=4.动圆 M 与圆 O1 内切,又与圆 O2 外切,建立适当的坐标系,
求动圆圆心 M 的轨迹方程,并说明轨迹是何种曲线.
解: 如图所示,以 O1O2 的中点 O 为原点,O1O2 所在直线为
x 轴建立平面直角坐标系.
y
由由|O|O1O1O2|=2|=4,4,得得OO11((- -22, ,00)),、OO2(22(,20,0))..
A1(- a,0),A2(a,0)
ec (e1) a
y b x a
A1(0,-a),A2(0,a)
ec (e1) a
y a x b
图形 ly
OF x
标准方程
y2=2px (p>0)
焦点坐标 准线方程
( p ,0 ) x p
2
2
二 抛
物
yl
FO
y2=-2px x (p>0)
( p ,0) 2
lll和和和lll的的的距距距离离离的的的最最最小小小值值值为为为|1|122||1±5±52441|±5.2|.45|.4 | .
O
x
∴∴∴点点点QQQ与与与ll的l的的最最最小小小值值值为为为88558555..5.
题 型 三 定义法求轨迹方程
【例 3】已知两个定圆 O1和 O2,它们的半径分别是 1 和 2,且|O1O2|
所以有 x02
4
把①代入②,
y02
得
4
1.
(2x)2
②
(2y)2 1,
4
整理, 得 x24y21.
MP
O
x
所以点M的轨迹方程是 x24y21.
课堂小结
平面直角坐标系建系时,根据几何特点选 择适当的直角坐标系。