函数单调性和最值
- 格式:ppt
- 大小:3.88 MB
- 文档页数:84
突破10 函数的单调性与最值重难点突破一、考情分析二、经验分享【知识点一、函数的单调性】 1.函数单调性的定义一般地,设函数f (x )的定义域为I :①如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是增函数;②如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是减函数. 名师解读:对函数单调性的理解:(1)定义中的x 1,x 2有三个特征:①任意性,即不能用特殊值代替;②属于同一个区间;③有大小,一般令x 1<x 2.(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系的直接转化:若()f x 是增函数,则()()1212f x f x x x ⇔<<;若()f x 是减函数,则()()1212f x f x x x ⇔<>.2.函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)___________,区间D 叫做y =f (x )的___________. 名师解读:对函数单调区间的理解(1)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.(2)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(3)函数的单调性是对某个区间而言的,在某一点上不存在单调性. (4)并非所有的函数都具有单调性.如函数()1,0,x x f x ⎧=⎨⎩是有理数是无理数就不具有单调性.名师解读:常见函数的单调性【知识点二、函数的最大值与最小值】 1.最大值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称M 是函数()y f x =的最大值.函数的最大值对应图象最高点的纵坐标. 2.最小值一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有___________;(2)存在0x I ∈,使得___________. 那么,我们称m 是函数()y f x =的最小值.函数的最小值对应图象最低点的纵坐标. 名师解读:函数的最值与单调性的关系如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()y f x =,,()x a c ∈在x b =处有最大值()f b .如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()y f x =,,()x a c ∈在x b =处有最小值()f b .如果函数()y f x =在区间[],a b 上是增(减)函数,则在区间[],a b 的左、右端点处分别取得最小(大)值和最大(小)值.三、题型分析(一) 证明或判断函数的单调性 例1、证明:函数21()f x x x=-在区间(0,+∞)上是增函数. 【答案】证明详见解析.【变式训练1】.用单调性定义证明:函数在(﹣∞,1)上为增函数.【思路分析】利用单调性的定义进行证明,设x 1<x 2<1,再作差、变形、判断符号,证f (x 2)>f (x 1),把x 1和x 2分别代入函数f (x )进行证明.【答案】解:设x 1<x 2<1, 则f (x 1)﹣f (x 2)∵x 1<x 2<1,∴x 2﹣x 1>0,x 1+x 2<2,x 1+x 2﹣2<0 ∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在(﹣∞,1)上是增函数.【变式训练2】.用定义法证明函数f (x )在(,+∞)上是增函数;【思路分析】利用函数单调性的定义即可证明函数f (x )在(,+∞)上是增函数;【答案】解:f (x )1任意设x 1<x 2,则f (x 1)﹣f (x 2)()[]=(),∵x 1<x 2,∴x 1﹣x 2<0,x 1,x 20,∴f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在(,+∞)上是增函数;【名师点睛】函数单调性判断的等价变形:()f x 是增函数⇔对任意12x x <,都有12()()f x f x <,或1212()()0f x f x x x ->-,或1212(()())()0f x f x x x -->;()f x 是减函数⇔对任意12x x <,都有12()()f x f x >,或1212()()0f x f x x x -<-,或1212(()())()0f x f x x x --<.(二) 函数单调性的应用例2、若函数()223()1f x ax a x a -+=-在[1,+∞)上是增函数,求实数a 的取值范围.【答案】0≤a ≤1【变式训练1】.已知函数f (x )的定义域为R ,且对任意的x 1,x 2且x 1≠x 2都有[f (x 1)﹣f (x 2)](x 1﹣x 2)>0成立,若f (x 2+1)>f (m 2﹣m ﹣1)对x ∈R 恒成立,则实数m 的取值范围是( ) A .(﹣1,2)B .[﹣1,2]C.(﹣∞,﹣1)∪(2,+∞)D.(﹣∞,﹣1]∪[2,+∞)【思路分析】本题可根据题干判断出函数f(x)在定义域R上为增函数,然后根据f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,得出x2+1>m2﹣m﹣1,则m2﹣m﹣1<1,可得实数m的取值范围.【答案】解:由题意,可知:∵对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,∴函数f(x)在定义域R上为增函数.又∵f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,∴x2+1>m2﹣m﹣1,∴m2﹣m﹣1<1,即:m2﹣m﹣2<0.解得﹣1<m<2.故选:A.【变式训练2】.若函数f(x)是R上的减函数,则下列各式成立的是()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+2)<f(2a)D.f(a2+1)>f(a)【思路分析】由a和2a,a2和a无法确定大小关系,结合函数的单调性判断出A、B错误;由a2+2﹣2a平方后判断出a2+2>2a,结合函数的单调性判断出C正确;与判断C一样的方法判断出D错误.【答案】解:因为a和2a,a2和a无法确定大小关系,所以不能确定相应函数值的大小关系,故A、B错误;因为a2+2﹣2a=(a﹣1)2+1>0,所以a2+2>2a,又因函数f(x)是R上的减函数,所以f(a2+2)<f(2a),故C正确;因为a2+1﹣a0,所以a2+1>a,又因函数f(x)是R上的减函数,所以f(a2+1)<f(a),故D错误.故选:C.【变式训练3】.设f(x)=|x﹣a|a,x∈[1,6],若a∈(1,2],求f(x)的单调区间;【思路分析】运用绝对值的定义,将f(x)转化,讨论a∈(1,2],函数f(x)在[1,a]上,在[a,6]上的单调性即可得到;【答案】解:首先f (x ),因为当1<a ≤2时,f (x )在[1,a ]上是增函数,在[a ,6]上也是增函数. 所以当1<a ≤2时,y =f (x )在[1,6]上是增函数;【名师点睛】本题中()223()1f x ax a x a -+=-不一定是二次函数,所以要对a 进行讨论.另外,需熟练掌握一次函数、反比例函数和二次函数的单调性,并能灵活应用. (三) 求函数的最大值与最小值例3、已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值.【答案】答案详见解析.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即t ≤-1时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3.(2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4.(4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩ ,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩. 【变式训练1】.对a ,b ∈R ,记max {a ,b },函数f (x )=max {|x +1|,|x ﹣2|}(x ∈R )的最小值是( ) A .0B .C .D .3【思路分析】根据题中所给条件通过比较|x +1|、|x ﹣2|哪一个更大先求出f (x )的解析式,再求出f (x )的最小值.【答案】解:当x <﹣1时,|x +1|=﹣x ﹣1,|x ﹣2|=2﹣x ,因为(﹣x ﹣1)﹣(2﹣x )=﹣3<0,所以2﹣x >﹣x ﹣1; 当﹣1≤x 时,|x +1|=x +1,|x ﹣2|=2﹣x ,因为(x +1)﹣(2﹣x )=2x ﹣1<0,x +1<2﹣x ;当x <2时,x +1>2﹣x ;当x≥2时,|x+1|=x+1,|x﹣2|=x﹣2,显然x+1>x﹣2;故f(x)据此求得最小值为.故选:C.【变式训练2】.已知函数f(x),x∈[1,+∞),(1)当a时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【思路分析】(1)a时,函数为,f在[1,+∞)上为增函数,故可求得函数f(x)的最小值(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立,利用分类参数法,通过求函数的最值,从而可确定a的取值范围【答案】解:(1)因为,f(x)在[1,+∞)上为增函数,所以f(x)在[1,+∞)上的最小值为f(1).…(6分)(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立.即a>﹣(x+1)2+1在[1,+∞)上恒成立.令g(x)=﹣(x+1)2+1,则g(x)在[1,+∞)上递减,当x=1时,g(x)max=﹣3,所以a>﹣3,即实数a的取值范围是(﹣3,+∞).…(6分)【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合.四、迁移应用1.集合{x|x≥2}表示成区间是A.(2,+∞)B.[2,+∞)C.(–∞,2)D.(–∞,2]【答案】B【解析】集合{x|x≥2}表示成区间是[2,+∞),故选B.2.集合{x|x>0且x≠2}用区间表示出来A.(0,2)B.(0,+∞)C.(0,2)∪(2,+∞)D.(2,+∞)【答案】C【解析】集合{x|x>0且x≠2}用区间表示为:(0,2)∪(2,+∞).故选C.3.函数f(x)=(x–1)2的单调递增区间是A.[0,+∞)B.[1,+∞)C.(–∞,0] D.(–∞,1]4.已知函数f(x)=–1+11x(x≠1),则f(x)A.在(–1,+∞)上是增函数B.在(1,+∞)上是增函数C.在(–1,+∞)上是减函数D.在(1,+∞)上是减函数5.函数y=f(x),x∈[–4,4]的图象如图所示,则函数f(x)的所有单调递减区间为A.[–4,–2] B.[1,4]C.[–4,–2]和[1,4] D.[–4,–2]∪[1,4]【答案】C【解析】由如图可得,f(x)在[–4,–2]递减,在[–2,1]递增,在[1,4]递减,可得f(x)的减区间为[–4,–2],[1,4].故选C .6.函数g (x )=|x |的单调递增区间是A .[0,+∞)B .(–∞,0]C .(–∞,–2]D .[–2,+∞)【答案】A【解析】x ≥0,时,g (x )=x ,x <0时,g (x )=–x ,故函数在[0,+∞)递增,故选A .7.已知f (x )是定义在[0,+∞)上单调递增的函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .1223⎛⎫ ⎪⎝⎭,B .23⎛⎫-∞ ⎪⎝⎭,C .1223⎡⎫⎪⎢⎣⎭,D .23⎛⎤-∞ ⎥⎝⎦,【答案】C【解析】∵f (x )是定义在[0,+∞)上单调递增的函数,∴不等式()1213f x f ⎛⎫-< ⎪⎝⎭等价为0≤2x –1<13,即12≤x <23,即不等式的解集为1223⎡⎫⎪⎢⎣⎭,,故选C . 8.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B【解析】∵y =|x –2|=2222x x x x -≥⎧⎨-+<⎩,,,∴函数y =|x –2|的单调递减区间是(–∞,2],∴f (x )=–|x –2|的单调递减区间是[2,+∞),故选B . 9.函数f (x )=x +2x(x >0)的单调减区间是A .(2,+∞)B .(0,2)C +∞)D .(0)【答案】D【解析】函数f (x )=x +2x (x >0),根据对勾函数图象及性质可知,函数f (x )=x +2x(x >0),+∞)单调递增,函数f (x )在(0)单调递减.故选D . 10.函数f (x )=x +bx(b >0)的单调减区间为A .()B .(–∞,,+∞)C .(–∞,)D .(,0),(0)【答案】D【解析】函数f (x )=x +b x (b >0),的导数为f ′(x )=1–2bx,由f ′(x )<0,即为x 2<b ,解得<x <0或0<x ,则f (x )的单调减区间为(,0),(0).故选D . 11.函数f (x )=x +3|x –1|的单调递增区间是A .(–∞,+∞)B .(1,+∞)C .(–∞,1)D .(0,+∞)【答案】B【解析】函数f (x )=x +3|x –1|,当x ≥1时,f (x )=x +3x –3=4x –3,可得f (x )在(1,+∞)递增;当x <1时,f (x )=x +3–3x =3–2x ,可得f (x )在(–∞,1)递减.故选B .。
利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。
本文将重点讨论如何利用导数来求解函数的单调性及最值问题。
1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。
它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。
2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。
因此,我们可以利用导数的正负性来判断函数的单调性。
例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。
我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。
因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。
3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。
因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。
最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。
例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。
这两个点即为函数f(x)的极值点。
我们还需要判断它们是否是函数的最值点。
当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。
专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。
第4讲 函数的单调性与最大(小)值第一部分 知识梳理1.设函数y=f(x)的定义域为I,增函数:如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.减函数:,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间D上是减函数.2.判断函数单调性的方法①直接法:对于我们熟悉的函数,如一次函数、二次函数的、反比例函数,我们都可以直接判断他们的单调性,并求其单调区间②图像法:增函数的图象是从左向右是上升的,减函数的图象从左向右是下降的③定义法:证明函数单调性的五个步骤:ⅰ)取值 ⅱ)作差 ⅲ)变形 ⅳ)判号 ⅴ)定论3.函数最大(小)值的定义:一般地,设函数的定义域为I,如果存在实数满足①对于任意,都有;②存在,使,那么是函数的最大(小)值。
4.函数的单调性与最值(1)若函数在区间上是增函数,则函数的最小值,最大值: ;若函数在区间上减函数,则函数的最小值,最大值:(2)若函数在区间上是增函数,则在区间不存在最值,但可以说函数在区间上的值域:第二部分 精讲点拨考点1 .作图像写出单调区间(1).函数的单调递增区间是 ,单调递减区间是 .思考:指出函数的单调区间,并且算出最大值考点2 比较函数值的大小(2).已知函数f (x)= x2-2x+2,那么f (1),f (-1),f ()之间的大小关系为( )如果函数,对于任意的实数都有,试比较的大小考点3 求下列函数最值(1)(2)(3)已知,对于函数,若,函数的最小值为1,最大值为,试求的值考点4 求参数的范围(4).二次函数在区间(∞,4)上是减函数,能确定的是( ).A. B. C. D.若函数在上为增函数,则实数的取值范围?考点5 换元法求函数最值(5)函数的最小值____________考点6 函数单调性的判断及求最大(小)值例2.(1)证明函数在定义域上是增函数(2)证明函数:在上是减函数试证明的单调递增区间是,;单调递减区间是例3 . 求函数在区间上的最大值和最小值已知函数,求在区间上的最大值.考点7 抽象函数例4 . 已知道是定义域上的增函数,若,求实数的取值范围已知道是定义域上的增函数,若,求实数的取值范围第三 部分 过关检测一、选择题1. 函数的单调增区间是( )A. B. C. R D.不存在2. 如果函数在R上单调递减,则( )A. B. C. D.3. 在区间上为增函数的是( )A. B.C. D.4.在区间(0,2)上是增函数的是( ).A. y=-x+1B. y=C. y= x2-4x+5D. y=5. 函数的最小值是( ).A. 0B. -1C. 2D. 36. 函数的最小值是( ).A. 0B. 2C. 4D.7.函数在和都是增函数,若,且那么( )A. B.C. D.无法确定8.定义在上的偶函数在是增函数,则不等式等价于( )A. B. C. D. 或9.函数在区间是增函数,则的递增区间是 ( )A. B. C. D.10.已知是R上的增函数,令,则是R上的( ).A.增函数 B.减函数 C.先减后增 D.先增后减二、填空题1.求函数的最小值______2.函数,单调递减区间为 ,最大值和最小值的情况为 .3.函数的单调递减区间是__________________.4.已知在实数集上是减函数,若,则下列正确的是 ________①.②③. ④.三、解答题1.试用函数单调性的定义判断函数在区间(0,1)上的单调性.2.求下列函数的值域 (1) (2) (3)3.已知函数.(1)证明在上是减函数;(2)当时,求的最大值和最小值.4. 已知函数.① 当时,求函数的最大值和最小值;② 求实数的取值范围,使在区间上是单调函数.5.已知函数在区间[0,1]上的最大值为2,求实数a的值.6.已知函数f(x)= ,若f(x)在区间(0,1]上是减函数,实数a的取值范围7.已知函数的定义域为R,对任意实数、均有,且,又当时,有. (1)求的值; (2)求证:是单调递增函数.。
专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.(×)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(6)函数f(x)=log5(2x+1)的单调增区间是(0,+∞).(×)考点一求函数的单调性(区间)A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A(2)函数f(x)=lg x2的单调递减区间是________.答案:(-∞,0)(3)判断并证明函数f(x)=axx2-1(其中a>0)在x∈(-1,1)上的单调性.(二次除以一次的处理;拓展一次除以一次)[方法引航]判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论.(2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减.(4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x C.y=ln x D.y=|x|选B.2.函数y=|x|(1-x)在区间A上是增函数,那么区间A是()A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞选B.3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________.答案:43,1(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________. 答案:251.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12 f (x )的最大值为f (2)=23-2=6.考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y <B .22log log x y <C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫32,2[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).f (4a 2-2a -5)<f (a +2)的解集为⎣⎢⎡⎭⎪⎫32,74.2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[答案] [2,+∞)[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________. [答案] ⎣⎢⎡⎭⎪⎫12,3[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x选项D 符合题意.2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 故选A.3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x故选A. 4.函数f (x )=xx -1(x ≥2)的最大值为________.答案:25.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫12,32课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减解析:选C.2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) x 的取值范围是x >1或x <0.3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1) 4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0综上所述得-14≤a ≤0.5.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3选C.6.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.答案:(-1,0)∪(0,1)7.y =-x 2+2|x |+3的单调增区间为________.答案:(-∞,-1],[0,1]8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________. 答案:(-∞,1]9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值. g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)画出g (t )的图象如图所示,由图象易知g (t )的最小值为-8. 10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定选A.2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2) D .(-2,0)选A.3.函数f (x )=log 5(2x +1)的单调递增区间是________. 答案:⎝ ⎛⎭⎪⎫-12,+∞4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以f (x )在(0,+∞)上是单调递减函数. (3)∵[2,9]⊆(0,+∞),∴f (x )在[2,9]上为减函数f (x )min =f (9).由题意可知f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2),∴f (9)=f ⎝ ⎛⎭⎪⎫93+f (3)=2f (3)=-2.∴f (x )在[2,9]上的最小值为-2.专题 函数的奇偶性与周期性1.函数的奇偶性(1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√)(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√)(6)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (7)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (8)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1](1)A.y=x B.y=e xC.y=cos x D.y=e x-e-x答案:D(2)下列函数中为偶函数的是()A.y=1x B.y=lg|x|C.y=(x-1)2D.y=2x答案:B(3)函数f(x)=3-x2+x2-3,则()A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数答案:D[方法引航]判断函数的奇偶性的三种重要方法(1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y轴)对称.(3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x 1+x;(2)f(x)=lg 1-x1+x.(其它底数)(其它变形形式)原函数是奇函数.考点二函数的周期性及应用[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1) 答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2019)=________.答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log 2(x +1),求f (-2 017)+f (2 019)的值.f (-2 017)+f (2 019)=2.拓展延伸:已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m 解析:选B.考点三 函数奇偶性的综合应用[例3] (1)若函数f (x )=2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案:C (注重多种解法) (2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. ①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0. 解:①a =1.∴f (x )=x 1+x2,经检验适合题意.②证明:(略)f (x )在(-1,1)上为增函数. ③0<t <12.3.设奇函数()f x 在(0,+∞)上为增函数,且)1(f =0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)(4)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )<0的x 的集合为( ) A.⎝ ⎛⎭⎪⎫-∞,12∪(2,+∞) B.⎝ ⎛⎭⎪⎫12,1∪(1,2) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎭⎪⎫12,1∪(2,+∞) 满足不等式f<0的x 的集合为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 3.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( )A .2B .-2C .0D .2log 213f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2.[方法探究]“多法并举”解决抽象函数性质问题[典例] 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析] 第一步:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. (赋值法):令x =y =0,∴f (0)=0.令x +y =0,∴y =-x ,∴f (0)=f (x )+f (-x ). ∴f (-x )=-f (x ),∴f (x )为奇函数.第二步:∵f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,∴f (x )在[0,1]上为增函数. 第三步:由f (x +2)=-f (x )⇒f (x +4)=-f (x +2) ⇒f (x +4)=f (x ),(代换法)∴周期T =4,即f (x )为周期函数.第四步:f (x +2)=-f (x )⇒f (-x +2)=-f (-x ).(代换法) 又∵f (x )为奇函数,∴f (2-x )=f (x ),∴关于x =1对称.第五步:由f (x )在[0,1]上为增函数,又关于x =1对称, ∴[1,2]上为减函数.(对称法)第六步:由f (x +2)=-f (x ),令x =0得f (2)=-f (0)=f (0).(赋值法) [答案] ①②③④[回顾反思] 此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数选C.2.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2解析:选D3.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:15.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x解析:选B.2.下列函数中既不是奇函数也不是偶函数的是( ) A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析:选D.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 解析:选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2 解析:选A.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12 D .-1解析:选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.∴f (x )=⎩⎪⎨⎪⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)B 组 能力突破1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( ) A .2 B.154 C.174 D .a 2解析:选B.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D.4.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2)且f(2 016)=2 016,则f(2 028)=________.解析:∵x∈R,f(x)=f(x+2)+f(x-2),∴f(x+4)=f(x+2)-f(x)=-f(x-2),∴f(x+6)=-f(x),∴f(x+12)=f(x),则函数f(x)是以12为周期的函数.又∵f(2 016)=2 016,∴f(2 028)=f(2 028-12)=f(2 016)=2 016.答案:2 0165.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.专题二次函数与幂函数1.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)五种幂函数的图象(3)五种幂函数的性质y=(1)二次函数的图象和性质R ①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当α<0时,幂函数y=xα是定义域上的减函数.(×)(2)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(3)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(4)当n>0时,幂函数y=x n是定义域上的增函数.(×)(5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)考点一二次函数解析式________.答案:x2+2x[方法引航]根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.答案:-2x2+4考点二 二次函数图象和性质[例2] (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;解:(1) f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解; (3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f(x )=0在[-4,6]上有两个不相等实根,求a 的取值范围.解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎪⎨⎪⎧ f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎪⎨⎪⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立, 即2a >-⎝ ⎛⎭⎪⎫x +3x 在x ∈(0,6]上恒成立,只需求u =-⎝ ⎛⎭⎪⎫x +3x ,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号. ∴u max =-23, ∴2a >-23,∴a >- 3.综合运用:已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) 注重巧解 A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3}解析:选D.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( ) A .-1 B .2 C .-1或2 D .3答案:B (3)已知f (x )=,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.2.若,则实数a 的取值范围是________.(陷阱) 解析:不等式等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32[规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决.[典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分 ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2. 6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分 (3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0.第二层:开口方向a>0和a<0.第三层:对称轴x=1a与区间[0,1]的位置关系,左、内、右.(2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知则()A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A.2.(2015·高考山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a解析:选C.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1x B.y=e-xC.y=-x2+1 D.y=lg|x|解析:选C.4.设函数则使得f(x)≤2成立的x的取值范围是________.答案:(-∞,8]5.已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.答案:4课时规范训练 A 组 基础演练1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:选A.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a ≤-2 B .-2<a <2 C .a >2或a <-2 D .1<a <3解析:选C.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a . 结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m 8≤2,即m ≤16.答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b2a =-1,∴2a -b =0.当x =-1时,对应最大值,f (-1)=a -b +c >0. ∵b =2a ,a <0,∴5a <2a ,即5a <b . 3.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].指数与指数函数1.根式 (1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)a 的n 次方根的表示x n =a ⇒⎩⎪⎨⎪⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂: (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质R4.(1)na n与(na)n都等于a(n∈N*).(×)(2)函数y=a-x是R上的增函数.(×)(3)函数y=a x2+1(a>1)的值域是(0,+∞).(×)(4)当x>0时,y=a x>1.(×)(5)函数y=2x-1+1,过定点(0,1).(×)考点一指数幂的运算解:[方法引航]指数幂的化简方法(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.1.化简-(-1)0的结果为()(易错)A.-9B.7C.-10 D.9解析:选B.-(-1)0=-1=8-1=7.考点二指数函数图象及应用命题点1.指数函数图象的变换2.指数函数图象的应用[例2](1)函数x b的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D(2)k为何值时,方程|3x-1|=k无解?有一解?有两解?[方法引航](1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=2|x -1|的图象是( )解析:选B.f (x )=2|x -1|的图象是由y =2|x |的图象向右平移一个单位得到,故选B. 2.(2017·河北衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]考点三 指数函数的性质 [例3] (1)(2017·天津模拟)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案:D (2)不等式2-x2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案:{x |-1<x <4} (3)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3①若f (x )有最大值3,求a 的值; ②若f (x )的值域是(0,+∞),求a 的值. 解:①令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.②由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.[方法引航] (1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)解决简单的指数方程或不等式问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.1.若本例(1)中的三个数变为y 1=,y 2=,y 3=,则大小关系如何.解析:构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得y 2<y 3,又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故,即y 1>y 3,∴y 1>y 3>y 2.答案:D2.在本例(3)中,若a =-1,求f (x )的单调区间. 解:当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). 3.在本例(3)中,若a =1,求使f (x )=1的x 的解. 解析:当a =1时,f (x )=⎝ ⎛⎭⎪⎫13x 2-4x +3=1∴x 2-4x +3=0,∴x =1或x =3. 答案:1或3[方法探究]整体换元法,巧化指数式指数式的运算化简除了定义和法则外,根据不同的题目结构,可采用整体换元等方法.一、根据整体化为同指数[典例1] 计算(3-2)2 018·(3+2)2 019的值为________. [答案]3+ 2二、根据整体化为同底数[典例2] 若67x =27,603y =81,则3x -4y =________.期末考试第一题 [解析] ∵67x =27,603y =81,[答案] -2三、根据整体构造代数式 [典例3] 已知a 2-3a +1=0,则=________.[解析] ∵a 2-3a +1=0,∵a ≠0,∴a +1a =3.[答案]5四、根据整体构造常数a x ·a -x =1 [典例4] 化简4x4x +2+41-x 41-x +2=________.[答案] 1 五、根据整体换元[典例5] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[解析] 因为x ∈[-3,2], 所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57. 故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[高考真题体验]1.已知则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a 解析:选B.3.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=D .f (x )=⎝ ⎛⎭⎪⎫12x解析:选B.5.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案:-326.(2015·高考福建卷)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案:1课时规范训练 A 组 基础演练1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C.2.在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:选A4.函数y =2x -2-x 是( )A .奇函数,在区间(0,+∞)上单调递增B .奇函数,在区间(0,+∞)上单调递减C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减 解析:选A.5.设函数f (x )=⎩⎪⎨⎪⎧1x(x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)解析:选C.6.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)7.计算:=________.答案:28.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 答案:(1,+∞)9.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上为增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.10.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24), ∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ,则g (x )在(-∞,1]上单调递减, ∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.B 组 能力突破1.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4解析:选D.2.已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤13,611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 解析:选B.3.已知f (x )=9x -13x +1,且f (a )=3,则f (-a )的值为________.结论: 答案:-1 4.设函数f (x )=aa 2-1(a x -a -x )(a >0,a ≠1)(1)讨论f(x)的单调性;(2)若m∈R满足f(m)>f(m2+2m-2),求m的范围.解:(1)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a -x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x 为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.(2)由(1)知函数f(x)在R上单调递增.∴由f(m)>f(m2+2m-2)得m>m2+2m-2,即m2+m-2<0,(m+2)(m-1)<0,∴-2<m<1.故m的范围为(-2,1).对数与对数函数1.对数的概念如果a x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log m a M n=nm log a M.(2)对数的性质:①a log a N=N;②log a a N=N(a>0且a≠1).(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.3.对数函数的图象与性质(1)定义域:(0,+∞)指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.5.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若MN>0,则log a(MN)=log a M+log a N.(×)(2)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)其它底数呢?(3)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0).(√)(4)log2x2=2log2x.(×)(5)当x>1时,log a x>0.(×)(6)当x>1时,若log a x>log b x,则a<b.(×)考点一 对数式的运算[例1] (1)若x =log 43,则(2x -2-x )2等于( ) A.94 B.54 C.103 D.43答案:D(2) 2lg 2-lg 125的值为( ) (略) A .1 B .2 C .3 D .4 答案:B[方法引航] (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.已知4a =2,lg x =a ,则x =________. 答案:102.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72 解析:选A.。
公开课《函数的单调性与最值》教学设计(建阳一中市级公开周)函数的单调性是函数应用中最基本、最重要的知识点,求函数的最值都离不开单调性,而单调性的基础数形结合,这类题型是历年高考的热点,也是难点,针对这类基础薄弱的学生,起点不宜太高,只能从最基础的部分拾起,以题目贯穿内容,逐级而上.教学方法:提示练习探讨法教学过程一、复习引入1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意的x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ; (4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值二、新课讲授典例讲解问题一:不含参数的函数的单调性例1.求函数 12-=x y 在区间[2,6]上的最大值和最小值..求函数 []10,2,16)(∈+=x xx x f 的最大值.例2.求下列函数的最值. (1)2)(x x f =(2)[)3,0,12)(2∈--=x x x x f2(3)()21[1,1]f x x ax =---求函数在上的最小值。
【题后感悟】(1)如何求二次函数在闭区间[m,n]上的最值? 确定二次函数的对称轴,如x=a;根据对称轴与给定区间的位置关系分类讨论; 结合图象明确函数的单调区间进而求解.(2)二次函数在闭区间上的最值只可能在区间的端点处及二次函数图象的对称轴处取得.跟踪练习.][)[][).()(1,3)(3,22)(0,2)1(,32)(2t g x f t t x x f x x f x x x f x的最小值时,求)当(的最值;时,求)当(的最值;时,求当已知二次函数+∈-∈-∈+-=课堂小结利用函数单调性判断函数的最大(小)值的方法 1. 利用图象求函数的最大(小)值2.利用二次函数的性质(配方法)求函数的最大(小)值3.利用函数单调性判断函数的最大(小)值 (1)如果函数y=f(x)在区间[a ,b]上单调递增,则函数y=f(x)在x=a 处有最小值f(a),在x=b 处有最大值f(b) ;(2)如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);若函数f(x)=ax2-(2a+1)x+a+1对于x∈[-1,1]时恒有f(x)≥0,则实数a的取值范围是________.。
第2讲 函数的单调性与最值1.函数的单调性 (1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f(x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值与值域 (1)最值①函数的值域是函数在定义域内对应的函数值的取值范围,其求解关键是确定相应的最值.因此,求解函数的值域时要求出定义域内的所有极值和端点处的函数值,并进行比较,得到函数的最值. ②常见函数的值域一次函数的值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{y ∈R |y ≠0};指数函数的值域是{y |y >0};对数函数的值域是R ;正、余弦函数的值域是[-1,1],正切函数的值域是R .判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)闭区间上的单调函数,其最值一定在区间端点处取到.( ) 答案:(1)× (2)× (3)× (4)√下列函数中,在区间(0,+∞)上为增函数的是( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A .选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.(教材习题改编)函数y =(2m -1)x +b 在R 上是减函数,则( )A .m >12B .m <12C .m >-12D .m <-12解析:选B .使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.(教材习题改编)函数f (x )=x 2-2x ,x ∈ [-2,4]的单调递增区间为________,f (x )max =__________.解析:函数f (x )的对称轴为x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的单调递增区间为[-1,1]和[5,7]. 答案:[-1,1],[5,7]确定函数的单调性(区间)[典例引领](1)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性;(2)求函数f (x )=-x 2+2|x |+1的单调区间. 【解】 (1)(定义法)设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增.(2)(图象法)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).若将本例(2)中函数变为f (x )=|-x 2+2x +1|,如何求解?解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).[提醒] 对于函数y =f (φ(x ))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时为增函数;单调性不同时为减函数.[通关练习]1.判断函数y =2x 2-3x的单调性.解:因为f (x )=2x 2-3x =2x -3x ,且函数的定义域为(-∞,0)∪(0,+∞),而函数y =2x 和y=-3x 在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f (x )=2x -3x 在区间(-∞,0)上为增函数.同理,可得f (x )=2x -3x 在区间(0,+∞)上也是增函数.故函数f (x )=2x 2-3x在区间(-∞,0)和(0,+∞)上均为增函数.2.作出函数y =|x 2-1|+x 的图象,并根据函数图象写出函数的单调区间.解:当x ≥1或x ≤-1时,y =x 2+x -1=⎝⎛⎭⎫x +122-54;当-1<x <1时,y =-x 2+x +1= -⎝⎛⎭⎫x -122+54.画出函数图象如图所示:由函数图象可知,函数的减区间为(-∞,-1],⎣⎡⎦⎤12,1,函数的增区间为⎣⎡⎦⎤-1,12,[1,+∞).求函数的最值(值域)[典例引领](1)(2018·福建漳州质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+a ,x ≤0,x +4x ,x >0有最小值,则实数a 的取值范围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,4)(2)函数y =x +x -1的最小值为________.【解析】 (1)(基本不等式法)由题意知,当x >0时,f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号;当x ≤0时,f (x )=2x +a ∈(a ,1+a ],因此要使f (x )有最小值,则必须有a ≥4,故选B .(2)法一(换元法):令t =x -1,且t ≥0,则x =t 2+1,所以原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1,故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1. 【答案】 (1)B (2)1求函数最值的五种常用方法[通关练习]1.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为( )A .83B .43C .23D .1解析:选B .易知f (x )在[-2,0]上是减函数,所以f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43,故选B .2.函数f (x )=|x -1|+x 2的值域为________. 解析:因为f (x )=|x -1|+x 2=⎩⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1,所以f (x )=⎩⎨⎧⎝⎛⎭⎫x +122-54,x ≥1,⎝⎛⎭⎫x -122+34,x <1,作出函数图象如图,由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭⎫34,+∞函数单调性的应用(高频考点)函数单调性结合函数的图象以及函数其他性质的应用已成为近几年高考命题的一个新的增长点,常以选择、填空题的形式出现.高考对函数单调性的考查主要有以下三个命题角度: (1)比较两个函数值或两个自变量的大小; (2)解函数不等式; (3)求参数的值或取值范围.[典例引领]角度一 比较两个函数值或两个自变量的大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e ),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时, [f (x 2)-f (x 1)](x 2-x 1)<0恒成立, 知f (x )在(1,+∞)上单调递减. 因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e ), 所以b >a >c . 【答案】 D角度二 解函数不等式(2016·高考天津卷)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A .(-∞,12)B .(-∞,12)∪(32,+∞)C .(12,32)D .(32,+∞)【解析】 由f (x )是偶函数得f (-2)=f (2),再由偶函数在对称区间上单调性相反,得f (x )在(0,+∞)上单调递减,所以由2|a -1|<2,得|a -1|<12,即12<a <32.【答案】 C角度三 求参数的值或取值范围设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A .(-∞,1] B .[1,4] C .[4,+∞)D .(-∞,1]∪[4,+∞)【解析】 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D .【答案】 D利用函数单调性求解四种题型[通关练习]1.已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是( ) A .(1,2) B.⎝⎛⎦⎤1,32 C.⎣⎡⎭⎫32,2D.⎝⎛⎭⎫32,2解析:选C .由已知条件得f (x )为增函数,所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是⎣⎡⎭⎫32,2.故选C .2.(2018·甘肃肃南调研)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.解析:因为函数f (x )=ln x +2x 在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5. 答案:(-5,-2)∪(2,5)函数单调性的常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反. (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同.函数最值的有关结论(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(最小值). (3)函数的值域一定存在,而函数的最值不一定存在.(4)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间上端点值就是函数的最值.易错防范(1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.(2)函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.(3)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论;②保证各段上同增(减)时,要注意端点值间的大小关系;③弄清最终结果是取并集还是取交集.1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数. 2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A.由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.“a =2”是“函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D .若函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减,则有-3a 2≥-2,即a ≤43,所以“a =2”是“函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减”的既不充分也不必要条件.4.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6D .12解析:选C .由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, 所以f (x )的最大值为f (2)=23-2=6.5.已知函数f (x )在[0,+∞)上为增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( ) A .(0,10) B .(10,+∞)C .⎝⎛⎭⎫110,10 D .⎝⎛⎭⎫0,110∪(10,+∞) 解析:选C.因为g (lg x )>g (1),g (x )=-f (|x |), 所以-f (|lg x |)>-f (1),所以f (|lg x |)<f (1). 又因为f (x )在[0,+∞)上是增函数, 所以|lg x |<1,所以-1<lg x <1, 所以110<x <10.6.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:67.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.若函数f (x )=⎩⎪⎨⎪⎧(a -1)x -2a ,x <2,log a x ,x ≥2(a >0且a ≠1)在R 上单调递减,则实数a 的取值范围是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧(a -1)x -2a ,x <2,log a x ,x ≥2(a >0且a ≠1)在R 上单调递减,则⎩⎪⎨⎪⎧a -1<0,0<a <1,log a2≤(a -1)×2-2a⇒22≤a <1,即实数a 的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,19.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, 因为f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x 2)>f (x 1),所以f (x )在(0,+∞)上是增函数.(2)因为f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又由(1)得f (x )在⎣⎡⎦⎤12,2上是单调增函数,所以f (12)=12,f (2)=2,易知a =25. 10.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 综上所述知0<a ≤1.1.(2018·石家庄市教学质量检测(一))已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为=( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:选B .因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B . 2.已知函数f (x )=4+x 2ln 1+x 1-x 在区间⎣⎡⎦⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =( ) A .0 B .2 C .4D .8解析:选D .令g (x )=x 2ln 1+x1-x,则g (-x )=(-x )2ln 1-x 1+x =-x 2ln 1+x 1-x=-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0, 即M -4+m -4=0,所以M +m =8.3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是__________.解析:在同一直角坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,不难看出函数f (x )在x =2时取得最大值6. 答案:64.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.解析:函数y =x 3在(-∞,0]上是增函数,函数y =ln(x +1)在(0,+∞)上是增函数,且x >0时,ln(x +1)>0,所以f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,解得-2<x <1,所以x 的取值范围是(-2,1). 答案:(-2,1)5.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立. (1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围. 解:(1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立,所以⎩⎪⎨⎪⎧a >0,Δ=(a +1)2-4a ≤0, 所以⎩⎪⎨⎪⎧a >0,(a -1)2≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数,所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故k 的取值范围是(-∞,-2]∪[6,+∞) .6.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(2)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解:(1)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,所以g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数,所以f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=ln a2.(2)对任意x ∈[2,+∞),恒有f (x )>0. 即x +ax -2>1对x ∈[2,+∞)恒成立.所以a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,所以h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。