在Rt△PAD中,∵∠PAD=90°-60°=30°
AD 3PD, 12 x 3x,
x 12 6( 3 1) 18. 3 1
∴渔船不改变航线继续向东航行,有触礁危险.
巩固练习
1.小明为了测量其所在位置,A点到 河对岸B点之间的距离,沿着与AB垂 A m C 直的方向走了m米,到达点C,测得 ∠ACB=α,那么AB等于( B)
两边
2
(2)根据AC= 2 ,BC= 6
C
6 B 你能求出这个三角形的其他元素吗?
∠A ∠B AB
(3)根∠A=60°,∠B=30°, 两角
你能求出这个三角形的其他元
素吗? 不能
解直角三角形
解直角三角形:在直角三角形中,由已知元素求未知元素的
程.
A
事实上,在直角三角形的六个元素
(三条边,三个角)中,除直角外,
分析:作PD⊥BC,设PD=x,则 BD=x,AD=x+12,根据AD= 3 PD, 得x+12= 3 x,求出x的值,再 比较PD与18的大小关系.
D
解:
有触礁危险
D
理由:过点P作PD⊥AC于D.设PD为x, 在Rt△PBD中,∠PBD=90°-45°=45°. ∴BD=PD=x,AD=12+x.
b
c
如果再知道两个元素(其中至少有一
个是边),这个三角形就可以确定下 来,这样就可以由已知的两个元素求
Ca
B
出其余的三个元素.
在解直角三角形的过程中,一般要用到下面一些关系:
(1)三边之间的关系 a2 b2 c2(勾股定理)
B
斜边c (2)两锐角之间的关系 ∠A+∠B=90°
∠A的对边a