Pauli exclusion operator and binding energy of nuclear matter
- 格式:pdf
- 大小:98.22 KB
- 文档页数:4
MOSS-BURSTEIN EFFECT (Expt. B1O) The Moss-Burstein effect results from the Pauli Exclusion Principle and is seen in semiconductors as a shift with increasing doping of the band-gap as defined as the separation in energy between the top of the valence band and the unoccupied energy states in the conduction band. The shift arises because the Fermi energy (E F ) lies in the conduction band for heavy n-type doping (or in the valence band for p-type doping). The filled states therefore block thermal or optical excitation. Consequently the measured band gap determined from the onset of interband absorption moves to higher energy (i.e. suffers "a blue shift").ConductionBandHeavy holesLight holesCheck that you agree with this assumption taking λ (in air) as 3 microns, the refractive index of InAs as 3.5 and n = 1024 m -3. By performing the following experiment, and assuming that the conduction and valence band effective masses are m c = 0.03m 0 and m v = 0.4m 0 respectively, calculate the carrier concentration (n) for the doped samples provided (the effective mass at the conduction band edge is 0.024m 0. At the Fermi energy concerned the appropriate effective mass has increased by 50%).EXPERIMENTYou are provided with a Spex monochromator, a globar source with a germanium lens, a light chopper, lead selenide and lead sulphide photodetectors and a "Phase Sensitive Detector" which enhances and amplifies the signal and suppresses noise.A PC is also available for equipment control and data processing. See Figure 1 for a schematic of the experimental set-up. Check the zero setting of the monochromator. If the grating were perfectly positioned it would act as a mirror for all wavelengths at a dial setting of 0000. You will almost certainly find that the maximum reflection occurs at a slightly different dial reading. Add or subtract this small "zero error" when you calculate the true wavelength. Use the "mirror" setting to align your source and detector. Provided that you are using the germanium lens you will not get any diffracted radiation through the spectrometer until a dial reading of about 3000 is reached and you should obtain a maximum signal on your detector at a dial reading of about 4000. Remember that the grating equation is m λ = a sin θ so that you may get second order (m = 2) radiation through the monochromator at dial settings greater that 6000 (assuming that the Ge lens cuts in at 3000). Assume that the grating scale is linear in wavelength and that thewavelength in microns is 6x10-4 of the dial reading; i.e. that a dial reading of 4000 corresponds to a wavelength of 2.4μm .Take several 'background' recordings with no sample in place in order to Light chopperSampleDetectorFigure 1 - Diagram to show the experimental set-upfamiliarise yourself with the equipment and in order that background features due to atmospheric absorption may be at least partially removed by ratioing the transmission with the sample in place with the “background” values.The 'background' spectrum is limited by the band gap absorption of the Ge lens at short wavelengths and by the cut-off for intrinsic excitation of the photodetectors at long wavelengths. Estimate the band gaps of Ge, PbS and PbSe from the respective background spectra.Observe the effect of changing the slit-widths on the monochromator on the atmospheric features at wavelengths at 4.2μm and 2.7μm.You are given four epitaxial films of InAs of thickness of a few microns grown on GaAs substrates. One sample is undoped and the others have been fairly heavily doped with silicon donors. Taking great care, place each metal sample mount in turn over the detector iris in order to take a transmission spectrum. On no account touch the surface of the semiconductor samples as they are very fragile.The GaAs substrates do not absorb significantly in the wavelength range concerned. However both the InAs epitaxial film and the GaAs substrate have high refractive indices and reflect quite strongly. You should be able to observe Fabry-Perot interference fringes from the epitaxial film at wavelengths which are too long for the band gap absorption to occur. Because of the high refractive index the infrared radiation travels almost perpendicular to the film surfaces so the period of the Fabry Perot fringes is given byEquation 1:δ(1/λ) = l/2n r d where n r is the refractive index of the InAsUse the above relationship to determine the thicknesses of the samples (assume that n r = 3.5 for InAs).The GaAs substrate is much thicker and similar fringes occur in the very far infrared region of the spectrum. Because of the high refractive indices involved you may expect an insertion loss of the order of 70%.The object of the experiment is to measure the onset of absorption for each sample. Having obtained the 'raw' transmission spectrum, ratio the results against a background spectrum taken with the same slit widths using the data analysis system or point-by-point.The intensity of radiation transmitted within the epitaxial layer from one side to the other may be taken as:Equation 2:I = I0exp(-αd)In which d is the thickness of the sample and αis the (wavelength-dependent)absorption coefficient. In order to analyse your data assume that the onset of band-edge absorption occurs at the wavelength corresponding to α = 2000 cm-1. 1____________________________________1 Strictly speaking the variation of the real and imaginary parts for the dielectric constant should be analysed in detail in the region of a strong absorption feature such as band edge (Kramers-Kronig analysis). However such an analysis is time-consuming and would not be valid for the present samples____________________________________Assume that the interference fringes are only significant at wavelengths longer than that corresponding to α = 2000 cm-1. Draw a smooth curve through the centres of the interference fringes and assume that the intensity transmitted just before the increasing absorption becomes apparent corresponds to "I0". In fact the assumption that k B T « E is not very good at room temperature and thermal blurring of the Fermi-Dirac function is quite significant in broadening the absorption edge.Finally calculate the carrier concentrations for each of the doped sample from the blue shift in the absorption "edge".EQUIPMENT SETTINGSThe maximum current which should be passed through the globar source is 10A. The detectors require a bias voltage of 50V. DO NOT EXCEED THESE SETTINGS unless instructed to by a demonstrator. The lead sulphide detector is more sensitive than the lead selenide but the PbS band gap is greater than that for InAs so you will not be able to observe the onset of band-gap absorption for the undoped sample with this detector (which occurs when hf = Eg). Take care not to reverse-bias the detectors.The chopper frequency is not critical but should not be close to a harmonic of the mains frequency. A good choice would be about 120 HzOptimise the phase on the Phase Sensitive Detector (PSD for short - sometimes called a "lock-in" amplifier) to produce maximum output voltage. The recommended time constants are 1s and you should expect to use a sensitivity in the range 10m V to 100 μV depending on slit-widths, whether a sample is in the beam, choice of detector etc. Be careful that the instrument does not overload when the maximum signal is present. The PSD reduces the amount of noise by combining the optical chopper frequency with that of the received signal. The PSD ignores any frequencies outside the chopper frequency as these would be produced by noise only.The stepping intervals for the grating are set using the computer. You will need to choose the grating setting at which the run starts and the range of points to be recorded. Think about the sensitivity and scales you should be using, to record the relevant features.Fundamental AbsorptionAt very low temperatures, the phonon density is very small [large denominator in Equation (3-11)]; therefore, αa is also small. The temperature dependences of αa and αe are illustrated in Fig. 3-3, where the square root of a is plotted to yield a linear dependence on hv. Such a plot, by extrapolation to α = 0, gives the values of E g– E p and E g+ E p. Note that E g has been shifted with temperature to reflect the temperature dependence of the energy gap.As mentioned earlier, there are several types of phonons, one longitudinal-acoustic and two transverse-acoustic, which can participate in the transition process. In fact, they all participate, but with different probabilities.3If the semiconductor is heavily doped, the Fermi level is inside the band (the conduction band in an n-type material) by a quantity ξn (Fig. 3-4).Fig. 3-4 Energy-momentum diagram for degenerate w-type ger-manium in the [111] direction. Two phonon-assisted transitions areshown to illustrate the usual photon absorption mechanism.Since the states below ξn are already filled, fundamental transitions to states below E g+ ξn are forbidden; hence the absorption edge should shift to higher energies by about ξn. The shift of the absorption edge due to band filling is sometimes called the Burstein-Moss shift.4, 5 A calculation of the absorption coefficient was made for heavily doped n-type germanium6; the results are reproduced in Fig. 3-5. At 0°K, only the phonon-emission process is possible; √αe for pure germanium intercepts the abscissa at E g+ E f. The calculated intercept shifts by ξn, as expected. The drop of absorption at a given hv > E g+ E p+ ξn with increasing doping is due to the decrease in thenumber of available final states.3 G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Phys. Rev. 108, 1137 (1957) and 111, 1245 (1958).4 E. Burstein, Phys, Rev. 93, 632 (1954).5 T. S. Moss, Proc. Phys. Soc. (London) B76, 775 (1954).6 J. I. Pankove and P. Aigrain, Phys. Rev. 126, 956 (1962).From: J I Pankove, “Optical Processes in Semiconductors”, Dover (1971)。
1.TheIdeal-GasEquation理想气体状态方程2.Partial Pressures分压3.Real Gases:Deviation from IdealBehavior真实气体:对理想气体行为的偏离4.Thevande rWaals Equation范德华方程5.Systemand Surroundings系统与环境6.Stateand State Functions状态与状态函数7.Process过程8.Phase相9.The First Lawof Thermodynamics热力学第一定律10.Heatand Work热与功11.Endothermicand Exothermic Processes吸热与发热过程12.Enthalpiesof Reactions反应热13.Hess’s Law盖斯定律14.Enthalpiesof Formation生成焓15.Reaction Rates反应速率16.Reaction Order反应级数17.Rate Constants速率常数18.Activation Energy活化能19.The Arrhenius Equation阿累尼乌斯方程20.Reaction Mechanisms反应机理21.Homogeneous Catalysis均相催化剂22.Heterogeneous Catalysis非均相催化剂23.Enzymes酶24.The Equilibrium Constant平衡常数25.the Directionof Reaction反应方向26.L eChatelier’s Principle列·沙特列原理27.Effects of V olume,Pressure,Temperature Changesand Catalystsi.体积,压力,温度变化以及催化剂的影响28.Spontaneous Processes自发过程29.Entropy (StandardEntropy)熵(标准熵)30.The Second Law of Thermodynamics热力学第二定律31.EntropyChanges熵变32.StandardFree-EnergyChanges标准自由能变33.Acid-Bases酸碱34.The Dissociation of Water水离解35.The Protonin Water水合质子36.Thep H ScalespH值37.Bronsted-Lowry Acidsand Bases Bronsted-Lowry酸和碱38.Proton-Transfer Reactions质子转移反应39.Conjugate Acid-Base Pairs共轭酸碱对71.ThePauli Exclusion Principle泡林不相容原理72.Electron Configurations电子构型73.The PeriodicTable周期表74.Row行75.Group族76.Isotopes,Atomic Numbers,andMass Numbers同位素,原子数,质量数77.Periodic Properties o fthe Elements元素的周期律78.Radiu of Atoms原子半径79.Ionization Energy电离能80.Electronegativity电负性81.Effective Nuclear Charge有效核电荷82.Electron Affinities亲电性83.Metals金属84.Nonmetals非金属85.Valence Bond Theory价键理论86.Covalence Bond共价键87.Orbital Overlap轨道重叠88.Multiple Bonds重键89.Hybrid Orbital杂化轨道90.The VSEPR Model价层电子对互斥理论91.Molecular Geometries分子空间构型92.Molecular Orbital分子轨道93.Diatomic Molecules双原子分子94.Bond Length键长95.Bond Order键级96.Bond Angles键角97.Bond Enthalpies键能98.Bond Polarity键矩99.Dipole Moments偶极矩100.Polarity Molecules极性分子101.Polyatomic Molecules多原子分子102.Crystal Structure晶体结构130.Peroxidesand Superoxides过氧化物和超氧化物131.Hydroxides氢氧化物132.Salts盐133.p-BlockElementsp区元素134.Boron Group(Boron,Aluminium,Gallium,Indium,Thallium)硼族(硼,铝,镓,铟,铊)135.Borane硼烷136.Carbon Group(Carbon,Silicon,Germanium,Tin,Lead)碳族(碳,硅,锗,锡,铅)137.Graphite,Carbon Monoxide,Carbon Dioxide石墨,一氧化碳,二氧化碳138.CarbonicAcid,Carbonatesand Carbides碳酸,碳酸盐,碳化物139.Occurrenceand Preparation of Silicon硅的存在和制备140.Silicic Acid,Silicates硅酸,硅酸盐141.Nitrogen Group(Phosphorus,Arsenic,Antimony,andBismuth)氮族(磷,砷,锑,铋)142.Ammonia,NitricAcid,PhosphoricAcid氨,硝酸,磷酸143.Phosphorates,phosphorus Halides磷酸盐,卤化磷144.Oxygen Group(Oxygen,Sulfur,Selenium,andTellurium)氧族元素(氧,硫,硒,碲)145.Ozone,HydrogenPeroxide臭氧,过氧化氢146.Sulfides硫化物147.Halogens(Fluorine,Chlorine,Bromine,Iodine)卤素(氟,氯,溴,碘)148.Halides,Chloride卤化物,氯化物149.The Noble Gases稀有气体150.Noble-GasCompounds稀有气体化合物151.d-Blockelementsd区元素152.Transition Metals过渡金属153.Potassium Dichromate重铬酸钾154.Potassium Permanganate高锰酸钾155.Iron Copper ZincMercury铁,铜,锌,汞156.f-Block Elementsf区元素nthanides镧系元素158.Radioactivity放射性159.Nuclear Chemistry核化学160.Nuclear Fission核裂变161.Nuclea Fusion核聚变162.analyticalchemistry分析化学163.qualitativeanalysis定性分析186.deviation偏差187.precision精密度188.relativestandarddeviation相对标准偏差(RSD)189.coefficientvariation变异系数(CV)190.confidencelevel置信水平191.confidenceinterval置信区间192.significanttest显著性检验193.significantfigure有效数字194.standardsolution标准溶液195.titration滴定196.stoichiometricpoint化学计量点197.endpoint滴定终点198.titrationerror滴定误差199.primarystandard基准物质200.amountofsubstance物质的量201.standardization标定202.chemicalreaction化学反应203.concentration浓度204.chemicalequilibrium化学平衡205.titer滴定度206.generalequationforachemicalreaction化学反应的通式207.protontheoryofacid-base酸碱质子理论208.acid-basetitration酸碱滴定法209.dissociationconstant解离常数210.conjugateacid-basepair共轭酸碱对211.aceticacid乙酸212.hydroniumion水合氢离子213.electrolyte电解质214.ion-productconstantofwater水的离子积215.ionization电离216.protoncondition质子平衡217.zerolevel零水准218.buffersolution缓冲溶液219.methylorange甲基橙220.acid-baseindicator酸碱指示剂221.phenolphthalein酚酞251.cerimetry铈量法252.redoxindicator氧化还原指示253.oxygenconsuming耗氧量(OC)254.chemicaloxygendemanded化学需氧量(COD) 255.dissolvedoxygen溶解氧(DO)256.precipitation沉淀反应257.argentimetry银量法258.heterogeneousequilibriumofions多相离子平衡259.aging陈化260.postprecipitation继沉淀261.coprecipitation共沉淀262.ignition灼烧263.fitration过滤264.decantation倾泻法265.chemicalfactor化学因数266.spectrophotometry分光光度法267.colorimetry比色分析268.transmittance透光率269.absorptivity吸光率270.calibrationcurve校正曲线271.standardcurve标准曲线272.monochromator单色器273.source光源274.wavelengthdispersion色散275.absorptioncell吸收池276.detector检测系统277.bathochromicshift红移278.Molarabsorptivity摩尔吸光系数279.hypochromicshift紫移280.acetylene乙炔281.ethylene乙烯282.acetylatingagent乙酰化剂283.aceticacid乙酸284.adiethylether乙醚285.ethylalcohol乙醇286.acetaldehtde乙醛287.β-dicarbontlcompoundβ–二羰基化合物288.bimolecularelimination双分子消除反应289.bimolecularnucleophilicsubstitution双分子亲核取代反应322.Michaelreacton麦克尔反应323.halogenatedhydrocarbon卤代烃324.haloformreaction卤仿反应325.systematicnomenclatur系统命名法e326.Newmanprojection纽曼投影式327.aromaticcompound芳香族化合物328.aromaticcharacter芳香性r329.Claisencondensationreaction克莱森酯缩合反应330.Claisenrearrangement克莱森重排331.Diels-Alderreation狄尔斯-阿尔得反应332.Clemmensenreduction克莱门森还原333.Cannizzaroreaction坎尼扎罗反应334.positionalisomers位置异构体335.unimoleculareliminationreaction单分子消除反应336.unimolecularnucleophilicsubstitution单分子亲核取代反应337.benzene苯338.functionalgrou官能团p339.configuration构型340.conformation构象341.confomationalisome构象异构体342.electrophilicaddition亲电加成343.electrophilicreagent亲电试剂344.nucleophilicaddition亲核加成345.nucleophilicreagent亲核试剂346.nucleophilicsubstitutionreaction亲核取代反应347.activeintermediate活性中间体348.Saytzeffrule查依采夫规则349.cis-transisomerism顺反异构350.inductiveeffect诱导效应t351.Fehling’sreagent费林试剂352.phasetransfercatalysis相转移催化作用353.aliphaticcompound脂肪族化合物354.eliminationreaction消除反应355.Grignardreagent格利雅试剂灭滴灵Metronidazole柠檬酸CitricAcid硝酸钙calciumnitrate癸二酸SebacicAcid冰醋酸glacialaceticacid维生素C磷酸镁MagnesiumAscorbylPhosphate 对苯二酚Hydroquinone环丙沙星盐酸CIPROFLOXACINHCL氢氧化钠SodiumHydroxide吗菌灵醋酸盐dodemorphacetate烯酰吗啉dimethomorph百菌清Chlorothalonil尼索朗hexythiazox哒螨灵pyridaben葡萄糖酸-δ-内酯gluconodeltalactone硫酸粘杆菌素colistinesulfate恩诺沙星EnrofloxacinBase土霉素盐酸OxyTetraCyclineHCl黄磷YellowPhosphorus索布瑞醇Sobrerol焦棓酸PYROGALLOL硫乙醇酸THIOGLYCOLLICACID茴香硫醚THIOANISOLE1-溴-3-氯丙烷1-BROMO-3-CHLOROPROPANE 氟苯FLUOROBENZEN叔丁基胺tert-butylamine丙烯酸树脂Acrylicresin维生素B6VITAMINB6磺胺胍Sulfaguanidine松香树脂GumRosin苯甲酸钠SODIUMBENZOATE双氧水HydrogenPeroxide6-氨基己烷-1-醇6-aminohexan-1-ol邻苯二甲酸酐PhthalicAnhydride2,3-二氨基甲苯2,3-diaminotoluene吲哚indole2-甲基吲哚2-methylindole三苯基硼triphenylborane松油精Dipentine十六烷醇CetylAlcohol呋喃-2-硼酸FURAN-2-BORONICACID莫匹罗星Mupirocin高锰酸钾PotassiumPermanganate噻苯咪唑Thiabendazole42-amino-2-(hydroxymethyl)-1,3,propanediol二环戊二烯Dicyclopentadiene(DCPD)金红石型氧化钛TitaniumDioxide(Rutile)Topgrade硼酸boricacid氧化铅LeadOxide邻苯二甲酸酐PhthalicAnhydride叔丁基锡烷tributylstannane碳黑CarbonBlackElftex430碳黑CarbonBlackN300碳黑CarbonBlackN-326磷酸PHOSPHORICACID硝酸铅LEADNITRATE硬脂酸铅LEADSTEARA TE次硫酸钠SodiumHydrosulfite磷酸二氢铵AmmoniumDihydrogenPhosphate 水合肼HydrazineHydrate6三聚磷酸钠SodiumTripolyphosphate氧化铁黄ironoxideyellow氧化铁红ironoxidered1,1,1-三氯乙烷1,1,1-TrichloroEthane氯化铵AmmoniumChloride苯酚PHENOL甲氧苄氨嘧啶TRIMETHOPRIM磷酸三钙tricalciumphosphate酒石酸苯甲曲秦PhendimetrazineTartrate碳酸氢钠sodiumbicarbonate氯四环素盐酸ChlortetracyclineHCl三水合氨卡青霉素AmpicillinTrihydratemicronized 山梨糖醇SorbitolPowder一水葡萄糖DextroseMonohydrate碳化钙calciumcarbide柚皮甙Naringin叶绿素铜钠盐sodiumcopper苏打灰sodaash酒石酸盐tartrate鉻酸銨AMMONIUMCHROMATE苦味酸PICRICACID甲酸铵AMMONIUMFORMATE7聚丙烯薄膜PPSHEETFOROPPTAPE氨基乙酸Glycine氨比西林AMPICILINE土霉素盐酸OxytetracyclineHCL6-溴-2-羟基萘6-Bromo-2-hydroxynaphthalene2,6-二甲氧基萘2,6-Dimethoxynaphthalene2,6-二羟基萘2,6-Dihydroxynaphthalene6-甲氧基-2-羟基萘6-Methoxy-2-hydroxynaphthalene 2-叔丁基-4-甲基苯酚2-Tertiary-butyl-4-methylphenol 炉甘石Calamine5-溴-2-甲基嘧啶5-Bromo-2-methylpyridine氯化镁MagnesiumChloride。
aufbau principle英语解释全文共3篇示例,供读者参考篇1The Aufbau principle, also known as the building-up principle, is a fundamental concept in chemistry that explains the order in which electrons fill energy levels in an atom. This principle is used to predict the electronic configuration of atoms and their relative stability.The Aufbau principle is based on the idea that electrons fill the lowest energy levels available to them before moving on to higher energy levels. This principle is in accordance with the Pauli exclusion principle, which states that no two electrons in the same atom can have the same set of four quantum numbers.The Aufbau principle is essential for understanding the electronic structure of atoms and predicting their properties. It helps chemists determine the arrangement of electrons in an atom, which in turn influences the atom's reactivity, bonding, and overall behavior.To apply the Aufbau principle, one must first understand the energy levels of an atom. Atoms have a number of energy levels,or shells, represented by the quantum number "n." The energy levels are labeled from the lowest energy level (n=1) to the highest energy level (n=2, 3, 4, and so on).Each energy level is further divided into sublevels, represented by the quantum number "l." There are s, p, d, and f sublevels, which correspond to different shapes and orientations of orbitals.According to the Aufbau principle, electrons fill energy levels and sublevels in a specific order. Specifically, the principle states that electrons fill the s sublevels before the p sublevels, fill the p sublevels before the d sublevels, and fill the d sublevels before the f sublevels.For example, when filling the energy levels for a carbon atom (C), the first two electrons fill the 1s sublevel, followed by the next two electrons filling the 2s sublevel. The remaining four electrons fill the 2p sublevel.The Aufbau principle helps chemists predict the electronic configuration of elements and determine the relative stability of different configurations. By following the Aufbau principle, chemists can understand why certain elements form specific types of bonds, exhibit particular reactivity, or have unique properties.In summary, the Aufbau principle is a fundamental concept in chemistry that explains the order in which electrons fill energy levels in an atom. By following this principle, chemists can predict the electronic configuration of elements and understand their properties and behavior.篇2The Aufbau principle, also known as the building-up principle, is a fundamental concept in chemistry and physics that explains the order in which electrons fill the orbitals of an atom. This principle is often used to predict the electronic configuration of an atom and its chemical properties.According to the Aufbau principle, electrons fill the lowest energy level orbitals first before moving to higher energy levels. In other words, electrons occupy the orbitals in order of increasing energy. This principle is based on the idea that electrons are negatively charged particles that are attracted to the positively charged nucleus of an atom. Electrons will naturally arrange themselves in a way that minimizes their energy.The Aufbau principle follows the Madelung rule, which states that electrons fill orbitals in a specific order. The order inwhich orbitals are filled is determined by their energy levels and the number of electrons they can hold. The energy levels of the orbitals are typically represented by the periodic table, where the orbitals are arranged in order of increasing energy.The Aufbau principle can be seen in action when determining the electronic configuration of an atom. For example, let's consider the electronic configuration of carbon, which has 6 electrons. The first two electrons will fill the 1s orbital, as it is the lowest energy level orbital. The next two electrons will fill the 2s orbital, followed by the remaining two electrons filling the 2p orbital. This results in the electronic configuration of carbon being 1s2 2s2 2p2.The Aufbau principle is an essential tool in understanding the chemical behavior of atoms and molecules. By following this principle, chemists can predict the electronic configuration of an atom and determine its reactivity and bonding properties. Additionally, the Aufbau principle can be used to explain the periodic trends observed in the periodic table, such as ionization energy, electron affinity, and electronegativity.In summary, the Aufbau principle is a fundamental concept in chemistry that explains the order in which electrons fill the orbitals of an atom. By following this principle, scientists canpredict the electronic configuration of an atom and understand its chemical properties. The Aufbau principle is a key component of the periodic table and plays a crucial role in the study of atomic structure and chemical bonding.篇3The aufbau principle, also known as the building-up principle, is a fundamental concept in chemistry that explains the order in which electrons fill into orbitals in an atom. This principle is essential in understanding the electronic structure of atoms and predicting their chemical properties.According to the aufbau principle, electrons fill into orbitals of lower energy levels before filling into higher energy levels. This principle is based on the idea that electrons are negatively charged particles that are attracted to the positively charged nucleus of an atom. Therefore, electrons will occupy the orbitals in a way that minimizes their energy and maximizes their stability.The aufbau principle is often visualized using the periodic table of elements. The periodic table is arranged in such a way that elements are ordered by their atomic number, which represents the number of protons in the nucleus of an atom. Therows of the periodic table correspond to the energy levels (or shells) in which electrons can occupy, while the columns represent the number of electrons in the outermost shell (or valence electrons).When filling electrons into orbitals, the aufbau principle follows a specific order based on increasing energy levels. The first energy level (n=1) can hold a maximum of 2 electrons, the second level (n=2) can hold a maximum of 8 electrons, the third level (n=3) can hold a maximum of 18 electrons, and so on. Within each energy level, there are sublevels of orbitals that have different shapes and energies (s, p, d, f).The aufbau principle states that electrons will fill into orbitals in the following order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, and so on. This order is determined by the increasing energy levels and the rules for filling electrons into orbitals (such as the Pauli exclusion principle and Hund's rule).By following the aufbau principle, we can predict the electronic configuration of elements and understand their chemical behavior. For example, the number of valence electrons in an element determines its reactivity and its ability to form chemical bonds. Elements with full or half-filled orbitals tend tobe more stable and less reactive, while elements with incomplete or unpaired electrons are more likely to form chemical bonds.In summary, the aufbau principle is a critical concept in chemistry that explains the order in which electrons fill into orbitals in an atom. By understanding this principle, we can make sense of the periodic table, predict the electronic configuration of elements, and explain their chemical properties. The aufbau principle lays the foundation for studying the behavior of atoms and molecules in chemical reactions, and it is a fundamental concept for students learning chemistry.。
aufbau principle英语解释The Aufbau principle is a fundamental rule in chemistry that dictates the order in which electrons fill energy levels and sublevels in an atom. This principle helps us understand the electronic structure of atoms and predict their chemical behavior. In this document, we will explore the Aufbau principle in depth, discussing its origins, applications, and implications for chemical bonding.Origins of the Aufbau PrincipleThe Aufbau principle, which translates to "building up" in German, was first proposed by the German physicist Arnold Sommerfeld in the early 20th century. Sommerfeld's research on atomic structure and spectral lines led him to develop a theoretical framework for understanding the arrangement of electrons in atoms. The Aufbau principle was later refined and popularized by the Danish physicist Niels Bohr and the Austrian physicist Wolfgang Pauli.Basic Principles of the Aufbau PrincipleThe Aufbau principle is based on two important principles of quantum mechanics: the Pauli exclusion principle and Hund's rule. The Pauli exclusion principle states that no two electrons inan atom can have the same set of quantum numbers, which means that each electron must occupy a unique orbital within a sublevel. Hund's rule dictates that electrons fill orbitals of equal energy singly before pairing up, in order to minimize repulsion and stabilize the atom.The Aufbau principle can be summarized in three main points:1. Electrons fill the lowest energy levels and sublevels first before filling higher energy levels.2. Each sublevel has a maximum number of electrons it can hold, according to the formula 2n^2 (where n is the principal quantum number).3. Electrons fill orbitals within a sublevel according to Hund's rule, filling them singly before pairing up.Applications of the Aufbau PrincipleThe Aufbau principle has numerous applications in chemistry, particularly in predicting the electronic configuration of atoms and ions. By following the Aufbau principle, we can determine the distribution of electrons in an atom's energy levels and sublevels, which in turn influences the atom's chemical properties and reactivity.One key application of the Aufbau principle is the construction of electron configurations for the elements in the periodic table. By arranging electrons in the order of increasing energy levels and sublevels, we can predict the properties of elements and their chemical behavior. This information is crucial for understanding trends in the periodic table and explaining the similarities and differences between elements.Implications for Chemical BondingThe Aufbau principle also plays a significant role in understanding chemical bonding and molecular structure. The distribution of electrons in an atom's orbitals affects its ability to form bonds with other atoms and participate in chemical reactions.For example, the electron configuration of an atom determines its valence electrons, which are the electrons involved in bonding. Elements with similar electron configurations tend to exhibit similar chemical behavior and form similar types of bonds. This is why elements in the same group of the periodic table have similar properties and tend to form similar compounds.In summary, the Aufbau principle is a fundamental concept in chemistry that governs the arrangement of electrons in atomsand influences their chemical properties. By understanding the principles of electron filling order, we can predict the behavior of atoms and molecules and make informed decisions about chemical reactions and bonding. The Aufbau principle continues to be a cornerstone of modern chemistry and a key tool for scientists in their study of the microscopic world.。
Actinium(Ac)锕Aluminium(Al)铝Americium(Am)镅Antimony(Sb)锑Argon(Ar)氩Arsenic(As)砷Astatine(At)砹Barium(Ba)钡Berkelium(Bk)锫Beryllium(Be)铍Bismuth(Bi)铋Boron(B)硼Bromine(Br)溴Cadmium(Cd)镉Caesium(Cs)铯Calcium(Ca)钙Californium(Cf)锎Carbon(C)碳Cerium(Ce)铈Chlorine(Cl)氯Chromium(Cr)铬Cobalt(Co)钴Copper(Cu)铜Curium(Cm)锔Dysprosium(Dy)镝Erbium(Er)铒Europium(Eu)铕Fermium(Fm)镄Fluorine(F)氟Francium(Fr)钫Gadolinium(Gd)钆Gallium(Ga)镓Germanium(Ge)锗Gold(Au)金Hafnium(Hf)铪Helium(He)氦Holmium(Ho)钬Hydrogen(H)氢Indium(In)铟Iodine(I)碘Iridium(Ir)铱Iron(Fe)铁Krypton(Kr)氪Lanthanum(La)镧Lawrencium(Lr)铹Lead(Pb)铅Lithium(Li)锂Lutetium(Lu)镥Magnesium(Mg)镁Manganese(Mn)锰Mercury(Hg)汞Molybdenum(Mo)钼Neodymium(Nd)钕Neon(Ne)氖Neptunium(Np)镎Nickel(Ni)镍Niobium(Nb)铌Nitrogen(N)氮Nobelium(No)锘Osmium(Os)锇Oxygen(O)氧Palladium(Pd)钯Phosphorus(P)磷Platinum(Pt)铂Plutonium(Pu)钚Polonium(Po)钋Potassium(K)钾Praseodymium(Pr)镨Promethium(Pm)钷Protactinium(Pa)镤Radium(Ra)镭Radon(Rn)氡Rhenium(Re)铼Rhodium(Rh)铑Rubidium(Rb)铷Samarium(Sm)钐Scandium(Sc)钪Selenium(Se)硒Silicon(Si)硅Silver(Ag)银Sodium(Na)钠Strontium(Sr)锶Sulphur(S)锍Tantalum(Ta)钽Technetium(Tc)锝Tellurium(Te)碲Terbium(Tb)铽Thallium(Tl)铊Thorium(Th)钍Tin(Sn)锡Thulium(Tm)铥Titanium(Ti)钛Tungsten(W)钨Uranium(U)铀Vanadium(V)钒Xenon(Xe)氙Ytterbium(Yb)镱Yttrium(Y)钇Zinc(Zn)锌Zirconium(Zr)锆product化学反应产物flask烧瓶apparatus设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass卵形瓶litmus石蕊litmus paper石蕊试纸graduate,graduated flask量筒,量杯reagent试剂test tube试管burette滴定管retort曲颈甑still蒸馏釜cupel烤钵crucible pot,melting pot坩埚pipette吸液管filter滤管stirring rod搅拌棒element元素body物体compound化合物atom原子gram atom克原子atomic weight原子量atomic number原子数molecule分子electrolyte电解质ion离子anion阴离子cation阳离子electron电子isotope同位素isomer同分异物现象polymer聚合物symbol复合radical基structural formula分子式valence,valency价monovalent单价bivalent二价halogen成盐元素bond原子的聚合mixture混合combination合成作用compound合成物alloy合金organic chemistry有机化学inorganic chemistry无机化学derivative衍生物series系列hydrochloric acid盐酸sulphuric acid硫酸nitric acid硝酸aqua fortis王水fatty acid脂肪酸organic acid有机酸hydrosulphuric acid氢硫酸hydrogen sulfide氢化硫alkali碱,强碱ammonia氨base碱hydrate水合物hydroxide氢氧化物,羟化物hydracid氢酸hydrocarbon碳氢化合物,羟anhydride酐alkaloid生物碱aldehyde醛oxide氧化物phosphate磷酸盐acetate醋酸盐methane甲烷,沼气butane丁烷salt盐potassium carbonate碳酸钾sodium carbonate碳酸钠caustic potash苛性钾caustic soda苛性钠ester酯gel凝胶体analysis分解fractionation分馏endothermic reaction吸热反应exothermic reaction放热反应precipitation沉淀to precipitate沉淀to distil,to distill蒸馏distillation蒸馏to calcine煅烧to oxidize氧化alkalinization碱化to oxygenate,to oxidize脱氧,氧化to neutralize中和to hydrogenate氢化to hydrate水合,水化to dehydrate脱水fermentation发酵solution溶解combustion燃烧fusion,melting熔解isomerism,isomery同分异物现象hydrolysis水解electrolysis电解electrode电极anode阳极,正极cathode阴极,负极catalyst催化剂catalysis催化作用oxidization,oxidation氧化reducer还原剂dissolution分解synthesis合成reversible可逆的氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatic hydrocarbon苯benzene变性denaturation不饱和烃unsaturated hydrocarbon超导材料superconductive material臭氧ozone醇alcohol次氯酸钾potassium hypochlorite醋酸钠sodium acetate氮族元素nitrogen group element碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemical corrosion电解质electrolyte电离平衡ionization equilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starch potassium iodide paper 二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical power source 化学反应速率chemical reaction rate 化学键chemical bond化学平衡chemical equilibrium还原剂reducing agent磺化反应sulfonation reaction霍尔槽Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle 离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide 两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron(III)chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitution reaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbon tetrachloride塑料plastic塑料的降解plastic degradation塑料的老化plastic ageing酸碱中和滴定acid-base neutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠sodium carbonate碳酸氢铵ammonium bicarbonate碳酸氢钠sodium bicarbonate糖类carbohydrate烃hydrocarbon烃的衍生物derivative of hydrocarbon烃基hydrocarbonyl同分异构体isomer同素异形体allotrope同位素isotope同系物homo1og涂料coating烷烃alkane物质的量amount of substance物质的量浓度amount-of-substance concentration of B烯烃alkene洗涤剂detergent纤维素cellulose相对分子质量relative molecular mass相对原子质量relative atomic mass消去反应elimination reaction硝化反应nitratlon reaction硝酸钡barium nitrate硝酸银silver nitrate溴的四氯化碳溶液solution of bromine in carbon tetrachloride溴化钠sodium bromide溴水bromine water溴水bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应flame test氧化剂oxidizing agent氧化铝aluminium oxide氧化铁iron(III)oxide乙醇ethanol乙醛ethana1乙炔ethyne乙酸ethanoic acid乙酸乙酯ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物organic compound元素周期表periodic table of elements元素周期律periodic law of elements原电池primary battery原子序数atomic number皂化反应saponification粘合剂adhesive蔗糖sucrose指示剂Indicat or酯ester酯化反应esterification周期period族group(主族:main group)基础化学常用英语词汇380条1.The Ideal-Gas Equation理想气体状态方程2.Partial Pressures分压3.Real Gases:Deviation from Ideal Beh***ior真实气体:对理想气体行为的偏离4.The van der Waals Equation范德华方程5.System and Surroundings系统与环境6.State and State Functions状态与状态函数7.Process过程8.Phase相9.The First Law of Thermodynamics热力学第一定律10.Heat and Work热与功11.Endothermic and Exothermic Processes吸热与发热过程12.Enthalpies of Reactions反应热13.Hess’s Law盖斯定律14.Enthalpies of Formation生成焓15.Reaction Rates反应速率16.Reaction Order反应级数17.Rate Constants速率常数18.Activation Energy活化能19.The Arrhenius Equation阿累尼乌斯方程20.Reaction Mechanisms反应机理21.Homogeneous Catalysis均相催化剂22.Heterogeneous Catalysis非均相催化剂23.Enzymes酶24.The Equilibrium Constant平衡常数25.the Direction of Reaction反应方向26.Le Chatelier’s Principle列·沙特列原理27.Effects of Volume,Pressure,Temperature Changes and Catalystsi.体积,压力,温度变化以及催化剂的影响28.Spontaneous Processes自发过程29.Entropy(Standard Entropy)熵(标准熵)30.The Second Law of Thermodynamics热力学第二定律31.Entropy Changes熵变32.Standard Free-Energy Changes标准自由能变33.Acid-Bases酸碱34.The Dissociation of Water水离解35.The Proton in Water水合质子36.The pH Scales pH值37.Bronsted-Lowry Acids and Bases Bronsted-Lowry酸和碱38.Proton-Transfer Reactions质子转移反应39.Conjugate Acid-Base Pairs共轭酸碱对40.Relative Strength of Acids and Bases酸碱的相对强度41.Lewis Acids and Bases路易斯酸碱42.Hydrolysis of Metal Ions金属离子的水解43.Buffer Solutions缓冲溶液44.The Common-Ion Effects同离子效应45.Buffer Capacity缓冲容量46.Formation of Complex Ions配离子的形成47.Solubility溶解度48.The Solubility-Product Constant Ksp溶度积常数49.Precipitation and separation of Ions离子的沉淀与分离50.Selective Precipitation of Ions离子的选择沉淀51.Oxidation-Reduction Reactions氧化还原反应52.Oxidation Number氧化数53.Balancing Oxidation-Reduction Equations氧化还原反应方程的配平54.Half-Reaction半反应55.Galvani Cell原电池56.Voltaic Cell伏特电池57.Cell EMF电池电动势58.Standard Electrode Potentials标准电极电势59.Oxidizing and Reducing Agents氧化剂和还原剂60.The Nernst Equation能斯特方程61.Electrolysis电解62.The W***e Beh***ior of Electrons电子的波动性63.Bohr’s Model of The Hydrogen Atom氢原子的波尔模型64.Line Spectra线光谱65.Quantum Numbers量子数66.Electron Spin电子自旋67.Atomic Orbital原子轨道68.The s(p,d,f)Orbital s(p,d,f)轨道69.Many-Electron Atoms多电子原子70.Energies of Orbital轨道能量71.The Pauli Exclusion Principle泡林不相容原理72.Electron Configurations电子构型73.The Periodic Table周期表74.Row行75.Group族76.Isotopes,Atomic Numbers,and Mass Numbers同位素,原子数,质量数77.Periodic Properties of the Elements元素的周期律78.Radius of Atoms原子半径79.Ionization Energy电离能80.Electronegativity电负性81.Effective Nuclear Charge有效核电荷82.Electron Affinities亲电性83.Metals金属84.Nonmetals非金属85.Valence Bond Theory价键理论86.Covalence Bond共价键87.Orbital Overlap轨道重叠88.Multiple Bonds重键89.Hybrid Orbital杂化轨道90.The VSEPR Model价层电子对互斥理论91.Molecular Geometries分子空间构型92.Molecular Orbital分子轨道93.Diatomic Molecules双原子分子94.Bond Length键长95.Bond Order键级96.Bond Angles键角97.Bond Enthalpies键能98.Bond Polarity键矩99.Dipole Moments偶极矩100.Polarity Molecules极性分子101.Polyatomic Molecules多原子分子102.Crystal Structure晶体结构103.Non-Crystal非晶体104.Close Packing of Spheres球密堆积105.Metallic Solids金属晶体106.Metallic Bond金属键107.Alloys合金108.Ionic Solids离子晶体109.Ion-Dipole Forces离子偶极力110.Molecular Forces分子间力111.Intermolecular Forces分子间作用力112.Hydrogen Bonding氢键113.Covalent-Network Solids原子晶体pounds化合物115.The Nomenclature,Composition and Structure of Complexes配合物的命名,组成和结构116.Charges,Coordination Numbers,and Geometries电荷数、配位数、及几何构型117.Chelates螯合物118.Isomerism异构现象119.Structural Isomerism结构异构120.Stereoisomerism立体异构121.Magnetism磁性122.Electron Configurations in Octahedral Complexes八面体构型配合物的电子分布123.Tetrahedral and Square-planar Complexes四面体和平面四边形配合物124.General Characteristics共性125.s-Block Elements s区元素126.Alkali Metals碱金属127.Alkaline Earth Metals碱土金属128.Hydrides氢化物129.Oxides氧化物130.Peroxides and Superoxides过氧化物和超氧化物131.Hydroxides氢氧化物132.Salts盐133.p-Block Elements p区元素134.Boron Group(Boron,Aluminium,Gallium,Indium,Thallium)硼族(硼,铝,镓,铟,铊)135.Borane硼烷136.Carbon Group(Carbon,Silicon,Germanium,Tin,Lead)碳族(碳,硅,锗,锡,铅)137.Graphite,Carbon Monoxide,Carbon Dioxide石墨,一氧化碳,二氧化碳138.Carbonic Acid,Carbonates and Carbides碳酸,碳酸盐,碳化物139.Occurrence and Preparation of Silicon硅的存在和制备140.Silicic Acid,Silicates硅酸,硅酸盐141.Nitrogen Group(Phosphorus,Arsenic,Antimony,and Bismuth)氮族(磷,砷,锑,铋)142.Ammonia,Nitric Acid,Phosphoric Acid氨,硝酸,磷酸143.Phosphorates,phosphorus Halides磷酸盐,卤化磷144.Oxygen Group(Oxygen,Sulfur,Selenium,and Tellurium)氧族元素(氧,硫,硒,碲)145.Ozone,Hydrogen Peroxide臭氧,过氧化氢146.Sulfides硫化物147.Halogens(Fluorine,Chlorine,Bromine,Iodine)卤素(氟,氯,溴,碘)148.Halides,Chloride卤化物,氯化物149.The Noble Gases稀有气体150.Noble-Gas Compounds稀有气体化合物151.d-Block elements d区元素152.Transition Metals过渡金属153.Potassium Dichromate重铬酸钾154.Potassium Permanganate高锰酸钾155.Iron Copper Zinc Mercury铁,铜,锌,汞156.f-Block Elements f区元素nthanides镧系元素158.Radioactivity放射性159.Nuclear Chemistry核化学160.Nuclear Fission核裂变161.Nuclear Fusion核聚变162.analytical chemistry分析化学163.qualitative analysis定性分析164.quantitative analysis定量分析165.chemical analysis化学分析166.instrumental analysis仪器分析167.titrimetry滴定分析168.gr***imetric analysis重量分析法169.regent试剂170.chromatographic analysis色谱分析171.product产物172.electrochemical analysis电化学分析173.on-line analysis在线分析174.macro analysis常量分析175.characteristic表征176.micro analysis微量分析177.deformation analysis形态分析178.semimicro analysis半微量分析179.systematical error系统误差180.routine analysis常规分析181.random error偶然误差182.arbitration analysis仲裁分析183.gross error过失误差184.normal distribution正态分布185.accuracy准确度186.deviation偏差187.precision精密度188.relative standard deviation相对标准偏差(RSD)189.coefficient variation变异系数(CV)190.confidence level置信水平191.confidence interval置信区间192.significant test显著性检验193.significant figure有效数字194.standard solution标准溶液195.titration滴定196.stoichiometric point化学计量点197.end point滴定终点198.titration error滴定误差199.primary standard基准物质200.amount of substance物质的量201.standardization标定202.chemical reaction化学反应203.concentration浓度204.chemical equilibrium化学平衡205.titer滴定度206.general equation for a chemical reaction化学反应的通式207.proton theory of acid-base酸碱质子理论208.acid-base titration酸碱滴定法209.dissociation constant解离常数210.conjugate acid-base pair共轭酸碱对211.acetic acid乙酸212.hydronium ion水合氢离子213.electrolyte电解质214.ion-product constant of water水的离子积215.ionization电离216.proton condition质子平衡217.zero level零水准218.buffer solution缓冲溶液219.methyl orange甲基橙220.acid-base indicator酸碱指示剂221.phenolphthalein酚酞222.coordination compound配位化合物223.center ion中心离子224.cumulative stability constant累积稳定常数225.alpha coefficient酸效应系数226.overall stability constant总稳定常数227.ligand配位体228.ethylenediamine tetraacetic acid乙二胺四乙酸229.side reaction coefficient副反应系数230.coordination atom配位原子231.coordination number配位数232.lone pair electron孤对电子233.chelate compound螯合物234.metal indicator金属指示剂235.chelating agent螯合剂236.masking掩蔽237.demasking解蔽238.electron电子239.catalysis催化240.oxidation氧化241.catalyst催化剂242.reduction还原243.catalytic reaction催化反应244.reaction rate反应速率245.electrode potential电极电势246.activation energy反应的活化能247.redox couple氧化还原电对248.potassium permanganate高锰酸钾249.iodimetry碘量法250.potassium dichromate重铬酸钾251.cerimetry铈量法252.redox indicator氧化还原指示253.oxygen consuming耗氧量(OC)254.chemical oxygen demanded化学需氧量(COD) 255.dissolved oxygen溶解氧(DO)256.precipitation沉淀反应257.argentimetry银量法258.heterogeneous equilibrium of ions多相离子平衡259.aging陈化260.postprecipitation继沉淀261.coprecipitation共沉淀262.ignition灼烧263.fitration过滤264.decantation倾泻法265.chemical factor化学因数266.spectrophotometry分光光度法267.colorimetry比色分析268.transmittance透光率269.absorptivity吸光率270.calibration curve校正曲线271.standard curve标准曲线272.monochromator单色器273.source光源274.w***elength dispersion色散275.absorption cell吸收池276.detector检测系统277.bathochromic shift红移278.Molar absorptivity摩尔吸光系数279.hypochromic shift紫移280.acetylene乙炔281.ethylene乙烯282.acetylating agent乙酰化剂283.acetic acid乙酸284.adiethyl ether乙醚285.ethyl alcohol乙醇286.acetaldehtde乙醛287.β-dicarbontl compoundβ–二羰基化合物288.bimolecular elimination双分子消除反应289.bimolecular nucleophilic substitution双分子亲核取代反应290.open chain compound开链族化合物291.molecular orbital theory分子轨道理论292.chiral molecule手性分子293.tautomerism互变异构现象294.reaction mechanism反应历程295.chemical shift化学位移296.Walden inversio瓦尔登反转n297.Enantiomorph对映体298.addition rea ction加成反应299.dextro-右旋300.levo-左旋301.stereochemistry立体化学302.stereo isomer立体异构体303.Lucas reagent卢卡斯试剂304.covalent bond共价键305.conjugated diene共轭二烯烃306.conjugated double bond共轭双键307.conjugated system共轭体系308.conjugated effect共轭效应309.isomer同分异构体310.isomerism同分异构现象anic chemistry有机化学312.hybridization杂化313.hybrid orbital杂化轨道314.heterocyclic compound杂环化合物315.peroxide effect过氧化物效应t316.valence bond theory价键理论317.sequence rule次序规则318.electron-attracting grou p吸电子基319.Huckel rule休克尔规则320.Hinsberg test兴斯堡试验321.infrared spectrum红外光谱322.Michael reacton麦克尔反应323.halogenated hydrocarbon卤代烃324.haloform reaction卤仿反应325.systematic nomenclatur系统命名法e326.Newman projection纽曼投影式327.aromatic compound芳香族化合物328.aromatic character芳香性r329.Claisen condensation reaction克莱森酯缩合反应330.Claisen rearrangement克莱森重排331.Diels-Alder reation狄尔斯-阿尔得反应332.Clemmensen reduction克莱门森还原333.Cannizzaro reaction坎尼扎罗反应334.positional isomers位置异构体335.unimolecular elimination reaction单分子消除反应336.unimolecular nucleophilic substitution单分子亲核取代反应337.benzene苯338.functional grou官能团p339.configuration构型340.conformation构象341.confomational isome构象异构体342.electrophilic addition亲电加成343.electrophilic reagent亲电试剂344.nucleophilic addition亲核加成345.nucleophilic reagent亲核试剂346.nucleophilic substitution reaction亲核取代反应347.active intermediate活性中间体348.Saytzef f rule查依采夫规则349.cis-trans isomerism顺反异构350.inductive effect诱导效应t351.Fehling’s reagent费林试剂352.phase transfer catalysis相转移催化作用353.aliphatic compound脂肪族化合物354.elimination reaction消除反应355.Grignard reagent格利雅试剂356.nuclear magnetic resonance核磁共振357.alkene烯烃358.allyl cation烯丙基正离子359.le***ing group离去基团360.optical activity旋光性361.boat confomation船型构象362.silver mirror reaction银镜反应363.Fischer projection菲舍尔投影式364.Kekule structure凯库勒结构式365.Friedel-Crafts reaction傅列德尔-克拉夫茨反应366.Ketone酮367.carboxylic acid羧酸368.carboxylic acid derivative羧酸衍生物369.hydroboration硼氢化反应370.bond oength键长371.bond energy键能372.bond angle键角373.carbohydrate碳水化合物374.carbocation碳正离子375.carbanion碳负离子376.alcohol醇377.Gofmann rule霍夫曼规则378.Aldehyde醛379.Ether醚380.Polymer聚合物。
化学专业英语1、化学专业英语:一、无机化学术语1、periodic table 元素周期表2、electronic structure电子构型3、wavelength波长4、frequency频率5、wave number波数6、diffraction衍射7、quantum量子8、quantized量子化9、quantum theory量子理论10、photoelectric effect光电效应11、photon光子12、quantum mechanics量子力学13、Heisenberg uncertainty principle海森堡测不准原理14、momentum动量15、angular momentum角动量16、ground state基态17、excited states激发态18、quantum number量子数19、atomic orbital原子轨道20、the four quantum numbers四个量子数21、electron configuration电子构型22、Pauli exclusion principle泡利不相容原理23、Hund’s principle洪特规则24、paramagnetism顺磁性25、diamagnetism反磁性26、period周期27、noble gas惰性气体28、Representative elements代表性元素29、Transition elements过渡元素30、Metals金属31、nonmetals非金属32、semiconducting elements半导体元素33、chemical bond化学键34、valence electrons价电子35、Lewis symbol路易斯符号36、Chemical stability化学稳定性37、octet rule八隅体规则38、chemical reactivity化学反应性39、metallic bonding金属键40、ionic bonding 离子键41、Lewis structures路易斯结构42、nonbonding electron pairs(lone pairs)非成键电子对43、covalent bonding共价键44、single单键45、multiple(double,triple) and coordinate(donor atom and acceptor atom) covalent bond配位键46、resonance共振47、resonance hybrid共振杂化48、nonpolar and polar covalent bond非极性和极性共价键49、dipole偶极50、network covalent substances51、bond dissociation energy键解离能52、lattice energy点阵能,晶格能53、atomic radii原子半径54、effective nuclear charge有效核电荷55、screening effect屏蔽效应56、Scanning 扫描57、Lanthanide contraction镧系收缩58、isoelectronic ions等电子离子59、ionization energy电离能60、noble gas configuration惰性气体构型61、electron affinity电子亲和能62、pseudo-noble gas configuration稀有气体原子实63、polarization of an ion离子极化64、electronegativity电负性65、electronegative atom电正性原子66、electropositive atom电负性原子67、Oxidation numbers氧化值68、Oxidation state氧化态69、molecular geometry分子几何70、bond axis键轴71、valence bond theory价键理论72、hybridization杂化73、isomers异构体74、structural isomers结构异构75、delocalized electrons离域电子76、dipole moment偶极矩77、London bond色散力78、nuclide核素79、nucleons核子80、mass defect质量缺陷81、nuclear binding energy核结合能82、nuclear fusion核聚变83、nuclear fission核裂变84、radioactivity放射性85、radionuclides放射性核素86、magic number幻数87、bombardment reaction轰击反应88、antineutrino反中微子89、neutrino中微子90、positron正电子(阳电子)91、electron capture电子捕获92、chain reaction链式反应93、crtical mass临界质量94、nuclear reaction 核反应95、thermonuclear reactions热核反应96、breeder reactor增殖反应97、hydration水合98、solvation溶剂化99、chemical equilibrium化学平衡100、hydrolysis水解101、hydrates水合物102、efflorescence风化物103、hygroscopic 吸湿104、deliquescence潮解105、electrolytes电解质106、strong(weak)electrolytes强电解质107、nonelectrolytes非电解质108、acidic(alkaline)aqueous solution109、polyprotic acids多元酸110、neutralization中和反应111、complex ion络合离子112、ligands配体113、hard water 硬水114、carbonate hardness碳酸盐硬度115、water softening水软化116、permanent hardness永久硬度117、ion exchange离子交换118、fossil fuels化石燃料119、oxidation氧化120、reduction还原121、oxidation-reduction(redox)reactions氧化还原反应122、oxidizing agent氧化剂123、heavy water重水124、absorption吸附125、acidic anhydride(oxide)酸性酸酐126、basic anhydride(oxide)碱性酸酐127、amphoteric两性128、allotropes同素异形体129、acid salt酸式盐130、oxidizing anion氧化性阴离子131、disproportionation reaction歧化反应132、oxidizing acids氧化性酸。
1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-partic le system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical partic les塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
强互相作用力物质的英文Strong Interaction Materials: A Brief Overview.Strong interaction materials, often referred to as hadronic matter, are composed of particles that interact through the strong nuclear force. This force, one of the four fundamental forces of nature, is responsible for binding protons and neutrons within atomic nuclei and for the existence of stable matter as we know it. The strong force is characterized by its short-range nature and its ability to bind particles into composite particles known as hadrons.Hadrons are subatomic particles that participate in the strong interaction. They include protons, neutrons, pions, kaons, and many others. These particles are classified into two broad categories: baryons, which have an odd number of valence quarks, and mesons, which have an even number of valence quarks. Baryons, such as protons and neutrons, are composed of three quarks, while mesons, such as pions andkaons, are composed of a quark and an antiquark.The strong force is transmitted by gluons, which are massless particles that carry the color charge. This charge is analogous to the electric charge but operates within the context of quantum chromodynamics (QCD), the theory that describes the strong interaction. Gluons interact with quarks and antiquarks, binding them into hadrons throughthe exchange of color charge.The strength of the strong force increases with decreasing distance between particles, reaching a maximumat very short distances. This behavior is known as asymptotic freedom, a prediction of QCD that has been confirmed through experiments. However, at larger distances, the strong force becomes weaker, allowing hadrons to exist as separate particles.The study of strong interaction materials is crucial to understanding the inner workings of atomic nuclei and the stability of matter. It also plays a pivotal role inparticle physics experiments, which aim to probe thefundamental nature of matter and energy. Experiments such as the Large Hadron Collider (LHC) at CERN are designed to create and study hadrons under extreme conditions, revealing insights into the behavior of the strong force.In addition to its fundamental importance, the strong force has applications in fields such as nuclear physics, nuclear engineering, and even medicine. For example, nuclear reactors use the strong force to maintain the stability of nuclear fuel, while radiation therapy uses radioactive particles to treat cancer by exploiting the strong force's ability to bind particles together.In conclusion, strong interaction materials are an integral part of our understanding of the fundamental forces of nature and the structure of matter. Their study continues to reveal new insights into the inner workings of the universe and holds promise for future technological applications. As research in this field continues to progress, we can expect to gain even deeper understanding of the role of the strong force in shaping our world.。