【分子生物学】第七章 药物基因组学
- 格式:pptx
- 大小:6.00 MB
- 文档页数:56
分子生物学在药物研发中的应用随着生物技术的不断发展,分子生物学这门学科在药物研发中的应用越来越广泛,有效地推动了药物研发的进步。
分子生物学的应用,可以从药物发现、靶点筛选、药效评估和新药治疗等几个方面来探讨。
一、药物发现药物发现是药物研发的第一步,选择适合用于治疗某种疾病的化合物,需要对药物在生物体内发挥作用的机制进行理解。
通过分子生物学的方法,现在可以快速生成和评估一系列的分子化合物,高效筛选出具有良好药物活性和生物可利用性的候选药物。
在药物发现过程中,基因组学和中间代谢组学是两个非常重要的分支。
其中基因组学可以帮助制药公司识别潜在的靶点,并通过对目标基因的功能研究,发现其和疾病相关的通路。
基于基因组学分析的数据,筛选出具有药物活性的化合物,可以帮助制药公司快速地进入到临床试验的阶段。
二、靶点筛选靶点筛选是药物研发的重点之一。
分子生物学的方法可以对自然界中丰富的蛋白质进行分析,并找到一系列适合用于靶向药物研发的蛋白靶点。
通过基因克隆和表达,制备出具有高度纯度的蛋白质,然后利用分子生物学技术进行靶点的筛选。
通过靶点筛选,可以快速排除一些缺乏药物活性的化合物,并且寻找到临床前和临床中的靶点。
通过分子模拟技术,可以加速药物研发的进程,发现具有更好药物活性的新化合物,并降低副作用的发生率。
三、药效评估药效评估是药物研发中非常重要的一个环节。
通过分子生物学技术,可以对药物起作用的通路和分子机制进行深入的研究。
例如,通过利用基因敲除技术,可以研究某种药物对机体内蛋白质功能的影响,并进一步确定药物是否对某种疾病有治疗效果。
通过药物研发过程中对药效进行精准评估,可以减少药物开发阶段中的失败率,缩短药物开发周期,并且提高药品的质量和安全性。
四、新药治疗借助分子生物学技术,现在已经可以开发出高度特异性的新药治疗方案。
例如,通过单克隆抗体技术,可以开发出一些高度特异性的药物治疗方案,针对某些具体的靶点,将药物送到靶标上,从而更准确地达到治疗效果。
分子生物学1、原核基因调控机制的类型与特点1.负转录调控:调节基因的产物是阻遏蛋白,起阻止结构基因转录的作用。
(1)负控诱导:阻遏蛋白不与诱导物结合时,结构基因不转录;(2)负控阻遏:阻遏蛋白与诱导物结合时,结构基因不转录.2.正转录调控:调节基因的产物是激活蛋白.(1)正控诱导系统:诱导物的存在是激活蛋白处于活性状态;(2)正控阻遏系统:诱导物使激活蛋白处于非活性状态.2、乳糖操纵子和色氨酸操纵子大肠杆菌乳糖操纵子:乳糖——开动大肠杆菌乳糖操纵子——表达利用乳糖的三个酶——细菌利用乳糖。
乳糖操纵子的控制模型内容(1)Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码;(2)该mRNA的启动区(P)位于阻遏基因(I)与操纵区(O)之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达;(3)操纵区是DNA上的一小段序列(26bp),是阻遏物的结合位点;(4)当阻遏物与操纵区结合时,Lac mRNA的转录起始受到抑制;(5)诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵区相结合,激发Lac mRNA 的转录。
大肠杆菌色氨酸操纵子:加入色氨酸——阻遏色氨酸操纵子—相关合成酶基因关闭。
色氨酸操纵子与负控阻遏系统Trp体系参与生物合成而不是降解;Trp合成分5步,有7个基因参与.组成包括:阻遏基因(R)、启动区(P)、操纵区(O)、前导区(L)、弱化区(a)和结构基因区;Trp操纵子的转录调控包括阻遏系统和弱化系统.3、原核与真核基因表达调控的异同4、DNA水平的表达调控染色质的丢失:不可逆核的全能性(totipotency):细胞核内保存了个体发育所必需的全部基因基因扩增(gene amplification):增加基因的拷贝数非洲爪蟾卵母细胞rRNA基因卵裂时,扩增2000倍,达1012个核糖体药物:诱导抗药性基因的扩增;肿瘤细胞:原癌基因拷贝数异常增加基因重排(gene rearrangement):将一个基因从远离启动子的地方移到距它很近的位点从而启动转录。
第一章1、Z-DNA的结构特点、存在的条件Z-DNA:左手螺旋,每个螺圈含有12个碱基对。
并只有一个深沟。
可能在基因表达的调控中起作用活性:B-DNA >A-DNA> Z-DNAZ-DNA的结构特点:1.核糖磷酸骨架呈“之”字形(Zigzag)走向。
2.左旋3.G的糖苷健呈顺式(Syn),使G残基位于分子表面。
4.分子外形呈波形。
5.大沟消失,小沟窄而深。
6.每个螺旋有12 bp。
Z-DNA存在的条件:1.高盐:NaCl>2mol/L,MgCl2>0.7mol/L2.Pu,Py相间排列。
3.在活细胞中如果m5C,则无需嘌呤-嘧啶相间排列,在生理盐水浓度下即可产生Z型。
4.体内的多胺化合物,如精胺、亚胺及亚精胺和阳离子一样,可和磷酸基团结合,使B-DNA转变为Z-DNA.5.某些蛋白质如Z-DNA结合蛋白带有正电荷,可使DNA周围形成局部高盐浓度的微环境。
2、DNA的超螺旋结构与拓扑异构酶超螺旋结构仅在闭合DNA中产生,环状或线状正超螺旋---反向扭转每圈双螺旋碱基数小于10.5(紧缠)。
负超螺旋---同向扭转每圈双螺旋碱基数大于10.5(松缠) 。
意义:DNA复制、转录的启动具有重要的调控作用。
拓扑异构酶作用特点:既能切断、又能连接磷酸二酯键分类:拓扑异构酶Ⅰ; 拓扑异构酶Ⅱ作用机制:拓扑异构酶Ⅰ:切断DNA双链中一股链,使另一条链通过切口;适当时候封闭切口,DNA变为松弛状态。
反应不需ATP。
拓扑异构酶Ⅱ:切断DNA分子两股链,断端通过切口旋转。
利用ATP供能,连接断端,DNA 分子进入负超螺旋状态。
3、核酶的定义、锤头结构、举例核酶(Ribozyme):是指本质为RNA或以RNA为主含有蛋白质辅基的一类具有催化功能的物质。
锤头结构(hammer-head):1986年,Symosn提出A区:被切RNA切割位点GUX(X:C、U、A) 及其附近序列B区:锤头区,在空间上必须与A区紧邻,保守序列(锤头结构可形成第三种“V”形结构、两条互补的RNA相互作用也可以形成锤头结构。
名词解释第一章绪论1 分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
2 DNA重组技术是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
3 功能基因组学又往往被称为后基因组学,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。
第二章染色体与DNA1组蛋白是染色体的结构蛋白,其与DNA组成核小体。
2 C值:一种生物单倍体基因组DNA的总量。
3 DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
4DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
5DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
6核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。
每个核小体只有一个H1。
7DNA的半保留复制是DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的。
8复制时,双链DNA要解开成两股链进行,使复制起点呈叉状,被称为复制叉。
9复制子为生物体DNA的复制单位。
10错配 (mismatch):DNA分子上的碱基错配称点突变(point mutation)11缺失:一个碱基或一段核苷酸链从DNA大分子上消失。
12插入:原来没有的一个碱基或一段核苷酸链插入到DNA大分子中间。
13框移突变是指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变。
朱玉贤现代分子生物学第四版•绪论•基因与基因组•DNA复制与修复•转录与转录后加工•蛋白质翻译与翻译后加工•基因表达的调控•基因工程与基因组学01绪论分子生物学的定义与发展分子生物学的定义分子生物学是研究生物大分子,特别是蛋白质和核酸的结构、功能及其相互作用的一门科学。
分子生物学的发展自20世纪50年代以来,随着DNA双螺旋结构的发现、遗传密码的破译、基因工程技术的建立等,分子生物学得到了迅速的发展,并在医学、农业、工业等领域产生了广泛的应用。
基因与基因组的结构与功能研究基因的结构、表达调控及其在生物体发育和进化中的作用。
DNA复制、转录与翻译的过程与调控研究DNA的复制、转录和翻译等过程及其调控机制,揭示生物体遗传信息传递的规律。
蛋白质的结构与功能研究蛋白质的结构、功能及其与生物体代谢和生理功能的关系。
基因表达的调控研究基因表达的时空特异性及其调控机制,揭示生物体发育和适应环境的分子基础。
包括DNA 重组技术、基因克隆技术、核酸序列分析技术等,用于研究基因的结构和功能。
分子生物学实验技术生物信息学方法细胞生物学和遗传学方法结构生物学方法利用计算机科学和数学的方法对生物大分子数据进行处理和分析,揭示生物大分子的结构和功能。
通过细胞培养和遗传学手段研究基因在细胞和组织中的表达和功能。
利用X 射线晶体学、核磁共振等技术解析生物大分子的三维结构,揭示其结构与功能的关系。
02基因与基因组基因的概念与结构基因是遗传信息的基本单位,控制生物性状的基本因子。
基因的结构包括编码区和非编码区,编码区又可分为外显子和内含子。
基因通过DNA序列的特异性来实现其遗传信息的传递和表达。
基因组的组成与特点基因组是一个生物体所有基因的总和,包括核基因组和细胞器基因组。
基因组具有高度的复杂性和多样性,不同生物体的基因组大小和基因数量差异巨大。
基因组中存在着大量的重复序列和非编码序列,这些序列在生物进化、基因表达和调控等方面发挥着重要作用。
《药学分子生物学》课程教学大纲课程编号:10041120课程名称:分子生物学/pharmaceutical molecular biology学时:36学时学分:2学分适用专业:药学专业开课学期:开课部门:先修课程:无机化学、有机化学、生物化学、微生物学考核要求:考查使用教材及主要参考书:史济平主编,《药学分子生物学》(第2版),人民卫生出版社,2003 王镜岩等主编,《生物化学》(第3版),高等教育出版社,2002B.D.Hans,《Biochemistry》(英文版),科学出版社,2002王镜岩译,现代生物化学精要速览:《生物化学》,科学出版社2004 王琳芳,杨克恭,《医学分子生物学原理》,协和医科大学出版社,2001 R.M. 特怀曼著.陈淳、徐沁等译. 《高级分子生物学要义》,科学出版社,2001朱玉贤等编著,《现代分子生物学》,高等教育出版社,1996阎隆飞等编著,《分子生物学》,中国农业出版社,静国忠主编,《基因工程及其分子生物学基础》,北京大学出版社,Robert F. Weaver,MOLECULAR BIOLOGY(影印版),科学出版社& McGraw-Hill Companies.Inc.2001一、课程的性质和任务本课程授课对象为化学与生物工程学院药学专业的学生。
分子生物学是药学专业学生的选修课。
分子生物学是从分子水平来研究生命现象的科学,是现代生命科学的“共同语言”,其核心内容是通过生物的物质基础――核酸、蛋白质、酶等生物大分子的结构,功能及其相互作用等运动规律的研究来阐明生命现象的分子基础,从而探索生命的奥秘。
本课程侧重于核酸的分子生物学,从基因展开,突出生物大分子结构与功能的关系及其如何操作这两个重要的生命过程,围绕DNA复制,转录,表达和调控等方面给予论述。
通过本课程的学习,可以使学生系统而深入地掌握分子生物学的基本概念和基本理论,帮助学生扩大知识面,拓宽专业口径,为学生以后应用分子生物学的手段研究新药以及在分子水平上研究药物代谢规律,阐明药物作用的机理奠定基础。
ppt课件contents •分子生物学概述•基因与基因组结构•DNA复制与修复机制•转录与翻译过程调控•蛋白质组学与代谢组学研究方法•现代分子生物学技术应用•生物信息学在分子生物学中应用•分子生物学前沿领域及未来发展趋势目录分子生物学概述分子生物学定义与特点分子生物学定义分子生物学特点以分子为研究对象,阐明生命现象的本质;与多学科交叉融合,推动生命科学的发展;实验技术手段不断更新,提高研究效率和准确性。
分子生物学发展历程早期发展阶段现代分子生物学阶段分子生物学研究内容及方法研究内容研究方法基因与基因组结构基因概念及功能基因功能基因定义基因通过编码蛋白质或参与生物体的各种生理和生化过程,从而控制生物的性状和表现。
基因分类基因组组成与结构特点基因组定义基因组是指一个生物体内所有基因的总和。
基因组组成基因组包括编码区和非编码区,其中编码区包含结构基因和调控基因,非编码区则包含一些重要的调控元件和重复序列。
基因组结构特点不同生物的基因组具有不同的结构特点,如原核生物基因组较小且连续,真核生物基因组较大且存在大量的重复序列和间隔区。
转录后水平调控转录后水平调控主要涉及mRNA 的加工、剪接、运输和降解等过程,通过这些过程可以影响mRNA 的稳定性和翻译效率。
基因表达概念基因表达是指基因转录成mRNA ,再翻译成蛋白质的过程。
基因表达调控机制生物体通过多种机制对基因表达进行调控,包括转录水平调控、转录后水平调控、翻译水平调控和表观遗传调控等。
转录水平调控转录水平调控是最主要的基因表达调控机制,包括启动子、增强子、沉默子等顺式作用元件和反式作用因子的相互作用。
基因表达调控机制DNA复制与修复机制DNA复制过程及影响因素DNA复制过程影响因素DNA损伤类型及修复方式损伤类型包括碱基错配、单链断裂、双链断裂、碱基修饰等,这些损伤可能导致遗传信息的改变或丢失。
修复方式包括直接修复、切除修复、重组修复和跨损伤修复等,这些修复方式能够识别和修复DNA损伤,维护基因组的稳定性。