机的生产效率低于其他磨齿机,可以同时磨削轮齿的两面,砂轮刚性好,磨削用量也较大,所以难免产生磨削烧伤、裂纹。
这两种常见现象均属于磨齿工序的表面质量问题,它是由齿轮的材料、热处理的方式和磨削三个方面的原因所产生的现象。
从表面上看这一问题与生产效率相矛盾,然而没有质量就没有效益,这是我们都清楚的,众所周知的。
所以它是对应统一的关系。
磨齿过程中,裂纹主要是金属晶体产生塑性变形。
CF250齿圈端面磨削裂纹原因分析李加荣(江苏奔航齿轮有限公司江苏淮安223001)摘要:本文通过对CF250齿圈端面磨削裂纹的产生原因的分析,探讨了端面磨削裂纹产生与磨削工艺、磨轮材料及热处理工艺的关系,并提出了解决办法。
2009年12月12日我公司在磨CF250.37.203齿圈(如下图)内止口时有21件端面发现严重的裂纹,有个别零件甚至有剥落现象。
本批质量问题的出现,数量大,情况严重,引起了全公司上下的一致重视。
为此,我们组织相关人员对此现象进行分析。
一、产品简图如下生产工艺如下:1、热处理工艺热处理加工采用渗碳淬火工艺,具体工艺参数如下:设备:UBE600型可控气氛多用炉渗碳淬火渗碳工艺:920℃碳势Cp1.05,4小时,920℃碳势Cp0.8,0.5小时,降温至810℃保温30分钟(降温及淬火保温段碳势Cp=0.8)淬入100℃分级淬火油40分钟清洗,低温回火烘箱,CF250齿圈简图 180℃±10℃保温3小时。
T处为为磨加工面2、磨加工工艺设备:M2120砂轮型号:WA60AVPDA 125X45X50砂轮转速:6000r/min零件转速:500r/min进刀量:0.05mm冷却液种类:M-2磨削液冷却液冲击方向:距磨削点处约20mm的齿轮内表面二、相关检验结果1、产品材料:20CrMnTi具体成份如下表:从实物金相组织看,表面有少量未转变的淬火马氏体,说明回火不太充分。
3、我们还对对渗碳淬火后磨前零件进行解剖检查,未发现裂纹,其金相结果同产生裂纹的实物检查,对热前零件进行检查,也未发现原材料中有锻造缺陷。
三、检查结果分析:1、从原材料的检查结果看,材料符合要求,也未发现锻造问题;2、从对热后磨前的零件检查结果看,没有产生淬火裂纹;3、从硬度检查及金相检查结果看,所得硬度和金相组织均很优良,说明热处理渗碳淬火工艺完全符合要求,但回火不太充分,可能与所用回火烘箱密封性能差有关。
万方数据第5期周志雄等:陶瓷材料磨削裂纹成因分析一109一区时,作用其上的载荷也逐渐减少,在这个显微塑变及其产生的残余应力的作用下,沿径向裂纹的横向出现横向裂纹,并延伸至材料表面形成裂纹区的断裂从基本剥落【2]。
2.3疲劳裂纹的扩展动力对于弹塑性陶瓷材料而言,疲劳裂纹的扩展不是一个连续过程,而是一个钝化启裂与稳定扩展交替进行的过程。
疲劳裂纹的扩展,实际上是裂尖局部区域即断裂过程区内材料的不断分离。
因此,它首先必须满足切断裂尖原子或分子结合的条件,另外,裂纹的稳定扩展除受裂尖前缘局部条件控制外,还受裂尖前端耗散区能流的全局状态控制。
随着裂纹的扩展,一些输入能量转变成储存在弹性卸载区内的残余应力能;一些因发热和材料的再组织而被耗散;其余则转变为材料的表面能。
2.4磨削热裂纹的扩展动力由于陶瓷的散热能力差,即使磨削时使用冷却液进行冷却;磨削区的显微塑变和摩擦会在磨削表面引起很高的磨削温度。
由此在表面产生的热压应力为毋,,且有毋,=竺{掣。
当这p部分热影响区的表面冷却,不可恢复的表面塑性变形将产生残余拉应力∞r,以rm盯sr如果达到材料的断裂极限,磨削表面就产生热裂纹。
该微裂纹与磨痕方向没有确定的取向关系。
裂纹的主要形式有:表面尺寸较小,向次表面延伸较深的压痕效应;表面尺寸较大的细长网状热裂纹;沿晶粒扩展的晶界间隙裂纹;不连续显微塑变裂纹。
3实验结果及分析王西彬等在常用磨削用量条件下得到以下SEM观测结果【4】:3.12Y—PSz的磨削热裂纹(如图2)部分稳定相变增韧z曲:陶瓷2Y—PSZ的晶粒细小,含有较高的亚稳态四方相t’(c+£’含量达45%),具有良好的增韧效果,在实验陶瓷中断裂韧性‰值较大,强度盯s较高,磨削表面平整光滑,为典型的显微塑变磨削特征。
没有发现明显的径向裂纹和不连续显微塑变裂纹。
当磨削速度提高到30m/s时。
磨削温度升高,在光整的磨痕周围会出现如图所示的裂纹,是一种典型的磨削热裂纹。
整体硬质合金刀具磨削裂纹的原因分析及其工艺改进1 引言整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。
在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。
而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。
众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。
这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。
这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。
因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。
2 整体硬质合金刀具磨削裂纹的原因分析1.整体硬质合金刀具的磨削加工特点硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。
硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。
因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。
一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。
热处理淬火裂纹和磨削裂纹齿轮生产中常常产生淬火裂纹及磨削裂纹,最终导致产品报废,所以分析研究裂纹产生的原因、影响因素及其克服的办法是重要而有意义的。
1、淬火裂纹1.1 淬火裂纹的类型淬火裂纹的类型,或特征与淬火内应力密切相关(图1)。
图1 淬火裂纹类型及形成裂纹的内应力其中特别应指出的是最为常见的纵向裂纹和横向裂纹。
(1)纵向裂纹(见图中的左上)这类裂纹主要发生在淬透工件,以组织应力为主在表面形成拉应力,而且三向应力中切向应力大于轴向应力(图2)(2)横向裂纹(见图中的左上第二图)这类裂纹主要发生在未淬透工件,最终在表面形成压应力,而在层下相应存在一定的拉应力,而且三向应力中轴向应力大于切向应力(图3)1.2 淬火裂纹的裂面特征淬火裂纹的裂痕面无杂色。
水淬时可能有红锈斑,油淬时有油渍。
图3 含ω(C)1%,ω(V)0.2%钢圆柱试样(Ф18mm)自800℃水淬后未淬透的心部大小对残留应力的影响因为淬火裂纹发生在250℃以下(Ms点以下),因而裂痕面不会有氧化。
若裂痕面有氧化或脱碳,则应视为锻造裂纹,或淬火前就存在的裂纹,在淬火后加深、扩大。
1.3 淬火裂纹的影响因素(1)合金元素合金元素的影响见图4。
C、Cr、Mo及Mn元素含量到一定程度即易引起淬火裂纹,P是最强的影响元素。
(2)钢的淬透性图5是钢淬裂倾向与淬透性的关系,即随着淬透性的提高,淬裂倾向增大。
(3)钢的Ms点当钢材的Ms点大于320℃,几乎不产生淬火裂纹(图6),这是因为在比较高的温度发生的马氏体转变立即得到回火,组织应力被降低。
(4)淬火温度通常,淬火温度越高越容易产生裂纹,然而,此现象与淬火深度亦即工件大小有密切的关系。
从图7来分析三种情况:a、第Ⅰ区,小工件淬火温度越高,淬火裂纹越易发生。
这是因为小工件温度越高,心部越容易淬硬,组织应力型占主导,表面拉应力增大。
b、第Ⅱ区,大工件淬火温度越高,越不容易产生淬火裂纹,这是因为对大工件,心部淬不透,所以其温度越高,能淬硬的心部体积增大,硬度提高,使表面压应力降低,相应,过渡区的拉应力也下降。
磨削烧伤1.磨削烧伤的分类磨削时,由于磨削区域的瞬时高温(一般为900 - 1500 C)形成零件层组织发生局部变化,并在表面的某些部分出现氧化变色,这种现象称为磨削烧伤。
磨削烧伤对零件质量性能影响很大,在实际加工过程中应尽量避免。
磨削烧伤有多种不同的分类方法。
根据烧伤外观不同,可分为全面烧伤(整个表面被烧伤)、斑状烧伤(表面上出现分散的烧伤斑点)、均匀线条状烧伤、周期线条状烧伤;按表层显微组织的变化可分为回火烧伤、淬火回火烧伤;还可根据烧伤深度分为浅烧伤(烧伤厚度v 0.05mm)、中等烧伤(烧伤层厚度在0.005~0.01mm 之间)、深度烧伤(烧伤层厚度〉0.01mm)。
在生产中,最常见的是均匀的或周期的线条状烧伤。
由于在磨削烧伤产生时往往伴有表面氧化作用,而在零件表面生成氧化膜。
又因为氧化膜的厚度不同而使其反射光线的干涉状态不同;因此呈现出多种颜色。
所以,人们通常用磨削表面的颜色来判断烧伤的程度。
对钢件来说,随烧伤的加强,颜色一般呈现白、黄、褐、紫、兰(青)的变化。
不同磨削深度下,加工表面的烧伤颜色和氧化膜厚度。
值得注意的是:烧伤颜色仅反映了较严重的烧伤现象,而当零件表面颜色不变时,其表面组织也可能已发生了烧伤变化,这类烧伤通常不易鉴别,所以对零件使用性能危害更大。
目前,人们为了更好地控制烧伤的程度,已根据表面组织的变化时烧伤进行了分级,一般从0-8 共分九级,其中,0级最轻,8级烧伤最严重。
1.烧伤产生机理轴承套圈在磨加工中,由于磨粒对工件的切削、刻划和摩擦作用,使金属表面产生塑性变形,由工件内部金属分子间相对位移产生内摩擦而发热;砂轮切削时,相对于工件的速度很高,与工件表面产生剧烈的外摩擦而发热,又因为每颗磨料的切削都是瞬间的,其热量生成也在瞬间,又不能及时传散,所以在磨削区域的瞬时温度较高,一般可达到800〜1500 C, 如果散热措施不好,很容易造成工件表面的烧伤,也就是在工件的表层(一般有几十微米到击败微米)发生二次淬火及高温回火,破坏了工件表面的组织,肉眼可以看出严重的烧伤。
钛合金的磨削裂纹及抑制措施
钛合金是一种比较优质的金属,具有高强度、良好的耐腐蚀性和抗疲劳性,因此在航空航天/船舶/医疗仪器等行业中备受青睐。
由于具有良好的性能,钛合金的磨削加工难度也会增加,其中的磨削裂纹也是比较大的问题。
如果希望钛合金磨削工件不产生磨削裂纹,就必须采取相应措施来抑制它们。
在采用措施之前,应先明确工件材料、磨削主轴转速、磨削机床精度、磨削参数,以及磨削工件的尺寸及其形状,确定磨削工具、磨料粒度及公差精度。
1. 根据磨削的具体条件和需求,在设计时要选择合适的刃口,通常采用R,S,B刃口,钛合金的刃口尺寸应更小一些,以减少磨削裂纹的发生,且刃口的角度应大于20度才行。
2. 为了提高磨削效率,通常在磨削工件的过程中,会采用一些冷却液,以使磨损均匀,但一定要注意操作,使用低温冷却,调节好冷却液流速和温度,以减轻磨削裂纹的发生。
3. 注意加工准备,选择合适的冷却液,磨料细度,磨料分散度及磨削参数,如冷却液温度低,管道设备畅通无阻等。
4. 合理选择磨料类型。
对于钛合金磨削,应尽可能采用硬质磨料,如陶瓷磨料,而磨料的粒度应根据实际情况,结合磨削机床的精度及工件表面粗糙度来选择,有利于降低晶间流动速度,减少磨削裂纹的发生。
5. 适当的磨削参数设置。
磨削刀具的切入深度与磨削速度对磨削裂纹左右着甚大的作用,在加工过程中若切入深度过大会造成刀具失去刃口,切屑量增加,使切口加热,磨削裂纹容易出现,削减金属较深,应尽可能将其设置的值设小。
以上就是钛合金的磨削裂纹及其抑制措施的具体内容。
钛合金的磨削裂纹问题,可以利用以上抑制措施来有效抑制,以有效保证部件精度及品质。
渗碳淬火齿轮磨削裂纹产生原因及预防方法摘要:针对20CrMnTi渗碳淬火齿轮在磨齿过程中容易产生磨削裂纹而报废的现象,通过对其热处理过程中的组织变化,表层应力的消除方法,机加工过程中的磨削参数选择、砂轮的选择、磨削液的选择等进行分析,提出了防止磨削裂纹产生的措施.关键字:魔削裂纹磨削热组织结构磨削条件矿山机械上使用的重载齿轮的制造关键在于如何提高其承载能力及表面耐磨性,而采用高精度、硬齿面、齿廓和齿形修形的齿轮是提高齿轮承载能力及表面耐磨性的有效措施。
磨齿是有可能使上述措施同时实现的重要工艺手段。
在磨齿轮工艺中长期存在一个严重问题-裂纹,磨削裂纹是指发生在磨削面上,深度较浅,并且深度基本一致,方向垂直于齿向,即垂直于砂轮往复运动的方向,规则排列的条状裂纹,用肉眼便可观察到。
对渗碳淬火钢齿轮磨削裂纹的产生原因及防治措施进行研究十分必要。
一、裂纹产生的原因及防止其产生的有效措施1.1 裂纹产生的原因(1)齿轮热处理的质量是造成磨裂的内在因素磨削裂纹产生的根本原因是磨削热。
齿轮在渗碳过程中,其渗层组织中容易形成网状碳化物或过多的游离碳化物。
由于各物质硬度都极高,在磨削过程中,砂轮和齿面接触的瞬间,磨削区的温度很高,可能出现局部过热倾向和发生表面回火,使金相组织发生变化。
渗碳淬火齿轮,因磨削裂纹而报废在许多工厂都有发生,有时甚至很严重。
几年来国家重点工程仪征涤纶设备制造中,有较大批量精度要求高的渗碳淬火齿轮需加工,解决磨齿裂纹成为生产关键。
为此我厂组织冷、热工艺及测试人员共同攻关,并参阅有关文献经过多次试验,对磨裂的原因有了初步理性认识并采取了相应的工艺改进措施,终于解决了。
根据俄罗斯学者试验,当砂轮速度v=18mPs,磨削深度t=0.05mm时,磨削区的温度达900~1100℃,所以渗碳淬硬的齿面在磨削时,表面一薄层内的回火马氏体组织变成了较高温度(300℃以上)回火组织。
马氏体析出碳化物,残留奥氏体进一步分解为回火马氏体或回火屈氏体,在随后的冷却过程中不再发生组织变化。
2012年1月内蒙古科技与经济Januar y 2012 第2期总第252期Inner M o ngo lia Science T echnolo gy &Economy N o .2T o tal N o .252传动齿轮磨削裂纹原因分析X蔡 红(内蒙古第一机械集团有限公司,内蒙古包头 014030) 摘 要:本文对车辆传动齿轮开裂件进行宏观分析、硬度检测、化学成分分析、显微组织及裂纹分析,探讨裂纹形成机理,就其裂纹形成原因提出分析意见及改进措施。
解剖分析结果表明,零件在磨削过程中受到了过大的磨削力作用和磨削热作用,使表层发生塑性变形及相变,造成拉应力状态,导致裂纹源产生,形成表面磨削裂纹。
关键词:齿轮;磨削;裂纹 中图分类号:T G 580.6 文献标识码:A 文章编号:1007—6921(2012)02—0140—03 齿轮是车辆传动操纵系统的关键零部件,主要承受接触应力、摩擦力、冲击应力等,用低碳合金结构钢制造,主要工艺流程为:原材料→渗碳淬火回火→磨外圆、端面→装配→使用。
生产中准备装配时发现两件齿轮在右端面(靠近长轴的齿轮端面)上有细小裂纹,造成零件失效报废,影响生产和质量。
为查明裂纹产生原因,笔者选取其中较典型的一件开裂件解剖分析,对其进行宏观观察、化学成分分析、硬度检测分析、金相组织及裂纹分析,探讨裂纹形成机理,就其开裂原因提出分析意见及改进措施。
1 实验结果1.1 宏观分析开裂件宏观形貌及裂纹位置见图1所示,该零件所发现裂纹非常细小,肉眼不易分辨,在HiroxKH -3000三维视频显微系统(美国)下观察,这些细小条状裂纹均在齿轮右端面(齿轮长轴一侧)上,裂纹宏观形貌见图2,径向分布,排列较有规则,呈细小、聚集、断续串接特征,垂直于磨削方向,裂纹长度约1mm ~7m m ,多达上百条,部分裂纹已呈网状分布。
图1 开裂齿轮宏观形貌及裂纹位置・140・X收稿日期:2011-11-25作者简介:蔡红(1968—),女,内蒙古一机集团车辆工程研究院理化室工作,高级工程师,从事金相分析、失效分析及热处理工作二十余年,本项目来源于生产实际。
感应淬火曲轴磨削裂纹原因分析摘要:淬火曲轴作为发动机的核心部件之一,其质量和可靠性直接影响汽车的安全性和性能。
曲轴的磨削过程是其制造过程中的重要环节之一,但在磨削过程中常常出现裂纹现象,大大降低了曲轴的质量和寿命。
本文通过对淬火曲轴磨削裂纹的原因分析,旨在为曲轴生产厂家提供技术参考和改进方向,进一步提高淬火曲轴的质量和可靠性。
关键词:淬火曲轴;磨削;裂纹;原因分析正文:一、淬火曲轴磨削裂纹的原因在磨削淬火曲轴的过程中,裂纹是经常出现的一种质量问题。
其原因主要有以下几个方面:1.材料质量问题淬火曲轴的材料通常采用高强度钢材,但由于制造过程中的管制不够严格,很容易出现材料的强度、硬度不一致的情况,从而导致曲轴表面的磨削裂纹问题。
2.磨削工艺问题磨削淬火曲轴需要考虑到工艺的严谨性和合理性,如果磨削速度过快,磨削力度过大,很容易引起曲轴表面的变形和热裂纹;同时磨削过程中必须保证润滑剂充足,否则会因为摩擦产生高温而导致热裂纹。
3.工艺温度不合适淬火曲轴的磨削需要在特定的温度环境下进行,如果温度过高或者过低,都会导致材料的变形和热裂纹。
二、解决淬火曲轴磨削裂纹的措施磨削淬火曲轴时出现裂纹问题,不利于提高曲轴的质量和可靠性,因此有必要采取相应的措施来解决。
在实践中,可以采用以下方法:1.材料选择和管制生产厂家需要对材料进行选择和管制,确保曲轴的材料质量达标,硬度、强度等参数的一致性和稳定性。
2.改进磨削工艺厂家需要对磨削工艺进行改进,严格控制磨削速度、力度和润滑剂的充足性,避免产生高温而导致热裂纹。
3.控制磨削温度生产厂家需要对磨削温度进行严格控制,避免温度过高或过低而产生变形和热裂纹。
三、结论淬火曲轴作为发动机的核心部件之一,其质量和可靠性直接影响汽车的安全性和性能。
磨削淬火曲轴时出现裂纹问题,严重降低了曲轴的质量和寿命。
通过对淬火曲轴磨削裂纹原因的分析和解决方法的探讨,可以为曲轴生产厂家提供一定的技术参考和改进方向,进一步提高淬火曲轴的质量和可靠性。
轴承零件磨削裂纹防止措施轴承零件作为机械设备中不可或缺的组成部分,其质量的好坏直接影响着整个设备的使用寿命和性能。
而磨削裂纹作为轴承零件在加工和使用过程中常见的缺陷,不仅会降低轴承的承载能力和使用寿命,还会对设备的安全性产生潜在威胁。
因此,采取有效的措施防止轴承零件磨削裂纹对于保障设备的正常运转和延长设备的使用寿命具有重要意义。
一、轴承零件磨削裂纹的成因轴承零件在加工和使用过程中,由于材料的缺陷、加工工艺的不当、使用条件的恶劣等原因,容易出现磨削裂纹。
其中,主要的成因有以下几个方面:1.材料缺陷:轴承零件的材料中可能存在着一些内部缺陷,如气孔、夹杂、夹砂等,这些缺陷在加工和使用过程中会被放大和扩展,形成磨削裂纹。
2.加工工艺不当:在轴承零件的加工过程中,如果切削工具的选择、切削参数的设置、切削液的使用等方面不当,会导致轴承零件表面出现过度磨削或者热损伤,从而形成磨削裂纹。
3.使用条件恶劣:轴承零件在使用过程中,如果受到过大的载荷、振动、冲击等外力作用,会导致其表面出现微小的裂纹,随着使用时间的增长,这些裂纹会逐渐扩展和加深,最终形成磨削裂纹。
二、磨削裂纹对轴承零件的影响轴承零件中的磨削裂纹会直接影响其承载能力和使用寿命,具体表现在以下几个方面:1.降低承载能力:磨削裂纹会导致轴承零件的强度和韧性降低,从而使其在受到载荷时容易发生断裂或疲劳破坏,降低其承载能力。
2.影响使用寿命:磨削裂纹会使轴承零件的表面粗糙度增加,从而导致摩擦系数增大,摩擦热增加,最终使轴承零件的使用寿命缩短。
3.安全风险增加:磨削裂纹会在轴承零件受到过载、振动等作用时进一步扩展和加深,最终导致轴承零件的断裂,从而对设备的安全性产生潜在威胁。
三、轴承零件磨削裂纹防止措施为了有效地防止轴承零件的磨削裂纹,可以采取以下措施:1.合理选择材料:在选择轴承零件材料时,要选择质量好、无内部缺陷的材料,以减少磨削裂纹的产生。
2.优化加工工艺:在轴承零件的加工过程中,要根据不同的工件材料和零件结构合理选择切削工具和切削参数,同时要加强切削液的使用,以减少磨削裂纹的产生。
产生齿轮磨削裂纹的影响因素及措施摘要:采掘设备中所用齿轮为重载齿轮,为了提高齿轮承载力和耐磨性,通常轮齿采取渗碳淬火的热处理方式,再经过成型磨齿加工而成。
长期以来,在齿轮加工中存在一个突出的问题——磨削裂纹。
本文对产生齿轮磨削裂纹的影响因素及措施进行分析。
关键词:齿轮磨削;裂纹;影响因素;措施1齿轮磨削裂纹的形态特征磨削裂纹特有的征状是裂纹与磨削道痕相垂直,一般情况下磨削裂纹细、密、浅。
但在某些情况下(如深层渗碳的齿轮),在成型磨齿机上磨齿时,其磨削裂纹有会呈现出粗、深、长的特点,出现的磨削裂纹可能与磨削道痕平行分布。
在产生磨削裂纹的齿面必定伴随磨削烧伤,对产生磨削裂纹的齿面经4%硝酸酒精浸蚀后,由于回火烧伤而呈深黑色,此处硬度明显降低。
更严重的经浸蚀后在齿面黑色区域中间有白色区域,白色区域为磨削过程中产生再硬化(二次硬化),此处硬度很高。
2磨削裂纹的形成对于渗碳淬火硬齿面齿轮,产生磨削裂纹的主要原因是热应力和组织应力在齿面表层上瞬时剧烈变化,造成表面组织内应力不平衡。
(1)磨齿裂纹形成的内因是齿轮的渗碳淬火质量。
齿轮在渗碳淬火过程中,在渗碳层中易形成网状和过多游离碳化物。
这些物质硬度极高,磨削过程中磨削区的温度剧增,容易出现局部过热导致表面回火,使齿轮内部金相组织发生变化。
(2)磨齿裂纹形成的外因成型磨齿产生的热应力。
磨削过程会产生的大量热量,部分被冷却液带走,部分被传入齿轮齿面的浅表层内,并使浅表层温度快速升高。
超过原始回火温度,即会导致回火烧伤。
在磨削工况发生较严重异常时(比如变形较大或磨削进给量大等),齿面温度甚至达到相变温度,经冷却液冷激而导致二次淬火,形成严重的淬火烧伤,严重时会形成磨削裂纹。
3产生齿轮磨削裂纹的影响因素3.1首次磨齿切削量成型磨齿一般采用双面磨削,加工前由于留有磨量且热处理过程会有变形,由于机床对中时所测磨削余量不准确,造成首次切削量比较大,导致磨齿过程齿面热急增,引起齿面表层回火或二次淬火。