风致振动简述
- 格式:ppt
- 大小:972.50 KB
- 文档页数:42
风对结构的作用及抗风防护措施刘宏睿摘要:风灾害是发生频繁的自然灾害.每年会给人类造成重大的生命和财产损失。
工程结构的风灾损失主要形式是结构的开裂、损坏和倒塌。
因此.工程抗风设计计算是工程安全的关键,本文研究了风的特性、风对结构的作用、风设计的主要内容和方法、防风减灾措施。
关键词:风灾;工程结构;抗风设计;防灾措施;一.引言风灾是自然灾害中影响最大的一种。
据有资料显示,从1947~1980年全球十种主要自然灾害中,由台风造成的死亡人数为4919万,占全球自然灾害死亡总人数的41%,比地震造成的死亡人数还多。
1970年11月12~13日袭击孟加拉的一个台风(当地称风暴),死亡人数达30万。
1973年9月14日,7314台风登陆海南岛时风速达60米每秒,使琼海县城夷为废墟。
1992年8月24日安德鲁飓风登陆美国佛罗里达,经济损失高达300亿美元。
2007年10月台风罗莎造成福建省42.91万人受灾,房屋倒塌130间,直接经济损失4.6亿元。
2007年11月孟加拉遭强热带风暴袭击至少1108人死亡,数千人受伤或失踪,数十万人无家可归。
对于工程结构,风灾主要引起结构的开裂、损坏和倒塌,特别是高、细、长的柔性结构。
因此,工程结构的抗风设计是关系到工程安全的重要因素。
本文结合我国有关工程抗风设计的规范,介绍了风对工程结构的作用、抗风设计的主要研究内容和方法和防风减灾措施。
二.风风的形成乃是空气流动的结果,是空气相对于地面的运动。
地球上任何地方都在吸收太阳的热量,但是由于地面每个部位受热的不均匀性,空气的冷暖程度就不一样,于是,暖空气膨胀变轻后上升;冷空气冷却变重后下降,这样冷暖空气便产生流动,形成了风。
1.风形成的原因在气象上,风常指空气的水平运动,并用风向、风速(或风力)来表示。
空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。
在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。
斜拉桥风致抖振时域分析摘要:随着交通事业的快速发展,在我国中西部地区需要建设大量的斜拉桥等大跨度柔性桥梁用于跨越沟谷。
该地区是我国风灾发生较高的区域之一,风环境复杂多变,除了对斜拉桥进行静风稳定的验算,同时也有必要研究脉动风对斜拉桥影响。
本文将通过时域方法分析斜拉桥的抖振。
关键词:斜拉桥脉动风抖振时域分析中图分类号:u4 文献标识码:a 文章编号:1007-0745(2013)05-0178-021.引言我国的中西部山区面积广大,地形复杂,具有山高谷深,风环境复杂等特点,这就需要建设大跨径桥梁以跨越山谷、河流等。
其中斜拉桥是跨越能力比较强的柔性桥型之一。
旧塔科马桥的风毁事故引起人们对桥梁风致振动的关注,其中风对斜拉桥等大跨度桥梁的影响不容忽视。
频域分析、全桥模型风洞试验方法和时域分析方法是现在分析桥梁抖振的主要方法,其中桥梁有限元模型时域分析是比较常用的方法。
2.时域方法的主要步骤桥梁结构抖振时域分析主要包括三个方面:一是空间脉动风场的有效模拟;二是时域风荷载模型的处理;三是非线性时程分析。
2.1.脉动风的模拟1)主梁模型的选择。
在大跨径桥梁全桥的结构分析中,常采用平面和空间杆系结构,塔和墩简化为通过其中心线的两节点两单元,而斜拉索等杆系简化为两节点杆单元。
在三维空间分析中,由于主梁作为横向尺寸较大的实体结构,其纵向还有斜拉索、纵梁等不同构件连接。
都使得不能只用一个空间梁单元进行描述。
大跨径桥梁主梁主要有三种不同的计算模型:三梁式、双梁式以及鱼骨式。
2)风场模拟方法的选择。
抖振响应时域分析,首先依据目标功率谱函数数值模拟空间脉动风场。
对于平稳随机过程,比较常用的方法有谐波合成法与线性滤波法。
谐波合成法计算量较大,但是精度较高,一般常采用这种方法。
2.2.抖振风荷载2.3.非线性时程分析结构几何非线性处理方法。
现代大跨径桥梁的柔性特征十分明显,特别是悬索桥和斜拉桥,对其进行动力分析时必须要考虑几何非线性,才能得到精确的计算结果。
刍议大跨径悬索桥抗风问题及风振措施摘要:随着现代桥梁技术的不断提升,大跨径悬索桥的应用越来越多,跨径记录也被不断打破。
悬索桥相对于其他结构形式的桥梁而言,其更容易受到风力的影响,尤其是对于大跨径悬索桥而言,风力作用下引起的各种振动对于桥梁的稳定性会造成极大的影响。
因此,如何提升抗风问题成为了大跨径悬索桥在设计时的重点问题。
文章对悬索桥进行了详细的风振分析,并在此基础上对如何提升大跨径悬索桥抗风能力展开了讨论。
关键词:悬索桥,风振,桥梁稳定性前言在所有桥梁结构中,悬索桥的跨越能力是最突出的,在跨江、跨海、跨山谷等方面有重要的应用。
这种桥梁结构主要依赖于缆索支撑体系,因此其非线性特性非常明显。
正是由于这种特性,因此其在风力荷载的作用下动力响应问题也相较于其他结构桥梁更加明显。
在早期的悬索桥设计中,由于对风载作用的考虑不够全面,因此设计出来的桥梁安全性存在明显的缺陷,引发了众多安全事故,造成了极大的经济损失和人员伤亡。
因此,当前悬索桥设计时尤其是大跨径悬索桥设计的过程中,相关人员非常重视桥梁的抗风问题。
文章以悬索桥风振类型出发,对桥梁自身的结构特征风载响应特征进行了归纳,并在此基础上提出了若干风振减弱措施,强化大跨径悬索桥的抗风设计方法和内容。
1.悬索桥风振分析从结构上来看,悬索桥是一种柔性结构,在风力荷载的情况下,其受力情况和振动方式具有多变性。
在经过了长期的实验探究后,人们对这种柔性结构的振动现象有了较深刻的认识。
并根据各种振动的特性制定了具有针对性的控制措施,具体如下:1.1 抖振抖振的本质是一种结构性强迫振动,其引起的原因是脉动风。
这种振动引起的原因可以概括为两种:(1)风本身的不规则性使得气流的方向和速度较为紊乱,这种紊乱的气流直接作用在桥梁结构上,引起的强迫性振动。
(2)在桥梁周围存在山体、建筑等,气流流经这些遮挡物时产生了紊乱的气流,这些气流简介作用在桥梁结构上,引起强迫性振动。
从振动的幅度上来看,由于抖振的起因是紊乱的气流,其方向是多变的,不会有明显的方向性,因此引起的桥梁振动幅度较小,一般不会直接给桥梁造成非常严重的结构性破坏,但是可能使得桥梁的部分结构变形,影响桥梁上通行人员的舒适度。
风振对桥梁工程损害及防治摘要:风对桥梁的作用是一种十分复杂的现象,随着桥梁跨径的不断增加,风振现象也越来越受到工程界的关注。
本文针对抖振、涡激共振、风雨振等风致振动对大跨度桥梁的结构安全形成不可忽视的影响,探讨了大跨度桥梁抗风设计原则与风致振动的控制,提出了改善桥梁结构和增加机械阻尼等方法.关键词:大跨度桥梁;风致振动;抗风设计1引言1940年秋,美国华盛顿州建成才四个月的主跨853m的塔科马悬索桥在风速不到20m/s的8级大风袭击下发生了当时还难以理解的强烈振动,奇妙的风竟使桥面扭曲翻腾.而且振幅愈来愈大。
直至使桥面倾翻到45度,最终导致桥粱的折断坠入峡谷之中。
这次事故后引起了国际桥梁工程界和空气动力界的极大关切,并开展了大量的理论探索和风洞实验研究。
我国自70年代起斜拉桥蓬勃发展,跨度日益增大,1999年10月,主跨1385m的江阴长江公路大桥的建成通车,使我国成为世界上能自主设计和建造千米级悬索桥的第六个国家。
中国改革开放以来已经建成了百余座缆索承重桥梁,其中包括10座悬索桥和近20座跨度超过400m的斜拉桥.与此同步,斜拉桥和吊桥的风致振动理论与实验研究也结合工程实际迅速发展,并取得了一些有价值的研究成果。
2桥梁结构风致振动理论风灾是自然灾害中发生最频繁的一种,桥梁的风害事故屡见不鲜。
风与结构的相互作用是一个十分复杂的现象,它受风的自然特性、结构的外型、结构的动力特性以及风与结构的相互作用等多方面因素的制约。
当风绕过一般为非流线型作用截面的桥梁结构时,会产生旋涡和流动的分离,形成复杂的空气作用力.当桥梁结构的刚度较大时,结构保持静止不动,这种空气力的作用只相当于静力作用。
当桥梁结构的刚度较小时,结构振动受到激发,这时空气力的作用不仅具有静力作用,而且具有动力作用。
2.1 风的静力作用静力作用指风速中由平均风速部分施加在结构上的静压产生的效应,可分为顺风向风力、横风向风力和风扭转力矩。
在顺风平均风的作用下,结构上的风压值不随时间发生变化,作用与桥梁上的风力可能来自任一方向,其中横桥向水平风力最为危险,是主要的计算对象.它所造成的桥梁破坏的特点主要是强度破坏或过大的结构变形。
1.3.2风对高层建筑的作用高层建筑,特别是超高层建筑大都具有柔性大、阻尼小的特点,这样使得风荷载成为其结构设计时的主要控制荷载。
风荷载作用于高层建筑,会产生明显的三维荷载效应,即顺风向风荷载、横风向风荷载和扭转风荷载。
在三维动力风荷载的作用下,高层建筑在顺风向、横风向和扭转方向产生振动。
第1章绪论1.3.2.1顺风向风效应我国荷载规范[80】中给出了高层建筑顺风向平均风荷载的计算公式:矶=刀:户:拜,叽(l一10)式中:哄为高层建筑:高度处的平均风压;叽为10米高度处的基本风压(我国规范Is0】中给出的基本风压是基于B类地貌条件的,其它地貌条件下要进行相应的转化);户:和户,分别为风压高度系数和体型系数;几为考虑脉动放大效应的风振系数。
一般认为顺风向脉动风荷载符合准定常假定,即顺风向风荷载的脉动主要由顺风向风速脉动引起。
Davenportl吕’l和几mural82]等提出利用脉动风速功率谱转化得到顺风向风荷载功率谱的方法,许多学者还通过风洞试验的方法得到高层建筑顺风向风荷载谱的经验公式183.851。
高层建筑顺风向振动以一阶模态振动为主,一般假定高层建筑一阶振型为线性,但近年来部分学者对线性假定提出异议,并给出了振型修正的计算方法186-87],顺风向风振的计算中必须考虑风荷载的水平和竖向空间相关性188】。
1.3.2.2横风向风效应横风向风荷载由尾流激励、来流紊流和结构横向位移及其对时间的各阶导数引起的激励等因素构成,但主要是由结构尾流中的漩涡脱落引起建筑物两侧气压交替变化所致189】。
当建筑物高度较低或高宽比不大时,结构的顺风向风致响应大于横风向响应;而近年来大量的风洞试验和现场实测证明,当高层建筑的高宽比大于4时,其横风向风振响应往往会超过顺风向响应,成为结构设计的控制性因素190]。
由于横风向风荷载机理复杂以及横风向振动的重要性,使得这方面的研究一直是风工程界的热点问题。
横风向风荷载不符合准定常假定,因此横风向风荷载谱不能根据脉动风速谱得到1841,风洞试验是研究高层建筑横风特性的主要手段。
桥梁抗风的常见措施及定性分析摘要:首先,分析缆索支撑体系桥梁主要构件风致振动的现象和本质,提出了抗风措施。
其次,以1 400 m主跨的悬索桥、斜拉桥以及吊拉组合体系桥等缆索支承桥梁的主要结构型式为例,采用三维非线性抗风分析方法,进行了动力特性、空气静力和动力稳定性的分析和比较。
最后,介绍桥梁基本结构的抗风性能分析,并以连续刚构桥和斜拉桥为重点介绍了最新的研究成果,提出桥梁抗风研究方面存在的几个薄弱点。
关键词:桥梁抗风;风压;风振;措施;定性分析1研究桥梁抗风的必要性随着我国国民经济的迅速发展,对公路交通事业提出更高的要求,在宽阔的海域和水深河宽的大江大河,跨越能力大的缆索支撑体系桥梁(包括悬索桥和斜拉桥)将成为首先被考虑的桥型。
纵观悬索桥的发展历史,可以认为其起源于中国,成熟于美国,革新于英国,进步在13本,普及在中国。
目前被公认为跨越能力最大的桥型,1998年建成的明石海峡大桥其主跨已达到1 991 m.斜拉桥在200~500 In跨度内与悬索桥相比有一定的竞争优越性。
早期的斜拉桥由于计算方法和手段不能满足要求,材料松弛、拉索锚固困难、张拉不足等原因长期未能得到发展,索面体系仅限于稀索。
近年来由于计算理论的发展,新材料的开发配合,施工技术的进步为斜拉桥的发展创造了一定的有利条件。
但在风力作用下,大跨度悬索桥和斜拉桥容易生变形和振动。
1940年主跨853 m的美国塔科马在仅有19 m/s的风速下,发生毁桥事故。
斜拉桥方面,日本石狩河口桥和加拿大的Hawkshaw(Longsreek)桥等相继因风振导致加固。
因此,大型缆索体桥梁的抗风稳定性研究应引起足够的重视。
2大跨度缆索支撑体系的风振现象2.1主梁体的风振目前,大跨缆索支撑体系梁桥主梁一般采用扁平截面,由于其本身的抗扭刚度比较大,产生扭转发散振动所需的风速也较高。
涡振发振风速较低,发生频率较高,容易使结构物产生疲劳、行车障碍以及诱发过桥者的不安全感,通过增大结构刚度来防止发生涡振是比较困难的。