植物矿质与氮素营养
- 格式:ppt
- 大小:8.01 MB
- 文档页数:113
植物的矿质营养1. 引言植物的生长和发育需要多种营养物质,其中矿质营养在植物的生命活动中起着至关重要的作用。
矿质营养是指植物从土壤中吸收的无机物质,包括常见的氮、磷、钾等元素,以及微量元素如锌、铜、锰等。
本文将重点介绍植物的矿质营养的种类、功能以及影响因素等内容。
2. 植物的矿质营养种类植物的矿质营养主要包括宏量元素和微量元素两大类。
2.1 宏量元素宏量元素是植物需要吸收的主要无机元素,它们以百分之几的质量存在于植物体内。
常见的宏量元素有氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)和硫(S)等。
•氮素(N):植物体内氨基酸、DNA、RNA等生物大分子的组成成分,是植物生长发育的基础元素。
•磷素(P):是ATP(三磷酸腺苷)等能量转化过程中的重要组成元素,同时也是细胞质膜、DNA和RNA等的构成成分。
•钾素(K):促进植物的光合作用、调控植物的水分平衡和营养转运,对提高植物的抗病性和抗逆性具有重要作用。
•钙素(Ca):调节细胞的渗透平衡,影响细胞的生长分裂和细胞壁的合成,同时也参与信号传导。
•镁素(Mg):是叶绿素的组成部分,对光合作用和能量转化过程具有重要影响。
•硫素(S):是蛋白质、蛋白质酶、维生素B1和维生素B6等的组成成分,参与植物的生命活动。
2.2 微量元素微量元素是植物体内含量较低的无机元素,但对植物的生长发育同样至关重要。
常见的微量元素有铁(Fe)、锌(Zn)、锰(Mn)、铜(Cu)、钼(Mo)和镍(Ni)等。
•铁(Fe):是光合作用和呼吸作用中的重要催化剂,参与植物体内的电子转运和能量转化过程。
•锌(Zn):是植物体内多种酶的重要成分,参与DNA和蛋白质的合成过程。
•锰(Mn):是植物体内氧气释放过程的关键酶的组成成分。
•铜(Cu):参与咖啡因合成、植物生长和光合作用等多种重要生理过程。
•钼(Mo):是植物体内硝化细菌和固氮细菌的酶的辅助因子,参与氮代谢过程。
•镍(Ni):催化植物体内亚硝酸盐的还原过程。
一、绪论1. 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。
二、植物的水分生理1.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.衬质势:由于衬质 ( 表面能吸附水分的物质,如纤维素、蛋白质、淀粉等 ) 的存在而使体系水势降低的数值。
3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
6.质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。
7.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
8.根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
9.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。
11.蒸腾系数:植物每制造 1g 干物质所消耗水分的 g 数,它是蒸腾效率的倒数,又称需水量。
12. 气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。
13.气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。
14.保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体和水分的量。
形成气孔和水孔的一对细胞。
双子叶植物的保卫细胞通常是肾形的细胞,但禾本科的气孔则呈哑铃形。
气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。
2、植物水分代谢水势:每偏摩尔体积水的化学势差。
符号是ψw 。
渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
蒸腾比率:植物每消耗1kg水时所形成的干物质的质量。
水分临界期:植物对水分不足最敏感、最易受伤害的时期。
(小麦的水分临界期是孕穗期和灌浆始期—乳熟末期)偏摩尔体积:指在恒温恒压,其他组分的浓度不变情况下,混合体系中1mol该物质所占据的有效体积。
Ψw 水势ψp 压力势ψs溶质势ψm 衬质势ψπ渗透势AQP水孔蛋白MPa兆帕3、植物矿质和氮素营养必需元素:指在植物完成生活史中的、起着不可替代的直接生理作用、不可缺少的元素。
(三个标准:元素不可缺少性、不可替代性和直接功能性。
17种必须元素,14种矿质元素,9种大量元素、8种微量元素)单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子)不久植株就会呈现不正常状态,最终死亡,这种现象成为单盐毒害。
离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或者消除,离子间的这种作用叫做离子对抗。
生理酸性盐:植物根系对盐的阳离子吸收多而快,导致溶液变酸的盐类。
叶片营养:也称根外营养,是指植物地上部分,尤其是叶片对矿质元素的吸收过程。
可再利用元素:某些元素进入植物地上部分以后,仍呈离子状态或形成不稳定的化合物,可不断分解,释放出的离子又转移到其他器官中去,可反复被利用的元素。
(常见可再利用元素N、P、K、Mg;不可再利用元素Ca、Fe、Mn、B、S)缺素症:当植物缺少某些元素时表现出的特殊性病症。
(缺少N、Mg、S、Fe会引起缺绿病)AFS表观自由空间4、植物的呼吸作用能荷:是对细胞中内腺苷酸ATP-ADP-AMP体系中可利用的高能磷酸键的一种度量。
其数值为(A TP+0.5ADP)/(ATP+ADP+AMP)。
呼吸商RQ:在一定时间内植物组织释放二氧化碳的摩尔数与吸收氧气摩尔数之比。
伤呼吸:植物组织因受到伤害而增强的呼吸。
第5章植物的矿质与氮素营养12一、填空题31. 参与光合作用水的光解反应的矿质元素是 Ca 、 Mn 和4Cl 。
52. 在植物体内充当氨的解毒形式、运输形式、临时贮藏形式的两种化合物是6天冬酰胺和7谷氨酰胺。
83. 应用膜片-钳位技术现已了解到质膜上存在的离子通道有钾离子通道9和氯离子通道10和钙离子通道等。
114. 作为固氮酶结构组成的两个金属元素为 Mo 和 Fe 。
125. 离子跨膜转移是由膜两侧的化学势梯度和电势梯度13共同决定的。
146. 促进植物授粉、受精作用的矿质元素是 B 。
157. 驱动离子跨膜主动转运的能采形圏是 ATP 和 H+电化学势梯16度。
178. 植物必需元素的㡮定是通过溶液培养法法才得以解决的。
189. 解释离子主动吸收的有关机理假说有载体学说和离子通道奦说 。
19 10. 关于离子主动吸收有载体孈在的证据有 竞争效应 和 饱和效20 应 。
21 11. 华北地区果树的小叶病是因为缺 Zn 元素的缘故。
22 12. 缺氮的生理病症首先出现在 老 叶上。
23 13. 缺钙的生理病症首先出现在 嫩 叶上。
24 14. (NH 4)2SO 4是属于生理 酸 性盐;KNO 3是属于生理 碱 性25 盐;而NH 4NO 3则26 属于生理 中 性盐。
27 15. 多年大量施入NaNO 3会使土壤溶液pH 值 升高 。
28 16. 多年大量施入(NH 4)2SO 4会使土壤溶液pH 值 下降 。
29 17. 根系对离子吸收之所以有选择性,与不同 载体 的数量多少有30 关。
31 18. 将硝酸盐还原成亚硝酸盐的过程是由 硝酸还原酶 酶催化的,在32 叶肉细胞中该酶位于33 细胞质基质 。
34 19. 将亚硝酸盐还原成氨的过程是由 亚硝酸还原 酶催化的,在35 叶肉细胞中该酶位于36叶绿体内。
3720. 根部吸收的矿质元素主要通过木质部向上运输的。
3821. 一般作物的营养最大效率期是生殖生长时期。
1 .矿质营养( mineral nutrition ) :是指植物对矿质元素的吸收、运输与同化的过程。
2 .灰分元素( ash elemen t ) :也称矿质元素。
将干燥植物材料燃烧后,剩余一些不能挥发的物质,称为灰分元素。
3 .必需元素( essential element ) :是指在植物完成生活史中,起着不可替代的直接生理作用的不可缺少的元素。
4 .大量元素( major elemen t) :在植物体内含量较多,占植物体干重达0 .1 %以上的元素,包括C、H、O、N、P、S、K、Ca、Mg等九种元素。
5 .微量元素( minor elemen t, microelement ) :植物体内含量甚微,占植物体干重达0 .01 %以下,稍多即会发生毒害的元素。
它包括Fe、Mn、Cu、Zn、B、Mo、Cl、Ni等八种元素。
6 .有利元素( beneficial element ) :也称有益元素。
指对植物生长表现有益作用,并能部分代替某一必需元素的作用,减缓缺素症的元素,如Na、Si、Se等。
7 .水培法( water cult ure met hod ) :也称溶液培养法、无土栽培法,是在含有植物所需的全部或部分营养元素、并具有适宜pH的溶液中培养植物的方法。
8 .砂培法( sand cult ure method) :也称砂基培养法。
在洗净的石英砂或玻璃球等惰性物质的支持中,加入营养液培养植物的方法。
9 .气栽法( aeroponics) :将植物根系置于营养液雾气中培养植物的方法。
10 .营养膜技术( nut rient film technique) :是一种营养液循环的液体栽培系统。
该系统通过让流动的薄层营养液流经栽培槽中的植物根系来栽培植物。
11 .离子的被动吸收( ion passive absorption ) :是指细胞通过扩散作用或其他物理过程而进行的矿物质吸收,也称非代谢吸收。
植物除了从土壤中吸收水分外,还要从中吸收各种矿质元素和氮素,以维持正常的生命活动。
植物吸收的这些元素,有的作为植物体的组成成分,有的参与调节生命活动,有的兼有这两种功能。
通常把植物对矿质和氮素的吸收、转运和同化以及矿质和氧素在生命活动中的作用称为植物的矿质和氮素营养。
人们对植物的矿质与氮素营养的认识,经过了漫长的实践探索,到19世纪中叶才被基本确定。
第一个用实验方法探索植物营养来源的是荷兰人凡·海尔蒙(见绪论)。
其后,格劳勃(Glauber,1650)发现,向土壤中加入硝酸盐能使植物产量增加,于是他认为水和硝酸盐是植物生长的基础。
1699年,英国的伍德沃德(Woodward)用雨水、河水、山泉水、自来水和花园土的水浸提液培养薄荷,发现植株在河水中生长比在雨水中好,而在土壤浸提液中生长最好。
据此他得出结论:构成植物体的不仅是水,还有土壤中的一些特殊物质。
瑞士的索苏尔(1804)报告:若将种子种在蒸馏水中,长出来的植物不久即死亡,它的灰分含量也没有增加;若将植物的灰分和硝酸盐加入蒸馏水中,植物便可正常生长。
这证明了灰分元素对植物生长的必需性。
1840年德国的李比希(J. Liebig)建立了矿质营养学说,并确立了土壤供给植物无机营养的观点。
布森格(J·Boussingault)进一步在石英砂和木炭中加入无机化学药品培养植物,并对植物周围的气体作定量分析,证明碳、氢、氧是从空气和水中得来,而矿质元素是从土壤中得来。
1860年诺普(Knop)和萨克斯(Sachs)用已知成分的无机盐溶液培养植物获得成功,自此探明了植物营养的根本性质,即自养型(无机营养型)。
矿质和氮素营养对植物生长发育非常重要,了解矿质和氮素的生理作用、植物对矿质和氮素的吸收转运以及氮素的同化规律,可以用来指导合理施肥,增加作物产量和改善品质。
一、植物体内的元素将植物材料放在105℃下烘干称重,可测得蒸发的水分约占植物组织的10%~95%,而干物质占5%~90%。
植物的矿质与氮素营养植物是我们日常生活中不可或缺的一部分,它们为我们提供了许多重要的物质和服务。
植物的生长和发展取决于其对矿质和氮素的吸收和利用。
本文将讨论植物的矿质与氮素营养。
一、植物的矿质营养矿质营养是指植物从土壤中吸收的无机营养元素。
植物需要吸收的矿质元素有很多,包括镁、钙、铁、锌、铜、锰、硒、钼、氯等。
这些矿质元素在植物的生长和发展中起着重要作用。
1. 镁镁是植物体内的重要成分之一,它参与了许多生物化学反应,如光合作用和呼吸作用等。
镁的缺乏会导致叶片中叶绿素含量降低,影响植物的光合作用和生长发育。
2. 钙钙是植物细胞壁和中枢神经系统的组成成分,它对细胞分裂和细胞壁稳定性有着重要的作用。
钙的缺乏会导致植物的胶质变化,影响其正常生长发育。
3. 铁铁是植物体内的重要元素,它存在于许多酶中,参与了氧化还原反应和电子传递过程。
铁的缺乏会导致植物叶片的黄化,严重时可能导致植物死亡。
4. 锌锌是植物生长和发育的必需元素之一,它促进植物的生长发育和增强植物的免疫力。
锌的缺乏会导致植物叶片出现白色黄斑、萎缩等现象。
5. 铜铜是植物体内多种酶的组成成分,它对植物机体有重要的作用。
铜的缺乏会影响植物的代谢和生长发育。
二、植物的氮素营养氮素是植物生长必需的主要成分之一,植物需要从土壤中吸收氨、硝酸盐等氮源物质。
氮素对植物的生长发育有着重要的影响。
1. 生物固氮蚯蚓、田间杂草、青苔等具有固氮作用的微生物,能够把空气中的氮分子转变成可被植物吸收的氨态氮,为实现土地生态平衡起到了重要的作用。
2. 植物对氮素的吸收和利用一般情况下,植物吸收的氮素主要以硝酸盐形式存在。
植物的生长发育需要合适的氮素浓度。
氮素过多或不足都会影响植物的生长和质量。
3. 氮素对植物品质的影响植物体内氮素含量的增加,能够促进植物的生长发育和增加产量,但同时也会导致产量质量的降低。
植物倾向于把氮素转移到叶子和果实中,而不是转移到根系中,导致根系生长不良。