变速恒频风力发电机组控制策略分析
- 格式:pdf
- 大小:133.44 KB
- 文档页数:3
风的特性1、随机性2、风随高度的变化而变化2、风速由于风时有时无、时大时小,每一瞬时的速度都不相同,所以风速是指一段时间内的平均值,即平均风速。
3、风力风力等级是根据风对地面或海面物体影响而引起的各种现象,按风力的强度等级来估计风力的大小。
国际上采用的为蒲福风级,从静风到飓风共分为13个等级。
风力等级与风速的关系:505.1N 824.01.0N+=-ν式中 V N ——N 级风的平均风速(m/s);N ——风的级数。
风能密度,空气在一秒钟内以速度ν流过单位面积产生的动能风力发电机的分类按风轮轴的安装型式:水平轴风力发电机组和垂直轴风力发电机组按风力发电机的功率 :微型(额定功率50~1000W )、小型(额定功率1.0~10kW )、中型(额定功率10~100kW )和大型(额定功率大于100kW )按运行方式 独立运行和并网运行独立运行的风力发电机组水平轴独立运行的风 力发电机组主要由风轮(包括尾舵)、发电机、支架、电缆、充电控制器、逆变器、蓄电池组等组成,其主要结构见右图。
(2) 并网运行的风力发电机组并网运行的水平轴式风力发电机组由风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件组成,其结构如右图所示3.2.2 风力机风力机又称为风轮,主要有水平轴风力机和垂直轴风力机。
1、水平轴风力机:a.荷兰式b.农庄式c.自行车式d.桨叶式2、垂直轴风力机:a.萨窝纽斯式b.达里厄式c.旋翼式3)双馈异步发电机双馈异步发电机是当今最有发展前途的一种发电机,其结构是由一台带集电环的绕线转子异步发电机和变频器组成,变频器有交-交变频器、交-直-交变频器及正弦波脉宽调制双向变频器三种,系统结构如下图所示。
根据双馈异步发电机转子转速的变化,双馈异步发电机可以有三种运行状态:1)亚同步运行状态。
此时n<n1,转差率s>0,频率为f2的转子电流产生的旋转磁场的转速与转子转速同方向,功率流向如图所示。
风电储能系统运行分析及控制策略探究与讨论摘要:本文首先分析了风力发电机的类型,然后对风电储能系统运行分析及控制的应用实践进行阐述,最后总结了几点风电储能系统运行的控制策略,主要包括储能设备的选择及分析、提高含风电电力系统的暂态稳定性、相关注意要点,以此来不断提升风电储能系统运行效率,同时保证良好的控制效果。
关键词:风电储能系统;运行分析;控制策略目前,能源互联网概念应运而生,储能在未来能源系统发展中起到了重要的作用。
在储能技术的分类方面,物理储能、化学储能和电磁储能类型为重要的组成。
其中,针对于化学储能,技术发展速度较快,分析其优势,具有良好的环境适应性,且占地少、工期短等。
同时,在新能源产业不断发展过程中,要想实现清洁能源的高效利用,储能已经成为了人们共同关注的焦点话题之一。
因此,应对风电储能典型运行工况进行深入分析,将不同类型储能电池运行中的特性及差异高度明确化,以此来为后期储能设计与控制助益。
一、风力发电机的类型首先,双馈异步风力发电机。
这种机型具有变速恒频发电系统的称号【1】,其风力机的变速运行状态可以实现,运行速度的调节范围比较广阔,满足利用效率的提升需求;发电机本身对另外附加无功补偿设备也没有提出过高的要求,功率因数的调节范围较为固定,所以调节无功功率出力的能力可以保证。
其次,目前,在国内运行风电场的机组中,异步风电发电机得到了广泛应用,对其特点进行分析,结构简单、运行可靠等优势突出。
要想使电网对风电场功率因数的要求得到满足与实现,在机端并联补偿电容器的方法更为常用,在其补偿策略中,应将若干组固定容量的电容器配置在异步发电机。
通常来说,风速大小与气候环境变化之间联系密切,驱动发电机的风力机运行风速不可能全程额定,所以要想将低风速时的风能利用水平提升上来,应对全年的发电量予以增加,所以双速异步发电机更为适用。
最后,直驱式交流永磁同步发电机。
对于齿轮箱这一部件,在大型风力发电机组运行方面具有较强的影响力,且故障的发生几率较高。
风力发电系统运行及控制方法摘要:加强使用各类新能源的发展,风力发电系统作为一种新能源逐渐被应用到人们的生活和工作,利用风力发电系统不仅可以减少煤炭资源的消耗,保护环境,减少环境污染,电力供应质量可以继续为我国提供安全高效的保障。
本文主要研究风力发电系统的运行与控制。
关键词:风力发电系统;运行控制;方法前言:今天,随着技术无污染、高效发展的发展,各国都在积极探索和研究风能和其他新能源的开发,特别是在当前能源短缺的形势下。
风力发电系统的研究越来越重要。
根据各种运行方式和控制技术,风力发电系统可分为定速恒频系统和变速恒频系统,以充分利用风能。
1风力发电系统结构风力发电系统的系统结构,主要由风轮、齿轮箱、发电机和转换器设备和其他设备,风轮主要是用来捕获风能,然后进一步将捕获的风能转化为机械能,机械能可以用到人们生活中的发电中,可以利用风的能量由发电机最终完成发电,然后转移到电网实现发电的目的。
以小型风力发电系统中风力发电机为例简单介绍,小型风力发电系统主要由小型风力发电机、发电机、三相无控整流器、升压变换器、逆变器、滤波器、直流电压负载和负载局部用户部分组成。
和谐运行,促进风电系统正确运行与控制。
在风力发电系统的运行控制过程中,为了实现风力发电机组的最大功率跟踪,对变换器进行了一系列相关的控制研究。
2风力发电系统液压系统综述压力冲击应保持在最小值,压力冲击大能造成危险。
即使在电源故障恢复的情况下,也必须保证安全的工作条件。
下列外部因素不影响液压系统的运行:(1)污染介质;(2)沙尘;(3)杂质;(4)外加磁场、电磁场和电场;(5)阳光;(6)振动。
如果液压系统是保护系统的一部分,电网故障和外部极限温度不应危及系统的正常运行。
同步发电机以恒定的速度运行,它不受连接电网频率作用,也不受转矩的影响。
电网频率所规定的速度也是通常的同步速度。
异步发电机也是一种发电机,它允许一定的偏离,即偏离电网频率所规定的速度。
收稿日期22基金项目甘肃省自然科学基金“智能控制的多模态集成融合方法研究”(3ZS 2B 5235)变速恒频双馈风力发电机系统的研究贾石峰(兰州交通大学自动化与电气工程学院,甘肃兰州 730070)摘 要: 分析了变速恒频双馈风力发电机系统的结构及工作原理,给出了变速恒频技术在发电机组中实现变速运行的不同方式.通过比较变速工作时的定转子状态,采用控制发电机转子电流的大小来实现双馈异步发电机输出端电压稳定.根据运行数据,总结了变速恒频双馈风力发电机系统的若干优势.关键词: 变速恒频;双馈;发电机中图分类号: TM315 文献标识码: A 文章编号:100420366(2008)0420094203Research on the System for V ar ia ble 2Speed Constant 2Fr equencyDoubly 2Fed Wind Pow er G enera torJ IA Shi 2feng(College of A utomation and Elect rica l E ngi nee ring ,L a nz hou J ia otong U niversity ,L anzhou 730070,China )Abstract : The st ruct ure and f undament al pri nciple of variabl e 2speed co nst ant 2f requency doubly 2fe d wi nd power generator system i s a nalyzed.Different met hods about power generator varia ble 2speed run are real 2ized based on varia ble 2speed consta nt 2f reque ncy technology.By t he compa ri son of vari able 2speed work stat e of st ator and rotator of va riabl e 2spee d constant 2f requency power generat or ,t he generator rot ator cur 2rent cont rol met hod i s adopt ed t o i mpl ement outp ut vol tage st abilit y of doubly 2fed asynchronization power generator.According to t he operat ing data ,some adva nt ages of t he generator syste m are sum marized.K ey w or ds : VSCF ;doubly 2f ed ;power generator 能源、环境是当今人类生存和发展所要解决的紧迫问题,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视,现代兆瓦级以上的大型并网风力发电机组多采用风力机变速运行的方式[1],这种运行方式可以实现优化风力发电机组内部件的机械负载及系统内的电网质量.风力机变速运行时,与其连接的发电机也作变速运行,因此必须采用在变速运转时能发出的恒频恒压电能的发电机,才能实现与电网的并网连接[2].将具有绕线转子的双馈异步发电机与应用最新电力电子技术的IG B T 变频器及PWM 控制技术结合起来,就能实现这一目的,也就是变速恒频发电系统.1 变速恒频双馈发电机系统采用双馈发电机是风力发电技术的一种主流技术,双馈发电机的结构类似绕线型感应电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源供给三相低频励磁电流.1.1 VSCF 风力发电机结构双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的,低频电流起到了励磁作用,因此又称为交流励磁发电机,还有些文献称之为可变速发电机、变速恒频发电机或异步化同步发电机.第20卷 第4期2008年12月 甘肃科学学报Jo urnal of G ans u Sci ences Vol.20 No.4Dec.2008:20080229:04220双馈异步发电机主机结构特点:定子与一般三相交流发电机定子一样,转子采用三相交流绕组.正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的不同类型的循环变流器作为三相变频电源供电,转子励磁系统通常采用交2交/交2直2交变频电源供电.双馈异步发电机组成的变速恒频发电系统如图1所示.双馈风力发电机的原动机为风轮和风轮传动系统.由于风速的特殊性(随机性、时变性等),使得双馈风力发电机区别于一般的双馈电机控制.基于变速恒频控制技术的交流励磁风力发电机系统主要由风轮、增速器、交流励磁发电机、励磁、控制检测等系统组成[3~4].图1 变速恒频双馈异步发电机系统结构1.2 VSCF 风力发电机原理双馈异步发电机在稳态运行时,根据感应电机定、转子绕组电流产生的旋转磁场相对静止的关系,其数学表达式如下n 1=n ±n 2,(1)f 1=p n/60±f 2,(2)s =n 1-n n 1=±n 2n 1,(3)式中n 1、n 、n 2分别为定子电流磁场旋转速度、转子旋转速度和转子电流磁场相对于转子的旋转速度,f 1、f 2分别为定、转子电流频率,p 为发电机极对数,s 为发电机的转差率[5].由式(1)可知,当发电机转子转速n 发生变化时,调节转子电流频率f 2,可使f 1保持恒定不变,实现双馈异步发电机的变速恒频控制.当n <n 1时,电机处于亚同步速运行状态,转子磁场旋转方向与转子旋转方向相同,励磁电源向转子提供交流励磁电流,定子向电网馈出电能,式(1)、式(2)、式(3)均取正号;当>时,电机处于超同步速运行状态,转子磁场旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能,式()、式()、式(3)均取负号;当n =n 1时,f 2=0,励磁电源向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行.当风速变化时,V SCF 系统工作过程有:(1)当风速降低时,风力机转速降低,异步发电机转子转速也降低,转子绕组电流产生的旋转磁场转速将低于异步电机的同步转速n s ,定子绕组感应电动势的频率f 低于f 1(50Hz ),与此同时转速测量装置立即将转速降低的信息反馈到控制转子电流频率的电路,使转子电流的频率增高,则转子旋转磁场的转速又回升到同步转速n s ,这样定子绕组感应电势的频率f 又恢复到额定频率f 1(50Hz ).(2)当风速增高时,风力机及异步电机转子转速升高,异步发电机定子绕组的感应电动势的频率将高于同步转速所对应的频率f 1(50Hz ),测速装置会立即将转速和频率升高的信息反馈到控制转子电流频率的电路,使转子电流的频率降低,从而使转子旋转磁场的转速回降至同步转速n s ,定子绕组的感应电动势频率重新恢复到频率f 1(50Hz ).必须注意,当超同步运行时,转子旋转磁场的转向应与转子自身的转向相反,因此当超同步运行时,转子绕组应能自动变换相序,以使转子旋转磁场的旋转方向倒向.(3)当异步电机转子转速达到同步转速时,此时转子电流的频率应为0,即转子电流为直流电流,这与普通同步发电机转子励磁绕组内通入直流电是相同的.实际上,在这种情况下双馈异步发电机已经和普通同步发电机一样了.双馈异步发电机输出端电压的控制是靠控制发电机转子电流的大小来实现,当发电机的负载增加时,发电机输出端电压降低,此信息由电压检测获得,并反馈到控制转子电流大小的电路,也即通过控制三相半控或全控整流桥的晶闸管导通角,使导通角增大,从而使发电机转子电流增加,定子绕组的感应电动势增高,发电机输出端电压恢复到额定电压.反之,当发电机负载减小时,发电机输出端电压升高,通过电压检测后获得的反馈信息将使半控或全控整流桥的晶闸管的导通角减小,从而使转子电流减小,定子绕组输出端电压降回至额定电压[6].1.3 VSCF 风力发电机运行数据采用VSCF 技术,1.5MW ,4极(同步转速1500r/mi n )双馈异步发电机实验样机功率/转数运行关系如图所示由图可见,风力发电机不论在亚同步运行、超同步运行,还是过负荷运行过程,VS F 系统都要起59第20卷 贾石峰:变速恒频双馈风力发电机系统的研究 n n 1122.2C图2 1.5MW4极双馈异步发电机功率/转数运行关系到功率调节的作用.由于风能的不稳定性和捕获最大风能的要求,发电机转速在不断变化,而且经常在同步转速上下波动[7],这就要求转子交流励磁电源有良好的变频输入输出特性,具有能量的双向流动能力,采用IG B T 器件构成的PWM 整流2PWM 逆变形式的交2直2交静止变频器作为其励磁电源.2 VSCF 风力发电机系统的优越性通过对VSCF 双馈异步发电机实验样机的实际运行效果分析,V SC F 风力发电机系统较传统失速型风力发电机系统具有下列优势:(1)VSC F 发电系统有能力控制异步发电机的滑差在恰当的数值范围内变化,因此可以实现优化风力机叶片的桨距调节;(2)由于风力机是变速运行,其运行速度能够在一个较宽的范围内被调节到风力机的最优化效率数值,使风力机的功率系数C p 值得到优化,从而获得较高的系统效率[8];(3)可以实现发电机低起伏的平滑的电功率输出,达到优化系统内的电网质量,同时减小发电机温度变化;(4)可以降低机组剧烈的转矩起伏和噪声水平,从而能够减小所有部件的机械应力;(5)可独立运行,也可并网运行,并可实现功率因数的调节.3 结束语研究了V SC F 风力发电机系统结构、工作原理、运行数据和系统优势.建立在VSCF 发电技术基础上的双馈异步发电机确保发电机输出功率恒频、恒压,保证了功率输出的平稳性和传动系统的柔性,实现风能-电能安全可靠转换,VSCF 是大型并网风力发电机组的主流机型的关键技术.风电是一种新能源,风能是有大规模开发利用前景的可再生能源,随着人们对环保意识日益增强,传统能源日渐枯竭,风力发电将成为工业化能源的重要组成部分.参考文献:[1] 叶杭冶.风力发电机组的控制技术[M ].北京:机械工业出版社,2006.[2] 吴国祥.双馈变速恒频风力发电空载并网控制策略[J ].电工技术学报,2007,22(7):1702171.[3] Wang Q ,Chang L C.An Intelli gent Maxim um Po wer Ext rac 2t ion Algorit h m fo r Invert er Based Variable S peed Wi nd Tur 2bi ne Syst ems [J ].IE EE Transactio ns on Power El ect ro nics ,2004,19(5):124221249.[4] Moo r G D ,Beu kes H J .Maxi mum Po wer Poi nt Trackers For 2wind Turbines[C ].2004,35t h Annual IEEE Po wer El ect ro nics Speci ali st s C o nference[A].Germany ,2004:204422049.[5] 代洪涛.变速恒频双馈风力发电机控制系统研究[J ].沈阳工业大学学报,2003,25(6):4792481.[6] 王海军.变速恒频双馈风力发电变频励磁电源控制研究[D ].兰州:兰州交通大学,2007.[7] 王承熙,张源.风力发电[M ].北京:中国电力出版社,2002.[8] 顾鑫.风力发电机组控制系统研究分析[J ].华东电力,2007,35(2):1612162.作者简介:贾石峰(19682)男,吉林省长春人,1990年毕业于兰州交通大学自动化专业,现任兰州交通大学自动化与电气工程学院副教授,硕士生导师.主要从事检测技术及自动化装置、控制理论与控制工程研究.69 甘肃科学学报 2008年 第4期。
变速恒频双馈风力发电机的原理和优点研究摘要随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。
变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。
通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节,可在很宽的风速范围内保持近乎恒定的最佳叶尖速比,进而实现追求风能最大转换效率;同时又可以采用一定的控制策略灵活调节系统的有功、无功功率,抑制谐波,减少损耗,提高系统效率。
而其与双馈发电机构成的风力发电系统的研究已经成为目前国际上风力发电的必然趋势。
关键词:风能,,风力发电,变速恒频,双馈发电机1 国内外风力发电现状风力发电作为一种无污染的清洁能源,日益受到各个国家的重视。
由于近年来电力电子技术发展的势头突飞猛进,尤其是计算机与控制技术的飞速发展,各国看到了风能的潜力,都在风能的开发利用上投入了大量的人力物力精力,风力发电的技术得到长足的进步和飞速发展。
机械、空气动力、计算机、自动控制、电力电子技术的发展和新领域的利用,促进了很多当初制约风力发电发展的一些技术难关的攻克,并且在各国政府的大力支持下,风电的时代已经来临。
预计到2020年,世界风电的装机容量将达到1231000MW,发电量约为30000亿KWh,风力发电将占世界发电总量的12%。
“风力12%”的蓝图,展示出风力发电已经成为解决世界能源问题的不可缺的重要力量。
风力发电不再是一种可有可无的补充能源,已经成为最具有商业化发展前景的成熟技术和新兴产业,有可能成为世界未来最重要的替代能源。
在欧洲,德国一直引领着世界风电市场的发展,他们制定了一个新的风电发展规划,到2025年风电至少占总用电量的25%。
丹麦、西班牙和法国的风电也在高速发展,其中西班牙和法国的风电装机容量以每年60%的速度增长,丹麦已成功用风电来满足国内18%的电力需求,是世界上风电贡献率最高的国家。
风力发电系统用双馈感应发电机矢量控制技术研究一、概述随着全球对可再生能源需求的日益增长,风力发电作为一种清洁、可再生的能源形式,已经在全球范围内得到了广泛的关注和应用。
风力发电系统的核心技术之一便是双馈感应发电机(DFIG)的矢量控制技术。
这种技术对于提高风能利用率和系统稳定性具有重要意义,对双馈感应发电机矢量控制技术的研究具有重要的理论和实践价值。
双馈感应发电机是一种变速恒频风力发电技术中的关键设备,其工作原理是利用风能驱动发电机转子转动,从而产生交流电。
由于风速的波动和不确定性,给风力发电系统的稳定运行带来了一定的挑战。
为了解决这个问题,双馈感应发电机矢量控制技术应运而生。
这种技术通过精确控制发电机的电流和电压的相位和幅值,实现对发电机输出功率的精确控制,从而优化风力发电系统的运行效率。
目前,双馈感应发电机矢量控制技术在风力发电系统中得到了广泛应用。
仍然存在一些问题需要解决,如控制策略的优化、不同风速下的控制效果、以及控制过程中可能出现的振荡等问题。
对双馈感应发电机矢量控制技术进行深入研究,具有重要的现实意义和理论价值。
本文旨在对风力发电系统用双馈感应发电机矢量控制技术进行深入研究。
通过对双馈感应发电机的数学模型、控制策略、以及仿真实验等方面的分析,探讨双馈感应发电机矢量控制技术在风力发电系统中的应用及其优化。
本文的研究结果将为提高风力发电系统的效率和稳定性,推动风力发电产业的可持续发展提供有益的参考和借鉴。
本文还将关注双馈感应发电机在电网电压不对称条件下的运行问题。
电网电压的不对称性可能会对双馈感应发电机的运行产生不良影响,研究电网电压不对称条件下的双馈感应发电机矢量控制技术具有重要的实践意义。
通过对正序和负序定子磁链进行定向,推导出适应于电网电压不对称条件下的励磁矢量控制策略,实现对转子负序电流的有效控制,从而提高风力发电系统在电网电压不对称条件下的运行稳定性。
本文将全面分析双馈感应发电机矢量控制技术在风力发电系统中的应用,探讨其优化方法,以及解决电网电压不对称条件下的运行问题。
课程设计说明书风力发电机组控制系统设计-最大功率点跟踪控制专业新能源科学与工程学生姓名喻绸绢班级能源121学号1210604122指导教师薛迎成完成日期2015年12月14日目录1。
控制功能设计要求 01。
1任务 02.设计 (2)2.1 介绍对象(风力发电系统的最大功率点跟踪控制技术研究)22.2控制系统方案 (2)2。
2.1风力机最大功率点跟踪原理 (2)2。
2.2风力机发电系统 (5)2.2.3风速变化时的系统跟踪过程 (10)3。
硬件设计 (12)4.软件设计 (15)5。
仿真或调试 (16)参考文献 (18)1。
控制功能设计要求1。
1任务能源与环境是当今人类生存和发展所要解决的紧迫问题而传统能源已被过度消耗,因此,可再生能源的开发利用越来越受到重视和关注,其中风能具有分布广、储量大、利用方便、无污染等优点是最具大规模开发利用前景的新能源之一.目前,变速恒频风力发电系统已经广泛用于实际风机中,在低于额定风速的情况下根据风速变化的情况调节风机转速,使其运行于最优功率点,从而捕获最大风能;在高于额定风速时,通过对桨距角的调节,使风机以额定功率输出。
常用最大功率捕获方法主要有功率反馈法、模糊控制法、混合控制法等。
为了充分利用风能,提高风电机组的发电总量,本文分析风机特性及最大功率点跟踪(maximum pow er point tracking MPPT)工作原理.众多的MPPT实现方法各有千秋,对于不同的应用场所各有所长,对于多种方案,需要进行大量细致的实验工作和数据分析.风能是一种具有随机性、不稳定性特征的能源,风能的获取不仅与风力发电机的机械特性有关,还与其采用的控制方法有关。
在某一风机转速情况下,风速越大时风力机的输出功率越大,而对某一风速而言,总有一最大功率点存在.只有当风力发电机工作在最佳叶尖速比时,才能输出最大功率.好的控制方法可使风轮的转速迅速跟踪风速变化,使风力发电机始终保持在最佳叶尖速比上运行,从而最大限度地获得风能.要保证最大限度地将捕获到的风能转化为电能,目前一般采用最大功率点追踪控制(MPPT)控制策略.最大功率点跟踪(MPPT)是在可变风速条件下提高风力机能量转换效率的有效方法. 变速风电系统目前一般采用最大功率点追踪(Maximum Power Point Tracking,MPPT)的控制策略.2。
当风力发电机与电网并联运行时,要求风力发电机的频率与电网频率保持一致,即恒频。
恒速恒频指在风力发电过程中,保持发电机的转速不变,从而得到恒定的频率;变速恒频是指在风力发电过程中发电机的转速可随风速变化,通过其他控制方式来得到恒定的频率。
过去采用的恒速恒频发电机存在风能利用率低、需要无功补偿装置、输出功率不可控、叶片特性要求高等不足,成为制约并网风电场容量和规模的严重障碍变速恒频发电是2O世纪70年代中后期逐渐发展起来的一种新型风力发电技术,通过调节发电机转子电流的大小、频率和相位,或变桨距控制.实现转速的调节.可在很宽的风速范围内保持近乎恒定的最佳叶尖速比,进而实现追求风能最大转换效率;同时又可以采用一定的控制策略灵活调节系统的有功、无功功率,抑制谐波.减少损耗.提高系统效率,因此可以大大提高风电场并网的稳定性。
尽管变速系统与恒速系统相比.风电转换装置中的电力电子部分比较复杂和昂贵.但成本在大型风力发电机组中所占比例并不大.因而发展变速恒频技术将是今后风力发电的必然趋势。
目录摘要: (1)一、变桨系统论述 (1)(一)变桨距机构 (1)(二)电动变桨距系统 (2)1. 机械部分 (3)2. 气动制动 (4)二、变桨系统 (4)(一)变桨系统的作用 (4)1. 功率调节作用 (4)2. 气动刹车作用 (4)(二)变桨系统在轮毂内的拓扑结构与接线图 (6)三、变桨传感部分 (8)(一)旋转编码器 (8)(二)接近开关 (9)四、变桨距角的调节 (10)(一)变桨距部分 (10)(二)伺服驱动部分 (11)总结 (13)参考文献: (13)致谢 (14)风力发电机组変桨系统分析摘要:风能是一种清洁而安全的能源,在自然界中可以不断生成并有规律得到补充,所以风能资源的特点十分明显,其开发利用的潜力巨大。
本文对大型的兆瓦级风力发电机变桨系统做简单的介绍。
变速恒频技术于20世纪90年代开始兴起,其中较为成功的有丹麦VESTAS的V39/V42-600KW机组和美国的Zand的Z-40-600KW机组。
变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。
变速恒频机组的显著优点已得到风力机生产厂和研究机构的普遍承认,将成为未来的主流机型。
但变速恒频风力机组仅通过电机自身调节要达到减小风速波动冲击的目的是很困难的,因为自然界中风速瞬息万变,特别是在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。
但是变桨风机不会产生此类情况,变桨距是指大型风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力状况大为改善。
近年来,电动变桨距系统越来越多的应用到风力发电机组当中,直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。
因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速,在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。
摘要温度监控主要包括发电机、齿轮和液压的水冷却温度控制,发电机、齿轮和液压的风扇冷却温度控制,齿轮油的加热和冷却温度监控,变换器的水冷却温度监控,变换器的风扇冷却温度监控,变换器的冷却水加热温度监控,风向标的加热温度监控。
本文采用先进的PLC,通过完善的软件编程与硬件选型相结合,设计了一种温度监控系统。
采用西门子S7-300的可编程控制器,实现对现场数据的采集、处理和控制功能。
设计控制系统的硬件配置方案、软件设计思想,并对系统进行实验调试。
关键字:风力发电机组, 温度监控, PLCABSTRACTTemperature monitoring include generators, gear and hydraulic cooling water temperature control, generators, gear and hydraulic cooling fan temperature control, gear oil heating and cooling temperature control, temperature control water cooling converter, converter cooling fan temperature control, converter control the heating temperature of cooling water, wind vane heating temperature monitoring.This advanced PLC, through comprehensive selection of software programming and hardware integration, design of a temperature control system. Siemens S7-300 programmable controller to realize the field data collection, processing and control functions. Design control system hardware configuration, software design, debugging and test the system.Key words: wind turbine, temperature monitoring, PLC目录1 课题背景 (1)1.1 世界风力资源的分布及其利用现状 (1)1.2 我国风力资源的分布及其利用 (1)1.2.1.沿海及其岛屿地区风能丰富带 (2)1.2.2北部(东北、华北、西北)地区风能较丰富带 (2)1.2.3内陆局部风能丰富区 (2)1.2.4海上风能丰富区 (2)1.3变速恒频双馈风力发电机组发展现状 (3)1.4基于PLC的温度监控系统意义 (4)2 温度监控系统传感器的选择 (5)2.1传感器的介绍 (5)2.2 温度监控系统的传感器的选型 (5)3 PLC控制方案的实现 (7)3.1 PLC的发展 (7)3.2 S7-300系列PLC的特点及选用的依据 (7)3.3 PLC硬件系统的基本结构 (8)3.4 温度监控系统的PLC的硬件选型 (9)3.5 PLC干扰信号来源的分析及其防护措施 (12)4 风力发电机组温度监控系统的PLC软件设计 (15)4.1 温度监控系统的控制要求 (15)4.2 温度监控系统的流程图设计 (15)4.3 温度监控系统的软件编程 (23)5 结论 (31)致谢 (33)1 课题背景1.1 世界风力资源的分布及其利用现状风力资源以其蕴量巨大;可以再生;分布广泛;没有污染等优势而在各国发展迅速。
风力发电机组发电性能分析与优化摘要:作为一种新能源,风力发电正在不断的改善环境,其在全球经济和社会发展中的作用是不可估量的。
我国的风力发电已经取得了一些成就,但仍然面临着许多挑战,所以针对发电能力相对较低的机组,急需找到优化其发电能力的方法,本文通过对风力发电机组发电能力的分析,从硬件和软件两个方面排查影响风机发电能力的原因,研究提升风力发电机发电能力的方法。
关键词:风力发电机组;发电性能;优化1风力发电系统组成第一种常见的风力发电机是恒速恒频感应风力发电机,由这种风力发电机构成的风力发电机系统结构,按照从前端到后端的顺序,分别为风轮为主的风力机、齿轮箱、异步发电机、三相并联电容器。
采用定桨距失速调节时,风力发电机输出电压的频率为恒定频率,感应风力发电机会向电网同时吸收有功功率和无功功率。
为解决这一问题,通常采用机组电容器相并联的方法,使整个电网的功率得到改善。
风能的不确定性会导致恒速恒频发电系统的风能利用不足。
第二种双馈异步风力发电机组的结构形式。
绕线式三相异步发电机中的双馈异步发电机,属于目前变速恒频风力发电机的主流机型之一。
定子绕组直接连接到交流电网中,转子绕组机构与变频器直接相连,变频器控制电动机。
双馈异步风力发电机采用双向变流器控制转度,结构较为完整,可实现连续变速运行,风能转换速度高,电能质量好;可以改善对风轮机叶片的机械应力:双馈电机直接连接到电网。
电力电子换流器控制发电机的转子电流和电磁转矩,并且当风速发生变化时,风轮主轴转子转速也随之发生改变,最大可能地捕捉和利用风能,从而提高了能源利用率。
第三种直驱式同步风力发电机组。
同步电动机励磁机组可以使用直流或永磁励磁。
由于转子磁极对的数量众多,电动机的外形尺寸又大又笨重,操作和起吊不方便,价格高昂。
在直流励磁模式的同步电机中,励磁电流决定转子速度,从而控制电磁转矩以捕获最大的风能。
直流励磁的同步电动机,能够降低励磁损耗;永磁同步电动机会产生消磁现象。
风力发电机及风力发电控制技术研究摘要:能源和环境是21世纪人类面临的重大问题,面对有限的,不断减少的自然资源,全球都在高度关注再生资源,并致力于研究相关技术.我国的地理特点决定了风能具有很大的开发潜力.文章分析了常用的风力发电控制技术,希望能够为风力发电机的相关研究提供技术支持关键词:风力发电;发电控制技术;智能控制;变桨距控制引言风力发电是一种新型的能源发电方式,通过风力发电机与风力发电控制技术的有效应用可以推动风力发电智能控制系统的建设,进而在我国的能源利用事业上起到重要的推动作用,推动其社会经济、环保价值的提高,有效的实现对发电效果与发电质量的控制。
一、风力发电机及风力发电控制技术理念概述(一)风力发电机(1)传统风力发电机笼型异步发电机属于传统发电机中最为常用的一种,其工作原理是使用用于无功功率补偿的电容器,以与同步速度平行的恒定速度运行,使用恒定上升攻击或有源信息亭刀以及与一速或两速发电机一起工作。
绕线式异步发电机是基于电机转子由一个外部可变电阻组成,其工作原理是通过电力电子设备调节转子电路的电阻,以调节发电机的滑差速度,使发电机的滑差频率提高10%,可以实现有限的工作变速。
为了降低异步发电机网络中功率转换器的功率,在风力发电系统中广泛使用双电源异步发电机,并且可以通过控制转差频率来实现对发电机双馈速度的控制。
然而,这种类型的发动机具有电刷结构,该电刷结构的可靠性可忽略不计并且需要频繁维护,使其不适合在环境非常恶劣的风力涡轮机发电系统中运行。
(2)新型风力发电机新型发电机是近些年来风力发电机技术改进后的新型装置设备,比较有代表性的就是开关磁阻发电机,开关磁阻发电机基于其简单的结构与高能量密度的影响,有着较好的过载能力与动静态性,可以更好的保证其可靠性与效率。
无刷双馈异步发电机是基于对电刷取消只有实现的电磁调节效果,可以有效调节速度,永磁无刷直流发电机可以将二极管与直流单波绕组进行连接,效率更高,寿命更长。
2006年第l2期(总第108期) ・ 应用能源技术 2l
变速恒频风力发电机组控制策略分析
李晓斌
(武汉数字工程研究所)
摘要:通过分析变速恒频风力发电机组运行工况。构建低于额定风速时的转速控制环和
高于额定风速时的功率控制环。转速控制环和功率控制环二者独立工作,很好满足了机组对系
统控制功能的要求,仿真结果表明该控制策略可行。
关键词:变速恒频;风力发电;控制仿真
中图分类号:TK89 文献标识码:A 文章编号:1009—323o(20o6)12—0021—03
Research on control strategy of VSCF wind generating set
LI Xiao..bin
(Wuhan viot ̄blgj啦盯 Institute,Wuhan,430074)
Abstract:By analysis of variable speed constant frequency wind generation process status;speed control
loop and power control loop are constructed accc to wind speed,Speed control loop and power control
loop take effect independently,control function is realized.The system is si ̄m,lated by MATLAB and the
simulation result shows that control strategy is feasible.
Key words:VSCF;wind power generator;control sirmdation
0 引言
随着一次能源的日趋减少,全球环境危机增
加。许多国家开始重视可再生能源的研究和发展。
而风电在可再生能源中最成熟,最具商业价值,各
种风电机型相继问世。其中以变速恒频风力发电
机组最有代表性。变速恒频风力发电机组通过改
变变桨角度来调节风力机转速,通过调节转子绕
组励磁电流来调节发电机的有功和无功,从而保
证发电机电能达到并网要求。
变速恒频风力发电机通常有待机,正常运行,
停机和紧急停机等工况。正常运行工况下,转速
伴随风速的变化而变化,在发电机功率达到额定
功率后。通过调整叶片变桨角,控制发电机功率恒
定;停机工况下,通过变桨制动将转子转速减至待
机转速。实现零功率脱网;紧急停机工况下,通过
收稿日期:2OO6—11—26 修订稿日期:2OO6—11—30
作者简介:李晓斌(1973一).男,硕士,现从事制造业信息化
和自动化研究。
变桨制动和机械制动同时作用,迅速将转子转速
减至安全停机转速,保障机组安全。不同工况下,
机组控制目标和控制策略都不同,本文主要分析
正常运行工况下的控制策略。
变桨距风力发电机组在额定功率点上的调节
不完成依靠叶片本身的失速性能,而是靠改变节
桨角来调节,因此在额定功率点上其输出功率保
持不变。其功率曲线见图l所示。
功
盘
0 5 10 15 20 25
风速(m/s)
图1风速一功率曲线
维普资讯 http://www.cqvip.com
22 应用能源技术. 2006年第12期(总第108期)
对变桨距风力发电机组,其风力机特性曲线
通常由一簇风能利用系数 曲线来表示。
cp=八 。8 =∞R|V
:
表示叶尖速比
叫:
表示风轮转速
R:表示风轮半径
:
表示风速
:
表示桨叶节距角
风力机功率:P=C ̄SpI, ̄12
因此在额定风速以下,风机功率还未达到额
定功率时,风力发电机进入恒 状态,变桨距风 力发电机组控制功能就是调节转子转速保证在风 速变化时入恒定在Xopt,从而使c 值稳定在最大 值,风力机从风中获取最大风能;当风速达到额定 风速,风机功率还未达到额定功率时,风力发电机 进入欠功率状态,变桨距风力发电机组控制功能 就是调节转子转速保证转子转速恒定,不超过转 子极限转速;当风速继续增大达到或超过额定风 速后,风力发电机进入恒功率状态。变桨距风力 发电机组可通过调节变桨角和转子电流使输出功 率稳定在额定功率。 1低于额定风速时的转速控制 1.1转速控制 低于额定风速时,当风速增大时,为使 值 稳定在最大值,就必须调节转子转速,使之与变化 的风速对应,保证风力机能获取最大风能。 1.2控制策略分析 对转速的控制是通过对发电机转矩的控制来 实现的。如何实现最佳转矩———转速曲线跟踪,采 取两种控制策略,一种是“间接速度控制”,另一种
是“直接速度控制”。直接速度控制是将任一给定
时刻所需要的最佳发电机转速设置为风速的函数,
根据测量的风速,推算出发电机所需的最佳转速,
而实际上由于风速的不确定性及湍流等影响,把测
量的风速作为控制量是不准确的,风速只能作为一
个参考值;间接速度控制根据转子转速及最佳
比例系数计算出所需的转矩期望值,以此作为变流
器给定转矩。两种控制方法见图2,图3。
图2间接速度控制框图
图3直接速度控制框图
2高于额定风速时的功率控制
变速恒频风力发电机组一方面通过变速增加
了获取的风能,将更多的风能转换为电能,另一方
面通过变桨限制功率增加,扩大了运行的风速
范围。
2.1功率控制
在风力发电机组处于额定功率时,如风速继
续增加,风力机能量的获取受机组物理性能的限
制,必须控制风轮转速和能量转换低于某个极限
值,保持发电机恒定的功率输出。
2.2控制策略分析
在风速一定的情况下,要改变风力机输出功
率,需要控制风轮的功率系数,有两种功率控制策
略,一是控制发电机的电磁力矩,通过改变电磁力
维普资讯 http://www.cqvip.com
2006年第l2期(总第108期) . 应用能源技术
矩来改变风轮转速,调节风轮的叶尖速比;其次是 改变桨叶节距角以改变空气动力转矩。通过控制 ● 发电机电磁力矩,虽然通过改变叶尖速比减小了 风力机的输入功率,但风力发电机组传动系统载
荷增加,调节范围窄,影响机组寿命。采用变桨基
本控制方法见图4。
图4功率控制框图
3 仿真
假定双馈电机的同步转速为150Of/rain,切入
风速为3m/s,额定风速为12m/s,切出风速为
25m/s,叶轮半径为40m,空气密度为1.16Skg/m ̄,
额定功率为1500kW。在变化的风速下,应用Mat—
lab/Simulink软件对整个系统的仿真,结果如下。
图5表示发电机转速随风速的变化而变化过程,
可见实现了很好的风速跟踪;图6表示发电机输
出功率随输入机械功率的变化而变化的过程,通
过变桨实现了恒功率输出。
图5风力机风速和转速
图6输人功率和输出功率
4结论
变速恒频风力发电能够通过转子转速的调节
实现速度控制来保证最大风能的捕获,通过变桨
控制来实现发电机组恒功率输出。系统能够充分
利用风能,保持最佳工况,极大地克服了传统恒速
恒频发电系统的不足。
参考文献
[1] 叶杭冶.风力发电机组控制技术[M].1版.北京:机
械工业出版社,2002(6).
[2] 王志华,李亚西.变速恒频风力发电机最大功率跟踪控
制策略的研究[J].可再生能源,2OO5,2(1扣):16—19.
[3]刘其辉,贺益康.变速恒频风力发电机空裁并网控
制[J].中国电机工程学报,20O4,3(24):6—11.
维普资讯 http://www.cqvip.com