非矩形不规则网格有限差分方法弹性波模拟_孙卫涛
- 格式:pdf
- 大小:545.06 KB
- 文档页数:5
地震波传播有限差分模拟的人工边界问题
孙若昧
【期刊名称】《地球物理学进展》
【年(卷),期】1996(11)3
【摘要】在用有限差分法模拟地震波传播中,差分网格人工边界的反射问题是至关重要的。
本文简要介绍了几种消除人工边界反射的方法及其主要优缺点。
联立这些不同的吸收边界条件于实际的有限差分计算可以给出好的结果。
【总页数】6页(P53-58)
【关键词】有限差分;人工边界;虚假反射;地震波传播
【作者】孙若昧
【作者单位】中国科学院地球物理研究所
【正文语种】中文
【中图分类】P631.413
【相关文献】
1.非均匀介质地震波传播交错网格高阶有限差分法模拟 [J], 裴正林;牟永光
2.地震波传播的三维伪谱和高阶有限差分混合方法并行模拟 [J], 秦艳芳;王彦宾
3.具有离散裂缝空间分布的二维固体中地震波传播的有限差分模拟 [J], 刘恩儒;岳建华;刘彦
4.CPML条件下黏弹介质地震波传播的有限差分模拟与特征分析 [J], 乐友喜;张会娟;问雪;刘兵卿;赵迎;刘陈希
5.复杂介质地震波传播模拟中边界元法与有限差分法的比较研究 [J], 何彦锋;孙伟家;符力耘
因版权原因,仅展示原文概要,查看原文内容请购买。
瑞雷波有限差分数值模拟中不同自由表面边界条件的对比袁士川;宋先海;蔡伟;胡莹;鲁鹏【摘要】自由表面边界条件是决定瑞雷波数值模拟效果的关键因素.本文基于标准交错网格高阶有限差分法,在二维各向同性弹性介质背景下,针对应力镜像法(SIM)、改进应力镜像法(MSIM)、横向各向同性介质替换法(MS)和声学弹性边界近似法(AEA)等四种最具代表性的自由表面边界条件进行了数值模拟,并在均匀半空间模型中从波场快照、波形曲线和频散曲线三个角度进行了对比分析.在相同条件下,上述四种方法均能生成符合勘探地球物理规律的波场快照,各自对应的数值解与解析解的拟合误差都随网格剖分精度的提高而减小,SIM和AEA数值模拟的稳定性和精度都明显高于MSIM和MS.基于层状介质模型的进一步研究表明:对于简单模型,SIM 和AEA都能得到比MSIM和MS更高精度的数值模拟结果;对于复杂模型,AEA的精度最高,是最适合瑞雷波数值模拟的自由表面边界条件.【期刊名称】《石油地球物理勘探》【年(卷),期】2017(052)006【总页数】14页(P1156-1169)【关键词】瑞雷波;有限差分模拟;自由表面边界条件;应力镜像法;声学—弹性边界近似法【作者】袁士川;宋先海;蔡伟;胡莹;鲁鹏【作者单位】中国地质大学地球物理与空间信息学院,湖北武汉430074;中国地质大学地球物理与空间信息学院,湖北武汉430074;地球内部多尺度成像湖北省重点实验室,湖北武汉430074;中国地质大学地球物理与空间信息学院,湖北武汉430074;中国地质大学地球物理与空间信息学院,湖北武汉430074;中国地质大学地球物理与空间信息学院,湖北武汉430074【正文语种】中文【中图分类】P631在石油勘探、浅层反射及折射波人工地震勘探中,瑞雷波是一种强干扰波;在天然地震中,瑞雷波是危害性最大的一种地震波。
因此,在早期研究中,人们主要是根据瑞雷波的特点,采取诸多方法消除其影响或减小其危害。
高阶交错网格有限差分弹性波场模拟的精度分析
岳晓鹏;白超英;岳崇旺
【期刊名称】《煤田地质与勘探》
【年(卷),期】2017(045)001
【摘要】交错网格波场数值模拟是目前地震正演中广泛使用的方法,为对比分析不同阶数的差分格式下产生的计算效率和精度差异,重新推导了弹性波方程的4种时间4阶、空间2N阶的差分公式及系数,并计算了他们的稳定性条件.利用这4种差分格式进行弹性波场数值模拟,对比分析了波场快照、合成地震记录及CPU时间.结果表明:时间4阶、空间6+6阶精度的交错网格有限差分方法在进行地震波场数值模拟时具有较高的计算精度和计算效率.
【总页数】6页(P125-130)
【作者】岳晓鹏;白超英;岳崇旺
【作者单位】长安大学地质工程与测绘学院地球物理系,陕西西安 710064;许昌学院数学与统计学院,河南许昌 461000;长安大学地质工程与测绘学院地球物理系,陕西西安 710064;长安大学地质工程与测绘学院地球物理系,陕西西安 710064【正文语种】中文
【中图分类】P315.69
【相关文献】
1.各向异性介质弹性波高阶交错网格有限差分模拟 [J], 霍凤斌;李振鹏;徐发;张涛;
2.高阶交错网格有限差分法弹性波叠前逆时深度偏移 [J], 陈可洋
3.二阶各向异性弹性波动方程高阶交错网格有限差分法 [J], 姜宇飞
4.弹性波交错网格高阶有限差分法波场分离数值模拟 [J], 李振春;张华;刘庆敏;韩文功
5.双相TI介质中弹性波交错网格高阶有限差分法数值模拟 [J], 尹学爱;邱光辉因版权原因,仅展示原文概要,查看原文内容请购买。
第35卷第4期2023年7月岩性油气藏LITHOLOGIC RESERVOIRSV ol.35No.4Jul.2023收稿日期:2022-09-26;修回日期:2022-10-28;网络发表日期:2023-02-03基金项目:中国石油天然气股份有限公司科技项目“人工智能速度建模方法研究”(编号:kt2020-10-06-02)与物探攻关项目“2022年塔里木盆地和田河周缘寒武系盐下地震成像攻关与目标落实”(编号:2022KKT0506)联合资助。
第一作者:王立德(1995—),男,硕士,工程师,主要从事人工智能速度建模、全波形反演和地震资料信号处理等领域的科研及生产工作。
地址:(730020)甘肃省兰州市城关区雁儿湾路535号。
Email :*********************。
文章编号:1673-8926(2023)04-0061-09DOI :10.12108/yxyqc.20230406引用:王立德,王小卫,周辉,等.一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J ].岩性油气藏,2023,35(4):61-69.Cite :WANG Lide ,WANG Xiaowei ,ZHOU Hui ,et al.A layered velocity modeling method for elastic wave full waveform inversionbased on improved conjugate gradient method [J ].Lithologic Reservoirs ,2023,35(4):61-69.一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法王立德1,王小卫1,周辉2,吴杰1,张志强3,王建乐1,王德英1,冯刚1(1.中国石油勘探开发研究院西北分院,兰州730020;2.中国石油大学(北京),北京昌平102249;3.中国石油大庆油田有限责任公司采气分公司,黑龙江大庆163000)摘要:陆上地震资料由于低频信息缺失、波场复杂等问题,加剧了反演的非线性。
模拟地震波传播的大网格快速差分算法
周家纪;贺振华
【期刊名称】《地球物理学报》
【年(卷),期】1994(37)A02
【摘要】大网格快速差分法以最佳差分算子为理论基础,使群速度误差最小.这种方法的量大特点是空间网格可以取得很大,只要算子半长度取成4-6,每最短波长取3个空间网格点就可得到精度很高的弹性波场模拟结果.理论计算表明本方法比传统有限差分格式的计算速度至少快一个数量级,比伪谱法快3-5倍.【总页数】5页(P450-454)
【作者】周家纪;贺振华
【作者单位】不详;不详
【正文语种】中文
【中图分类】P631.413
【相关文献】
1.非均匀介质地震波传播交错网格高阶有限差分法模拟 [J], 裴正林;牟永光
2.粘弹介质中可变网格地震波传播数值模拟 [J], 李晓波;董良国
3.二维弹性及粘弹性TTI介质中地震波场数值模拟:四种不同网格高阶有限差分算法研究 [J], 孙耀充;张延腾;白超英
4.地形构造中地震波传播的非对称交错网格模拟 [J], 孙卫涛;杨慧珠
5.基于离散粒子理论地震波传播数值模拟网格剖分计算方法 [J], 高伟;耿建华
因版权原因,仅展示原文概要,查看原文内容请购买。
基于有限差分的部分饱和双重孔隙介质弹性波模拟与分析石志奇;何晓;刘琳;陈德华
【期刊名称】《物理学报》
【年(卷),期】2024(73)10
【摘要】双重孔隙介质模型考虑了岩石非均质性诱发的介观流对弹性波频散和衰减的影响,在非均质储层地震资料定量解释中取得良好的应用效果.基于双重孔隙介质理论模型,利用数值算法开展弹性波模拟工作不仅可以直观显示波的传播特征,同时也为后期地震反演成像工作奠定基础.本文基于Santos-Rayleigh部分饱和双重孔隙介质模型,利用交错网格有限差分算法模拟并分析了双重孔隙介质中的波场快照和波形曲线.采用Zener黏弹性模型近似表征介观流机制,结果表明Zener模型能够较好地反映快纵波传播特征,却无法表征慢纵波P3波在低频段的衰减特征.利用时间分裂法解决波动方程的刚性问题,提高计算效率.利用解析解验证了有限差分算法正确性的基础上,模拟了均匀介质和分层介质中的波场快照和波形曲线,清晰直观地反映了快纵波在地震频段的强衰减特征,与双重孔隙理论模型预测结果一致.模拟结果有助于进一步理解非均匀部分饱和孔隙介质中的弹性波传播特征.
【总页数】10页(P20-29)
【作者】石志奇;何晓;刘琳;陈德华
【作者单位】中国科学院声学研究所;中国科学院大学;北京市海洋深部钻探测量工程技术研究中心
【正文语种】中文
【中图分类】TP3
【相关文献】
1.双相介质和弹性介质混合模型的有限差分声波模拟
2.黏弹性介质瑞雷波有限差分模拟与特性分析
3.基于BISQ模型的各向同性孔隙介质弹性波三维交错网格高阶有限差分数值模拟
4.黏弹性流体饱和孔隙介质动力反应分析的显式有限元法
5.黏弹性介质中瑞雷波有限差分数值模拟与波场分析
因版权原因,仅展示原文概要,查看原文内容请购买。
起伏地表弹性波传播有限差分法数值模拟董良国;郭晓玲;吴晓丰;马在田【期刊名称】《天然气工业》【年(卷),期】2007(027)010【摘要】有限差分是进行地震波传播数值模拟的最常用方法,但该方法处理起伏的自由边界比较困难.为此,通过对不同地形起伏情况下自由边界的具体分析,将整个二维空间离散点划分为24类,对每一类自由边界处的网格点选择了合理的表现方式,实现了起伏地表自由边界条件的数值化.该方法可以模拟出地表起伏情况下弹性波复杂的传播现象,为进行起伏地表地震波传播规律研究、山地地震勘探野外观测系统设计、山地地震勘探干扰波分析和识别、以及静校正研究提供了正演模拟工具.模拟实例表明,地形起伏引起面波、体波等地震波型之间的相互转化,产生了大量的散射P波、散射S波和散射面波,尤其是由沿地表传播的强能量面波,在地表起伏及近地表物性突变处产生了大量的强能量散射面波,同时也产生了相对较弱的散射P 波和散射S波,这是造成山地地震资料信噪比低的主要原因.【总页数】4页(P38-41)【作者】董良国;郭晓玲;吴晓丰;马在田【作者单位】同济大学海洋地质国家重点实验室;同济大学海洋地质国家重点实验室;同济大学海洋地质国家重点实验室;同济大学海洋地质国家重点实验室【正文语种】中文【中图分类】P61【相关文献】1.双相各向异性介质弹性波传播交错网格高阶有限差分法模拟 [J], 裴正林2.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟 [J], 裴正林3.起伏地表条件下2.5维声波方程有限差分法数值模拟 [J], 齐鹏;孙建国4.起伏地表弹性波传播的间断Galerkin有限元数值模拟方法 [J], 薛昭;董良国;李晓波;刘玉柱5.有限积分法与有限差分法在弹性波数值模拟中的对比分析 [J], 李明智;熊章强;张大洲因版权原因,仅展示原文概要,查看原文内容请购买。
一阶弹性波交错网格时间高阶差分格式及稳定性分析田雪丰【摘要】弹性波模拟或逆时偏移时,对空间偏导数采用高阶差分格式可提高计算精度,但这种算法的稳定性条件过于严格,要求差分离散的时间步长必须足够小以确保算法稳定.在常规空间高阶差分格式的基础上,将速度(应力)对时间的高阶导数转化为不同精度的应力(速度)对空间的差分,得到了一种新的基于交错网格的时间高阶、空间高阶差分格式.通过对交错网格时间高阶差分格式稳定性的分析,认为该算法的稳定性条件较常规算法宽松,在弹性波场的求解过程中可以采用更大的时间步长.【期刊名称】《中国煤炭地质》【年(卷),期】2019(031)005【总页数】9页(P70-78)【关键词】弹性波;数值模拟;交错网格;时间高阶差分格式;稳定性分析【作者】田雪丰【作者单位】中国煤炭地质总局地球物理勘探研究院,河北涿州 072750【正文语种】中文【中图分类】P641.4基于有限差分法的弹性波模拟或成像处理[1-7],受差分格式稳定性条件的限制,每种差分格式的时间步长和空间步长的比值(简称时空步长之比)都被限制在一定范围内。
为了精细地对复杂地质模型的地震响应进行数值模拟,要求空间网格步长足够小。
因此,受限于差分格式的稳定性要求,必须选取小的时间步长。
时间步长越小,则计算的时间步数越多,计算效率越低。
基于交错网格的一阶弹性波方程数值求解技术[1-2,4,6,8]相比于二阶弹性波方程,由于具有频散小,收敛速度快的优点,在弹性波的模拟和偏移中得到了广泛应用[8-13]。
稳定性条件是交错网格差分算法的重要研究内容[2,6,13],Virieux[14]首先给出了三维情况下各向同性介质中一阶弹性波方程的交错网格的时间2阶、空间2阶差分格式的稳定性条件。
Levander[15]在Virieux的基础上发展了一阶弹性波交错网格的差分格式,提出交错网格的空间差分格式可以为任意精度,并给出了时间2阶精度、空间4阶精度的差分格式及其稳定性条件。
地屁处理2处理
24
非矩形不规则网格有限差分方法弹性波模拟孙卫涛杨慧珠
(清华大学工程力学系)
摘要本文提出了一种空间非矩形不规则网格有限差分方法模拟具有弯曲界面和低速弯曲薄层的非均匀各向异性介质中弹性波传播过程该方法通过具有二阶时间精度和二阶空间精度的任意四边形不规则交错网格差分算子导出一阶弹性波动差分方程在边界上应用吸收边界条件消除人工边界反射波该方法无需在精细网格和粗糙网格间插值所有网格点上的计算在同一次空间迭代中完成在不规则曲线界面附近使用非矩形不规则网格能够精确的模拟模型几何构造;在几何尺度变化很大的模型中无孺网格加密就可以达到很高的计算精度理论分析和数值算例表明该方法十分适合处理抵糙界面断层和弯曲薄层等复杂几何构造不但节省了大t内存和计算时间而且具有令人满意的稳定性和精度在模拟复杂地层构造中地震波传播时该方法比规则网格和矩形不规则网格差分方法效率更高Falk[‘2〕等给出了交错网格上的可变网格差分方法Tessmer[‘3]Hestholm和Ruud[
’4〕用坐标变换方法
模拟曲线边界Mofti[’5]研究了三维模型复杂
边界
的处理方法oPrsal[’6〕给出了非均匀介质中的二阶
波动方程的矩形不规则网格差分方法Pitarka[’7〕提出了各向同性介质中矩形不规则网格的有限差分方法本文给出了一种高阶精度非均匀各向异性波
动方程非矩形不规则交错网格有限差分方法这种方法允许在弯曲几何界面附近和物质属性间断处使
用任意四边形网格无需坐标变换和网格间的插值
简单易行而且占用内存少计算量小适合于复杂介质模型的弹性波正演问题文中推导出的有限差分
方程具有一般形式其退化形式与规则网格方法完全吻合本文给出了该差分格式的数值频散分析并导出了差分稳定性条件数值算例表明这种新方法具有很高的计算效率和精度
己l侣绪,l「J
理论公式
有限差分方法是求解波动方程的常用数值方法之一地震波正演模拟中有限差分方法的较早研究包括Alterman和Karal川玫幻re[2
〕Alford[’]Kel
一y[4]和virieux[’6]等学者的著作Levander[7〕在
P
Sv波模拟中引入了四阶空间差分算子D
ablain[
“
〕
提出了高阶差分算子的方法Graves[9〕给出了等效物质参数的三维四阶速度应力有限差分方法普通差分方法基于笛卡儿坐标系中的规则正方形或矩形网格在模拟曲线界面时出现阶梯状边界必须
采用精细网格才能减少虚假绕射波另外局部物理参数的剧烈变化也会要求加密整个模型网格导致计算量的大大增加shortley[’0]首先研究了Laplaee
方程中的不规
则网格有限差分方法Jastram和Tessmer[“]
笛卡儿坐标系斜方晶系各向异性介质弹性波动方程速度应力公式为:
PV=DTt二CDT.V
(1)(2)
其中p(x)为介质密度质点速度矢量v(xt)应力矢量T(xt)微分算子矩阵D和斜方晶系介质
弹性系数矩阵C(9个独立系数)定义如下:
VT=
v二v,v
TT
二
(
Tx
D二
(3)(4)
(5)处理24c12e1300
Y。(a月=imjn
)
c22c23
聊C=c3300
0(6)
metr
ic
一(yo一为1)(yo一为1)2(yo一湘1)(x一xP;)1
一(凡一为)(yo一为)2(yo一为)(
x
一x
刃
1
(湘1一儿)(为,一儿),(为,
一儿
)(x
,,一x
)l
(为2一%)(湘2一儿)2(为2一%)(x,2一x)1
(15
)
在交错网格上离散一阶偏微分算子笛卡儿坐标系xy平面内二维非矩形不规则网格见图l,一。二,,刁价二士二‘
一日「全!川2孟,丁异刁广不厂一川以不泛小
刀:
口X
癸二全、‘X,一
x,
2
;y
1
…夕十
2)价
。
(16)这里N言是8个相关节点
(m一lmm十lm
十2;n一1nn十1n+2)
空间坐标的函数可以通
过公式(9)的矩阵求逆得到价。是空间节点q处波
,,目~*。二。a价~刁协
场值同理容易得到举和举
~~“~
“
~
一a夕az
式(9)可退化为矩形不规则网格公式:
图1非矩形不规则网格有限差分示意
图
{Dx{一
!x
,
\DY1LO(17)沉必0节点(m汁和(m十1l)的中点命名为节点i节点(mn)和(mn十l)的中点命名为节点]相关节点处的波场值小可以写成级数形式:.二=x二nx+v,nv+o(△3)(7).=xnx+vDv+o(留)(8)略去空间步长高阶小量O(△3)后空间导数可以表示为价的线性组合:Y
交错网格一阶时间导数差分算子定义为:a价J~价J1一笋
j
at
一△
t
(18)
数值频散和稳定性
X二
Ym
XY‘fo,
0(9)
(价m1,价二,价。1,笋,2
)T(10))T(11)(12)(13)考虑平面波ei(‘“r)传播方向与xy:坐标轴成yly:y3夹角这些角度可以表示成cosyl=k二/}kJeos7:=k,/!k}和cos)3=k/Ik{其中k二k,和k是波数k二(k二k,k)的分量空间位移矢量rT=(xy:)P
波频散关系式:
(:)熟岭
.=
(尹m1,价二‘笋二1‘笋
m+
2
}李}一‘三十‘互十‘
已
其中。为P波速度。是数值角频率(19)由交错网格
时间中心差分算子得到数值角频率。的表达式:
DX=
,’=鱼。;n{竺。
一△t一“\2一(20)
DY=
笋ntj必m,
由非矩形不规则网格差分算子得到数值波数分
x,(
a
月=
刁价刁2价aZ价Jx2!JxZ2!日x刁夕a笋aZ笋刁2尹a夕2!刁少22!刁夕Jxmjn)二量汀|产
订l了
…一(xo一今l)(xo一却)(x一却1)(%一yPl)一(几一即)(几一今)2(xo一,)(yo一动一(,1一几)(今1一几)2(,l一x)(为,一%)一(,2一几)(今2一几)2(却2一几)(为2一儿)一名(N言sin(l‘。一、ql+l夕。一夕lk,+}z。一221k二k))(21)=习(叫ql+}夕。一夕lsin(lx。一x,lkxk,+12。一z,lk))工y孟代花(22)门lleswJwe川卜1片处理24
kz一烈‘代一in‘,X,一二,kx+}为一少卜k,+}z。一z‘
卜k))(23)
引进无量纲量氛Hi(i二xyz)后得到了与
矩形不规则网格相似的频散公式又二几,和又是xyz坐标方向波长a二a,口是xyz
坐标方
向P波速度下标xyz分别表示沿xyz坐标方向的量yly:y3都小于1得到P波稳定性条件:2(x.*1一x二)一闪局一“汤“a咒汤,a欠(31)当网格为正方形时这个稳定性条件可以退化为Levander[7]给出的公式;采用二阶差分时该稳定性条件退化为virieux[61的公式△ta一_~、汤
"t+l一工跳产
算例少一毯毛乞二乞二口△t乞l+1一yl△t(夕、1
一夕)
(24
)
Hx=
从=
(x
二,1一x二
孟x(z,十,一z,)又
y+
1
一x
将氛和H‘代人数值频散关系式得到(25)P波数值速度与真实速度之
比称
乞一公
、,
一
众
51
一}
(26
)
同理得到S波数值速度与真实速度之比q
凡为x方向上S波速度ax凡二妥尹
毖
f。,1
2222
11口C,a刁〕aJl
Slnl=屯二IA+一任‘,拼A+-
于‘,拼A
}a
生习一J吠H吮一ya泛H吮一
二
考察弯曲薄地层海底模型检验非矩形不规则网格有限差分方法的有效性模型尺寸Zom
x
200m在深度80一140
m
范围内有一个弯曲薄地层
交界面(见图2)界面层上方为海水界面层下方为
高速地层高斯爆炸源位于(IOOm6Om)震源中
心频率为40H:模型密度和弹性常数见表l时间
步长为000025计算时间为035使用Higdon[
’8]
吸收边界条件消除边界反射分别采用规则网格矩形不规则网格和本文的非矩形不规则网格差分方法计算弹性波传播非矩形不规则网格划分示意图
见图3距离
()
010020
O扣~.~曰‘~山~‘~~.~‘~
(27)
加司侧
转
其中
:
A二一
郭、sin(I
之分釜
…
Hxco
一
.0
十}~}Ilvcos
,
2+
!y+1一ylz,一
21
之l+l一21
A,一
名!衅
sin
(…老弋……、一
…、。O8一卜笼是是;,扛一一一一一一曰图2弯曲薄地层海底模型衰1育曲薄地层海底徽型介质密度和弹性常教·…六去
A一象
(N;
·‘
·
(29)计算参数p(掩/m3功们28\月cosHz从xq一x份X勿+1一Xm训二之,几…、。。s,2…HxC叱“cl;e22c33(Pa)c12cl3c23(Pa)e。。‘55。66(Pa)介质I
1000225函225e90介质n265061因03e929e9介质m221112e1050e935e9yOs
Hzc
为一y
y+l一yz
一
21
之l+1一乞l(30)
令P波数值频散中的sin-‘项在任意人射角非矩形不规则网格方法能够根据模型几何构造的形状划分网格具有很大的自由度克服了传统差分方法均匀正方形网格不适应复杂几何模
型
的弱