存款复利终值计算
- 格式:xls
- 大小:25.50 KB
- 文档页数:2
复利计算公式:复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。
它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。
它的的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
主要应用于计算多次等额投资的本利终值和计算多次等额回款值。
计算公式:F=P*(1+i)^nF=A((1+i)^n-1)/iP=F/(1+i)^nP=A((1+i)^n-1)/(i(1+i)^n)A=Fi/((1+i)^n-1)A=P(i(1+i)^n)/((1+i)^n-1)F:终值(Future Value),或叫未来值,即期末本利和的价值。
P:现值(Present Value),或叫期初金额。
A :年金(Annuity),或叫等额值。
i:利率或折现率N:计息期数复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
复利的本息计算公式是:F=P(1+i)^n复利计算有间断复利和连续复利之分。
按期(如按年、半年、季、月或日等)计算复利的方法为间断复利;按瞬时计算复利的方法为连续复利。
在实际应用中一般采用间断复利的计算方法。
复利现值复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,必须投入的本金。
所谓复利也称利上加利,是指一笔存款或者投资获得回报之后,再连本带利进行新一轮投资的方法。
复利终值复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。
例题例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的本金+利息收入,按复利计算公式来计算就是:50000×(1+3%)^30由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
怎样理解年金现值、年金终值、复利终值、复利现值?复利现值系数=1/(1+i)^n=(p/s,i,n)其中i为利率,n为期数这是一个求未来现金流量现值的问题59(1+r)^-1+59(1+r)^-2+59(1+r)^-3+59(1+r)^-4+(59+1250)(1+r)^-5=100059*(P/A,I,5)+1250*(P/F,I,5)=1000第一个(P/A,I,5)是年金现值系数第二个(P/F,I,5)是复利现值系数一般是通过插值测出来比如:设I=9%会得一个答案A,大于1000;设I=11%会得另一个答案B,小于1000 则会有(1000-A)/(B-A)=(X-9%)/(11%-9%)解方程可得X,即为所求的10%年金现值系数(P/A,i,n)=[1-(1+i)-n]/i普通年金现值系数(P/A,i,n)=[1-复利现值系数(P/F,i,n)]/i普通年金终值系数(F/A,i,n)=[(1+i)n-1]/i普通年金终值系数(F/A,i,n)=[复利终值系数(F/P,i,n)-1]/i复利现值系数(P/F,i,n)或者(P/S,i,n)=(1+i)-n复利终值系数(F/P,i,n)=F/P=(1+i)^n偿债基金系数(A/F,i,n) 偿债基金系数和年金终值系数互为倒数年金终值就是你每年投入相等量的款项,按照活期存款利率0.72%算,存个10年后全部拿出,到时候你可以得到的数额。
比如你每年存款10万,存10年,年利率0.72%,那么你的年金终值就是:10*(F/A,0.72%,10)=10+10*(1+0.72)+...+10*(1+0.72)10次方年金现值是相反计算,就是你每年投入相等量的款项,按照活期存款利率0.72%算,存个10年后全部拿出,到时候你能拿到这笔钱,那么,年金现值就是指的是这笔钱放在今天,它值多少钱。
比如你每年存款10万,存10年,年利率0.72%,那么你的年金现值就是:10*(P/A,0.72%,10)=10+10/(1+0.72)+...+10/(1+0.72)10次方(打个比方说白一点,年金终值就是指,如果你每隔相等的一个时间段存下相等数量的钱,等若干年后你能够从银行拿到的钱的金额;而年金现值则是指,如果你想在未来的若干年内,每隔相等的一个时间段都能拿到一笔等数量的钱的话,那么现在必须去银行存多少钱。
复利计算公式是计算前一期利息再生利息的问题,计入本金重复计息,即“利生利”“利滚利”。
它的计算方法主要分为2种:一种是一次支付复利计算;另一种是等额多次支付复利计算。
它的的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
主要应用于计算多次等额投资的本利终值和计算多次等额回款值。
F=P*(1+i)^nF=A((1+i)^n-1)/iP=F/(1+i)^nP=A((1+i)^n-1)/(i(1+i)^n)A=Fi/((1+i)^n-1)A=P(i(1+i)^n)/((1+i)^n-1)F:终值(Future Value),或叫未来值,即期末本利和的价值。
P:现值(Present Value),或叫期初金额。
A :年金(Annuity),或叫等额值。
i:利率或折现率N:计息期数复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
复利的本息计算公式是:F=P(1+i)^n复利计算有间断复利和连续复利之分。
按期(如按年、半年、季、月或日等)计算复利的方法为间断复利;按瞬时计算复利的方法为连续复利。
在实际应用中一般采用间断复利的计算方法。
复利现值复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,必须投入的本金。
所谓复利也称利上加利,是指一笔存款或者投资获得回报之后,再连本带利进行新一轮投资的方法。
复利终值复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。
例题例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的本金+利息收入,按复利计算公式来计算就是:50000×(1+3%)^30由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
例如:30年之后要筹措到300万元的养老金,假定平均的年回报率是3%,那么,必须投入的本金是3000000×1/(1+3%)^30每年都结算一次利息(以单利率方式结算),然后把本金和利息和起来作为下一年的本金。
例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)30由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
这均是时间价值问题,简单来讲,今天的100元不等于5年后的100元,那5年后的100元相当于今天的多少呢?这就需要贴现,即用100乘以期限为5,相应利率的复利现值系数,而如果要知道今天的100元相当于5年后的多少呢?则用100乘以复利终值系数,也就是求本利和。
这里的复利终值系数和复利现值系数都是在复利计算下推出的。
(一次性收付款)年金是每隔相同时间就发生相等金额的收付款,比如房租,如果发生时间在每期期末,则称为普通年金,如果以后5年中每年末可以得到100元,相当于今天能得多少(从时间价值考虑,肯定不是500元)就要用100乘以普通年金现值系数 ,反之,比如每年末存银行100元,在复利下5年能得到多少?则用100乘以年金终值系数复利终值系数、复利现值系数是针对一次性收付款,而年金终值系数和年金现值系数是系列收付款,而且是特殊的系列收付款不知道明白没有,最好能看看财务管理中时间价值章节终值的计算终值是指货币资金未来的价值,即一定量的资金在将来某一时点的价值,表现为本利和。
单利终值的计算公式:f=p(1+r×n)n复利终值的计算公式:f = p(1+r)式中f表示终值;p表示本金;r表示年利率;n表示计息年数其中,(1+r)n称为复利终值系数,记为fvr,n,可通过复利终值系数表查得。
现值的计算现值是指货币资金的现在价值,即将来某一时点的一定资金折合成现在的价值。
单利现值的计算公式:复利现值的计算公式:式中p表示现值;f表示未来某一时点发生金额;r表示年利率;n表示计息年数其中称为复利现值系数,记为pvr,n,可通过复利现值系数表查得。
计算复利的方法公式1现值的计算公式(单利和复利)单利利息=本金*利率*年份本息和=本金*(1+利率*年份)复利本息和=本金*(1+利率)V年复利公式有六个基本的:共分两种情况:第一种:一次性支付的情况;包含两个公式如下:1、一次性支付终值计算:F=P×(1+i)^n★2、一次性支付现值计算:P=F×(1+i)^-n★真两个互导,其中P代表现值,F代表终值,i代表利率,n代表计息期数。
例:本金为10000,月利率为%4,连续存60个月,最后是多少?是不是10000*(1+%4)^60第二种:等额多次支付的情况,包含四个公式如下:3、等额多次支付终值计算:F=A×[(1+i)^n-1]/i4、等额多次支付现值计算:P=A×[(1+i)^n-1]/(1+i)^n×i5、资金回收计算:A=P×(1+i)^n×i/[(1+i)^n-1]6、偿债基金计算:A=F×i/[(1+i)^n-1]说明:在第二种情况下存在如下要诀:第3、4个公式是知道两头求中间;第5、6个公式是知道中间求两头;其中3、6公式互导;其中4、5公式互导;A代表年金,就是假设的每年发生的现金流量。
因此本题是典型的一次性支付终值计算,即:F=P×(1+i)^n=500×(1+12%)^2+700×(1+12%)^1=627.2+784=1411.2万元所以你最终的本利和为1411.2万元,利息=1411.2-500-700=211.2万元。
★复利终值的计算复利终值=现值×(1+利率)×期数=现值×复利终值系数例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)×30★复利现值的计算复利现值=终值÷<(1+利率)×期数>=终值÷复利现值系数例如:30年之后要筹措到300万元的养老金,假定平均的年回报率是3%,那么,现在必须投入的本金是3000000÷<(1+3%)×30>1、复利终值,也叫按复利计算的本利和。
3.2.3复利计算的基本公式一、一次支付终值公式终值是指一笔资金在若干计息周期末的期终值,即全部计息周期的本利和。
当计算一次偿还本金和累计利息的期终值时,用复利终值公式:F=P(1+i)n(3-1)式中:F--本利和;P--本金;i--利率;n--利息的周期数;(1+i)n-复利系数。
系数代号写成(F/P,i,n)。
公式可简化成:F=P(F/P,i,n)为了比较简便地使用复利计息的基本公式,一般采用一个规格化代号来代表各个公式中的系数。
它的一般形式为(X/y,i%,n),其中X代表要求的数,y代表已知条件。
因此,复利系数可表示为:(F/P,i,n),复利终值公式可表示为:F=P(F/P,i,n)。
若已知利率、计息周期,直接从查上查得需要的复利系数值。
例1二、一次支付现值公式现值是把未来一定时间收支的货币换算成现在时刻的价值。
当把一次偿还的期终值折算成现值时,用复利现值公式:(3-2)式中:i--折现率,一般用银行利率为折现率;--现值系数或折现系数。
系数代号写成(P/F,i,n)公式可简化成:P=F(P/F,i,n)例2三、年金终值公式(等额支付终值)“年金”是指逐年等额借款或付款的金额。
当逐年等额借款.累计一次偿还期终值时,用年金终值公式计算:(3-3)式中:F--指一次偿还期终值或一次提取期终值;A--表示每个计息期末等额借款或等额存款;--年金终值系数。
系数代号写成(F/A,i,n)。
公式可简化成:F=A(F/A,i,n)例3四、偿债基金公式(等额支付偿债基金)为筹措将来需要的一笔资金,求每个计息期末等额存储的金额数时,用存储基金公式计算:(3-4)式中:F--指一次偿还期终值或一次提取期终值;A--表示每个计息期末等额借款或等额存款;__偿债基金系数;系数代号写成(A/F,i,n)。
公式可简化成:A=F(A/F,i,n)例4五、资金还原公式(等额支付资金回收)当借贷一笔资金后,在每年计息周期末等额偿还本利和时,用资金还原公式计算:(3-5)公式推导如下:式中:--资金还原系数,系数代号写成(A/P,i,n)公式可简化成:A=P(A/P,i,n)例5六、年金现值公式(等额支付现值)当逐年等额收益(或支付)一笔年金,求此收益(或支付)年金的现值时,用年金现值公式计算:(3-6)公式来源于资金还原公式。
单利、复利和年金的计算(有附表)一、单利的终值和现值设定I 为利息;P 为现值;F 为终值;i 为每一利息期的利率(折现率);n 为计算利息的期数。
复利计算的符号标识相同。
按照单利的计算法则,利息的计算公式为I P i n =⨯⨯在计算利息时,除非特别指明,一般给出的利率均为年利率,对于不足一年的利息,以一年等于360天来折算。
单利终值的计算公式如下:(1)F P P i n P i n =+⨯⨯=+⨯ 单利现值的计算与单利终值的计算是互逆的,由终值计算现值的过程称为折现。
单利现值的计算公式为1Fp i n=+⨯ 二、复利的终值和现值(一)复利终值(已知现值P ,求终值F )资金时间价值通常是按复利计算的。
复利不同于单利,它是“利上滚利”,既涉及本金上的利息,也涉及利上所生的利息。
复利终值是指一定量的本金按复利计算若干期后的本利和。
其计算公式如下:(1)n F P i =⨯+ 计息期为二期以上时,复利的终值大于单利的终值,时间越长,相差越大。
单利是随时间的延长而按等差级数增长;复利则是按等比级数增长。
在复利终值的计算公式中,()1ni +表示本金为1元时,n 期的复利终值,称为1元的复利终值系数,也可写成(F /P ,i ,n )。
为了简化运算,在计算复利终值时,可通过查“复利终值系数表”求得。
(二)复利现值(已知终值F ,求现值P )复利现值相当于原始本金,它是指今后某一特定时间收到或付出的一笔款项,按折现率i 所计算的现在时点价值。
其计算公式为/(1)(1)n n P F i F i -=+=⨯+ 式中(1)n i -+通常称作1元的复利现值系数,记作(P/F ,i ,n ),可以直接查阅“复利现值系数表”。
上式也可写作P=F (P/F ,i ,n )。
三、年金(A )除了上述的一次性收付款项之外,在现实经济生活中,还存在一定时期内每次等额收付的系列款项,即年金,通常用A 表示。
由于年金分为普通年金、即付年金、递延年金、永续年金等几种,有关终值和现值的计算方法不一样,下面分别作介绍。
财务管理计算题:某人现在存入现金100000元,定期5年,若银行存款年利率(复利)为10% 那么5年到期时本利为多少?(已知利率为10%,期数为5的复利终值系数为1.611;利率为10%,期数为5的年金系数为6。
105)到期的本利和=100000*1.611=161100元年金是指每年在某一时期定期存入一定金额,一共存N期,这时用年金系数来计算;现在存入现金100000元,5年后的本利和,用终值系数计算。
因为利率总调整,我就给你具体计算银行存款利息的公式方法吧~1、计算活期储蓄利息:每年结息一次,7月1日利息并入本金起息。
未到结息日前清户者,按支取日挂牌公告的活期储蓄存款利率计付利息,利息算到结清前一天止。
确定存期:在本金、利率确定的前提下,要计算利息需要知道确切的存期.在现实生活中,储户的实际存期很多不是整年整月的,一般都带有零头天数,这里介绍一种简便易行的方法,可以迅速准确地算出存期,即采用以支取日的年、月、日分别减去存入日的年、月、日,其差数为实存天数。
例如:支取日:1998年6月20日-存入日:1995年3月11日=3年3月9日按储蓄计息对于存期天数的规定,换算天数为:3×360(天)3×30(天)9如果发生日不够减时,可以支取“月"减去“1”化为30天加在支取日上,再各自相减,其余类推。
这种方法既适合用于存款时间都是当年的,也适用于存取时间跨年度的,很有实用价值.2、计算零存整取的储蓄利息到期时以实存金额按开户日挂牌公告的零存整取定期储蓄存款利率计付利息。
逾期支取时其逾期部分按支取日挂牌公告的活期储蓄存款利率计付利息.零存整取定期储蓄计息方法有几种,一般家庭宜采用“月积数计息"方法。
其公式是:利息=月存金额×累计月积数×月利率,其中:累计月积数=(存入次数1)÷2×存入次数。
据此推算一年期的累计月积数为(121)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
单利、复利与连续复利
同样的货币在不同的时间点上的价值是不等的,现在一元钱的价值也要大于以后的一元钱的价值,这就是货币的时间价值。
而利息就是衡量货币时间价值的一种方式。
计息的方式有两种:单利和复利。
所谓单利,是指计算利息时,上期利息并不计入本金之内,仅按本金计算的利息,其计算公式如下:
单利利息=本金×利率×期数
例1某人在银行存款10000元,月利率为0.5%,按照单利计算。
求一年后的本息和。
解:由单利计算公式,一年后的本息和为
(元)
10600210.5%1000000001=⨯⨯+复利不同于单利,它不仅要计算本金上的利息,也要计算利息所产生的利息,即所谓“利上滚利”。
按这种计算方法计息,每期末结息一次,然后将利息加入本金作为下一次计息的基础,复利终值的计算公式如下:
本金
利率本金复利利息期数-)1(+⨯=例2设复利年利率为5%,那么20年后,1000元现金产生的利息和是多少?解:由复利计算公式,20年后的利息和为
(元)
65311000-%)51(10002020=+⨯=S 连续复利是复利中的特殊情况。
它是指在期数趋于无限大的极限情况下得到的利率,此时不同期之间的间隔很短,可以看作是无穷小量。
连续复利的公式为:
本金
本金连续复利利息期限利率-⨯⨯=e 例3设连续复利下,年利率为5%,那么20年后,1000元现金产生的利息和是多少?
解:由连续复利计算公式,20年后的总利息为
(元)17181000-e 100020%520=⨯=⨯S。
连续复利的计算公式
连续复利计算公式F=P*。
连续复利:
在极端情况下,本金C0在无限短的时间内按照复利计息。
假设利息率为δ,e为自然常数,则在投资年限T年后,投资的终值FV=C0×e^(δt)。
扩展资料:
复利的计算是对本金及其产生的利息一并计算,也就是利上有利。
复利计算的特点是:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的。
复利的计算公式是:
复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,现今必须投入的本金。
所谓复利也称利上加利,是指一笔存款或者投资获得回报之后,再连本带利进行新一轮投资的方法。
复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。
简单来讲,就是在期初存入A,以i为利率,存n 期后的本金与利息之和。
公式:F=A*(1+i)^n.
例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算本利和(终值)是:50000×(1+3%)^30
由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。
只需将公式中的利率换成通胀率即可。
存入本金500000.00
年利率2.25%
存款期限1
终值¥511,366.74
日期1月31日2月28日3月31日4月30日5月31日6月30日
本金500000.00500937.50501876.76502817.78503760.56504705.11
利息937.50939.26941.02942.78944.55946.32
本利和500937.50501876.76502817.78503760.56504705.11505651.43
存款单利终值计算及资金变化图表
494000.00
496000.00
498000.00
500000.00
502000.00
504000.00
506000.00
508000.00
510000.00
512000.00
514000.00
1月31日2月28日3月31日4月30日5月31日6月30日7月31日8月31日9月30日
本金、利息及本利和变化图表
7月31日8月31日9月30日10月31日11月30日12月31日
505651.43506599.53507549.40508501.06509454.50510409.73
948.10949.87951.66953.44955.23957.02
506599.53507549.40508501.06509454.50510409.73511366.74
925.00
930.00
935.00
940.00
945.00
950.00
955.00
960.00
30日10月31日11月30日12月31日
本金
本利和
利息
指数(利息)