电磁波的发射与接收
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
《电磁波的发射和接收》教学设计方案(第一课时)一、教学目标1. 知识与技能:理解电磁波的产生原理,掌握电磁波的发射和接收过程,能够分析并诠释相关应用。
2. 过程与方法:通过实验操作和观察,培养学生的观察能力和分析能力。
3. 情感态度价值观:了解电磁波在摩登社会中的应用,认识科学技术对人类生活的影响,培养科学态度和环保认识。
二、教学重难点1. 教学重点:掌握电磁波的发射和接收原理,理解其在实际中的应用。
2. 教学难点:如何让学生直观理解电磁波的产生和传播过程。
三、教学准备1. 准备教学用具:电磁波发射和接收实验器械,多媒体课件。
2. 准备教材和参考书籍:相关教材、参考书籍及网络资源。
3. 安排教学时间:本课时为单班教学,时长90分钟。
4. 安排课后作业:要求学生预习下一节内容,并寻找生活中的电磁波应用实例。
四、教学过程:(一)导入1. 通过一个简单的视频:电磁波在我们的生活中无处不在,如手机通话、电视广播、微波炉等,引导同砚认识到电磁波的存在。
2. 介绍电磁波的观点,提出本次课程主题——电磁波的发射和接收。
(二)新课讲解1. 电磁波的发射(1)教师演示实验:应用无线电发射机发射电磁波的过程,让学生观察电磁波是如何产生的。
(2)讲解电磁波发射的原理,包括电磁振荡、天线发射等。
(3)介绍常见的电磁波发射设备,如无线电发射机、电视台发射台等。
2. 电磁波的传播(1)讲解电磁波的传播方式,包括空气中的自由传播、地波等。
(2)介绍电磁波在传播过程中的衰减现象。
3. 电磁波的接收(1)教师演示实验:应用无线电接收机接收电磁波的过程,让学生观察电磁波是如何被接收的。
(2)讲解无线电接收机的原理,包括天线、调谐器、解调器等。
(3)介绍常见的电磁波接收设备,如无线电接收机、电视台接收器等。
4. 讲解电磁波在生活中的应用,如无线电通信、电视广播、雷达测速等。
5. 教室互动:让学生讨论生活中还有哪些电磁波的应用实例,增强学生对电磁波的认知。
《电磁波的发射和接收》知识清单一、电磁波的发射1、要有效地发射电磁波,振荡电路必须满足两个条件(1)要有足够高的振荡频率。
频率越高,发射电磁波的本领越大。
(2)振荡电路的电场和磁场必须分散到尽可能大的空间,这样才能有效地把能量辐射出去。
2、开放电路为了有效地把电磁场的能量辐射出去,需要把闭合电路变成开放电路。
实际应用中的开放电路,是由电感线圈 L 和电容器 C 组成的。
3、调制在电磁波发射技术中,使电磁波随各种信号而改变的技术叫做调制。
(1)调幅(AM)使高频振荡的振幅随信号的强弱而变的调制方式叫做调幅。
调幅广播(AM)一般使用中波和短波波段。
(2)调频(FM)使高频振荡的频率随信号的强弱而变的调制方式叫做调频。
调频广播(FM)和电视广播中的图像信号使用的是调频的方式。
二、电磁波的接收1、电谐振当接收电路的固有频率跟收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。
2、调谐使接收电路产生电谐振的过程叫做调谐。
通常通过调节可变电容器来改变电路的固有频率,从而实现调谐。
3、解调要把声音或图像等信号从高频电流中还原出来,这个过程叫做解调。
解调是调制的逆过程。
(1)检波在无线电技术中,常用二极管来进行解调,这种解调方式叫做检波。
三、电磁波的传播1、电磁波在空间传播时不需要介质,可以在真空中传播。
2、电磁波在真空中的传播速度等于光速,c = 3×10⁸ m/s。
3、电磁波在传播过程中,频率不变,波长和波速会随介质的变化而变化。
四、电磁波谱1、按照电磁波的波长或频率的大小顺序把它们排列成谱,叫做电磁波谱。
2、电磁波谱包括无线电波、红外线、可见光、紫外线、X 射线、γ射线等。
(1)无线电波波长大于 1mm(频率小于 300GHz)的电磁波是无线电波。
无线电波广泛应用于通信、广播和导航等领域。
(2)红外线红外线的波长比红光更长,频率比红光更低。
红外线具有热效应,一切物体都在不停地辐射红外线。
电磁波的发射与接收知识点总结电磁波在我们的生活中无处不在,从手机通信到广播电视,从卫星导航到无线网络,它的应用极其广泛。
理解电磁波的发射与接收对于我们掌握现代通信技术至关重要。
下面我们来详细总结一下这方面的知识点。
一、电磁波的发射要发射电磁波,首先需要一个振荡电路。
这个振荡电路由电感和电容组成,能够产生高频的交变电流。
在实际的发射过程中,为了有效地将能量辐射出去,需要满足以下条件:1、开放电路普通的 LC 振荡电路由于电场和磁场被封闭在电路内部,辐射出去的能量很少。
而开放电路,比如将电容器的极板间距增大、电感线圈的匝数减少等,能够使电场和磁场分散到更大的空间,从而增强电磁波的辐射。
2、频率足够高只有频率足够高的交变电流才能有效地发射电磁波。
这是因为频率越高,单位时间内电流的变化次数越多,产生的电场和磁场的变化就越迅速,从而更有利于电磁波的发射。
为了产生高频的交变电流,通常会使用振荡器,如晶体振荡器等。
此外,为了让电磁波能够携带有用的信息,比如声音、图像等,需要对振荡电流进行调制。
调制分为调幅和调频两种方式。
调幅(AM)是使高频振荡电流的振幅随信号的强弱而改变。
在调幅波中,频率始终保持不变,而振幅则随着信号的变化而变化。
调频(FM)则是使高频振荡电流的频率随信号的强弱而改变。
在调频波中,振幅保持不变,而频率则随着信号的变化而变化。
二、电磁波的传播电磁波可以在真空中传播,不需要介质。
在真空中,电磁波的传播速度等于光速,约为 3×10^8 米/秒。
在介质中传播时,电磁波的速度会变慢,而且不同频率的电磁波在同一介质中的传播速度可能不同。
例如,在无线电波中,频率越高的电磁波,在介质中的传播速度越慢。
电磁波的传播方式主要有地波传播、天波传播和直线传播三种。
地波传播是指沿着地球表面传播的电磁波。
由于地面会吸收电磁波的能量,所以地波传播主要适用于频率较低的电磁波,如长波和中波。
天波传播是指依靠电离层反射传播的电磁波。
电磁波的发射与接收知识点总结电磁波在我们的生活中无处不在,从手机通信到广播电视,从卫星导航到无线网络,它的应用广泛而深入。
理解电磁波的发射与接收是掌握现代通信技术的基础。
下面让我们来详细探讨一下这方面的知识点。
一、电磁波的发射电磁波的发射需要一个开放的电路,以及能够产生高频变化电流的振荡器。
首先,要有足够高的振荡频率。
频率越高,电磁波携带的能量就越大,传播的距离也就越远。
在实际应用中,通过使用各种电子元件和电路设计来实现高频振荡。
其次,开放的电路结构对于电磁波的发射至关重要。
常见的天线就是一种开放电路,它能够有效地将电流的变化转化为电磁波向空间辐射出去。
例如,常见的半波天线、偶极天线等,它们的形状和尺寸会影响电磁波的发射特性。
为了增强电磁波的发射功率,还需要采用功率放大器。
功率放大器能够将振荡器产生的较弱信号进行放大,从而提高电磁波的强度。
在调制过程中,使高频振荡的振幅、频率或相位随信号而改变。
常见的调制方式有调幅(AM)、调频(FM)和调相(PM)。
调幅是使高频振荡的振幅随信号变化;调频则是使高频振荡的频率随信号变化;调相是使高频振荡的相位随信号变化。
通过调制,能够将信息加载到电磁波上进行传输。
二、电磁波的传播电磁波在空间中以光速传播,不需要介质,可以在真空中传播。
电磁波在传播过程中会受到多种因素的影响。
例如,地形、建筑物等障碍物会对电磁波产生反射、折射和散射,从而影响其传播路径和强度。
不同频率的电磁波在传播特性上也有所不同。
低频电磁波具有较强的绕射能力,能够绕过障碍物传播较远的距离,但传输速率较低;高频电磁波直线传播能力强,但容易被障碍物阻挡。
此外,大气层中的电离层对电磁波也有反射和折射作用,这对于短波通信具有重要意义。
三、电磁波的接收电磁波的接收过程与发射过程相反,主要包括调谐、解调等环节。
调谐是指通过调节接收电路的参数,使其固有频率与接收到的电磁波频率相同,从而实现共振,达到最大的接收效果。
一、教学目标1. 让学生了解电磁波的发射和接收的基本原理。
2. 使学生掌握电磁波的发射和接收的实验方法。
3. 培养学生的实验操作能力和科学思维。
二、教学重点1. 电磁波的发射原理。
2. 电磁波的接收原理。
三、教学难点1. 电磁波发射和接收的实验操作。
2. 电磁波发射和接收的原理理解。
四、教学准备1. 实验室器材:发射器、接收器、导线、电磁波检测器等。
2. 教学课件。
五、教学过程1. 导入:通过回顾电磁波的基本概念,引导学生思考电磁波的发射和接收原理。
2. 讲解:介绍电磁波的发射原理,讲解发射器的工作原理及操作方法。
讲解电磁波的接收原理,讲解接收器的工作原理及操作方法。
3. 实验:分组进行实验,让学生亲自动手操作发射器和接收器,观察并记录实验现象。
4. 讨论:引导学生根据实验现象,分析电磁波的发射和接收原理。
5. 总结:归纳电磁波的发射和接收原理,强调实验操作注意事项。
6. 作业:布置相关练习题,巩固所学知识。
7. 课后反思:教师根据学生课堂表现和作业完成情况,总结教学效果,调整教学方法。
六、教学方法1. 采用问题驱动法,引导学生思考和探索电磁波的发射和接收原理。
2. 运用实验教学法,让学生亲自动手操作,提高学生的实践能力。
3. 采用分组讨论法,培养学生的团队合作意识和交流沟通能力。
七、教学内容1. 电磁波的发射:介绍电磁波的发射原理,讲解发射器的工作原理及操作方法。
2. 电磁波的传播:讲解电磁波在空气、真空等不同介质中的传播特性。
3. 电磁波的接收:讲解接收器的工作原理及操作方法,介绍电磁波接收的实验方法。
八、教学步骤1. 引入新课:通过回顾上节课的内容,引导学生思考电磁波的发射和接收。
2. 讲解发射原理:讲解电磁波的发射原理,让学生理解电磁波是如何产生的。
3. 讲解传播特性:讲解电磁波在不同介质中的传播特性,让学生了解电磁波传播的条件。
4. 讲解接收原理:讲解电磁波的接收原理,让学生明白如何接收电磁波。
电磁波的发射与接收
(1)把收音机开关打开,调节调谐旋钮到收不到电台的位置,然后拉一下室内电灯的拉线开关,你就会听到收音机喇叭里发出“咔嗒”的响声,这是由于电灯的开关即将接通时产生火花放电形成的高频电磁波被收音机接收的缘故。
开启日光灯开关时效果更明显,这是由于日光灯电路中的起辉器的双金属片断开时镇流器产生较高的自感电动势,使放电更为强烈。
在夏日雷雨的天气里,远方的闪电产生的电磁波也能被收音机收到,你可以听到一连串的“咔嗒”声响,而这个声响比你听到的雷声要提前发生。
这是由于电磁波在空气中的传播速度接近真空中的光速,比声速要大得多。
你可以用手表测量一下收音机里的声响与雷声的时间差,由此可以推算出发生雷电的地方离你有多远。
(2)把收音机的后盖打开,接通电源,转动调谐旋钮,可以看到该旋钮与调谐电路中的可变电容器的动片连动,调到一定位置即可收到某一电台的播音。
若接收其他电台的播音,必须改变可变电容器动片转过的角度。
由此可以说明调谐的作用:调节LC电路的固有频率,使它与外来电磁波的频率相同,从而使感应电压达到最大值。
如果能借用一台教学信号源(或学生信号源),则实验的内容可以更深入。
在信号源的高频输出端上接一个用粗铜丝(或铝丝)弯成的单股圆环(圆环固定在绝缘座上),作为发射天线。
实验时把收音机放在天线旁,使收音机里的磁棒轴线与圆环天线的轴线在同一直线上,如图2.6-1所示。
如果没有铜环,也可以将一条导线的两端连接在信号源的高频输出
端上,再把导线套在收音机的磁棒天线上。
首先把信号源置于高频等幅输出段(开关置于“等幅”位置),频率选择开关置于“频率1”挡,打开收音机开关,无论如何调节也收不到音频信号。
如果把信号源的“调幅、等福”开关置于“调幅”位置,低频选择开关置于“1kHZ”挡,此时信号源输出高频调制波,调节收音机的调谐旋钮,就能够收到1千赫兹的音频信号。
如果转动信号源的频率选择开关,使调制信号变为500赫兹,2千赫兹,收音机发出声音的频率也随之变化,由此可以说明调
制的作用。
如果你能在收音机底板上找到检波二极管,并用一根带夹子的导线将二极管短路,尽管在收音机喇叭里能听到沙沙声,但几乎听不到广播的信号,这说明检波器在收音机里是不可缺少的部分。
它的作用是将音频信号从中频信号中检出。
如果用欧姆表的表笔接触音量电位器的动片与地之间,或者用手拿小起子(接触金属杆)直接刮一下音量电位器的动片与地之间,你可以从扬声器中听到“咔嗒”声响,说明检波器后有音频放大器,通过低频放大和功率放大,使信号电流有足够的功率推动扬声器发出足够
的音响。
电磁波的屏蔽
打开收音机,你能够听到广播音响。
如果把收音机放在铝盒里,声音就没有了,但放在木盒里,声音并不消失,说明封闭的金属盒能够屏蔽电磁波。
多普勒效应
在学校里,请老师帮助把1千赫兹左右的音频声(用信号原发声,或者用音叉发声)录制在你的磁带中。
实验时把磁带放在收录机中,用两根绳子把收录机悬挂在门的气窗横挡上,按下放音按键,使收录机发出音频响声,再让收录机摆动起来;你可以感觉到当收录机向你摆来时音调变高,远离你去时音调变低。
如果在实验室里做这个实验,可以把收录机放在转盘架上旋转,以倾听音调的变化,如图2.6-2所示。
声波干涉
将收录机外接两只较小的单扬声器(喇叭)音箱,使两只音箱并排放置,彼此相距0.5—1米。
播放事先录好的频率为2—3千赫兹的音频磁带,或者将音频信号源的输出接录音机的话筒插口,使两只扬声器发出音频声波。
然后在离两扬声器连线3—6米的位置上用耳朵监听,在两扬声器连线的平行线(例如AB)上向一个方向走动(如图2.6-3),你可以感觉到声强相继出现极小和极大的现象,这是声波干涉的结果。
在声强极大点,到两个扬声器的波程差等于声波波长的整数倍,在声强极小点,到两扬声器的波程差等于声波半波长的奇数倍。
通过实验你可以大致验证声强极大(或极小)的间距满足公式Δx=λ·L/a(λ是波长、a是两声源的距离,L是监测点离声源连线的距离)。