粒子群优化算法(详细易懂,很多例子)
- 格式:ppt
- 大小:2.68 MB
- 文档页数:45
粒子群优化算法概述粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,最早由Eberhart和Kennedy于1995年提出。
它模拟了鸟群觅食的行为,并通过不断迭代,使得粒子(鸟)们逐渐找到目标点(食物)。
PSO算法的基本思想是通过模拟鸟群在解空间中的过程来寻找全局最优解。
在算法中,解被称为粒子,可以看作是在解空间中的一点。
每个粒子在解空间中的当前位置被认为是当前的解,并且每个粒子都有一个速度,用于指导粒子下一步的移动方向。
粒子的速度和位置的更新遵循以下规则:1.个体历史最优更新:每个粒子都有一个个体历史最优位置,它记录了粒子在过程中找到的最好解。
如果当前位置的适应度值好于个体历史最优位置的适应度值,则更新个体历史最优位置。
2.全局历史最优更新:整个粒子群有一个全局历史最优位置,即所有粒子中适应度值最好的位置。
如果当前位置的适应度值好于全局历史最优位置的适应度值,则更新全局历史最优位置。
3.速度更新:粒子的速度由个体历史最优位置和全局历史最优位置引导。
速度更新的公式为:V(t+1) = w * V(t) + c1 * r1 * (Pbest - X(t)) + c2 * r2 * (Gbest - X(t))其中,V(t+1)是下一时刻的速度,w是惯性权重,c1和c2是学习因子,r1和r2是随机数,Pbest是个体历史最优位置,Gbest是全局历史最优位置,X(t)是当前位置。
4.位置更新:粒子的位置由当前位置和速度决定。
位置更新的公式为:X(t+1)=X(t)+V(t+1)以上四个步骤不断重复迭代,直到满足停止准则为止,比如达到最大迭代次数或收敛到一个满意的解。
PSO算法具有以下一些特点和优势:1.简单易实现:PSO算法的原理和实现相对简单,不需要对目标函数的导数信息进行求解。
2.全局能力:由于粒子群中的信息共享和协作,PSO算法可以较好地避免陷入局部最优解,有较强的全局能力。
粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。
大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。
这个过程我们转化为一个数学问题。
寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。
为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。
下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。
直到最后在y=1.3706这个点停止自己的更新。
这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。
该函数的最大值就是鸟群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的公式就是粒子群算法中的位置速度更新公式。
下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。
粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。
这个公式就是粒子群算法中的位置速度更新公式。
下面就介绍这个公式是什么。
在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。
并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。
粒子群算法原理及简单案例[ python ]介绍粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。
1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。
假设一群鸟在觅食,在觅食范围内,只在一个地方有食物,所有鸟儿都看不到食物(即不知道食物的具体位置。
当然不知道了,知道了就不用觅食了),但是能闻到食物的味道(即能知道食物距离自己是远是近。
鸟的嗅觉是很灵敏的)。
假设鸟与鸟之间能共享信息(即互相知道每个鸟离食物多远。
这个是人工假定,实际上鸟们肯定不会也不愿意),那么最好的策略就是结合自己离食物最近的位置和鸟群中其他鸟距离食物最近的位置这2个因素综合考虑找到最好的搜索位置。
粒子群算法与《遗传算法》等进化算法有很多相似之处。
也需要初始化种群,计算适应度值,通过进化进行迭代等。
但是与遗传算法不同,它没有交叉,变异等进化操作。
与遗传算法比较,PSO的优势在于很容易编码,需要调整的参数也很少。
一、基本概念与遗传算法类似,PSO也有几个核心概念。
粒子(particle):一只鸟。
类似于遗传算法中的个体。
1.种群(population):一群鸟。
类似于遗传算法中的种群。
2.位置(position):一个粒子(鸟)当前所在的位置。
3.经验(best):一个粒子(鸟)自身曾经离食物最近的位置。
4.速度(velocity ):一个粒子(鸟)飞行的速度。
5.适应度(fitness):一个粒子(鸟)距离食物的远近。
与遗传算法中的适应度类似。
二、粒子群算法的过程可以看出,粒子群算法的过程比遗传算法还要简单。
1)根据问题需要,随机生成粒子,粒子的数量可自行控制。
2)将粒子组成一个种群。
这前2个过程一般合并在一起。
3)计算粒子适应度值。
4)更新种群中每个粒子的位置和速度。
什么是粒子群优化算法粒子群优化算法(ParticleSwarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。
通常认为它是群集智能(Swarm intelligence, SI)的一种。
它可以被纳入多主体优化系统(Multiagent OptimizationSystem,MAOS). 是由Eberhart博士和kennedy博士发明.PSO模拟鸟群的捕食行为。
一群鸟在随机搜索食物,在这个区域里只有一块食物。
所有的鸟都不知道食物在那里.但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢.最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题.PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的粒子都有一个由被优化的函数决定的适应值(fitnessva lue),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。
第一个就是粒子本身所找到的最优解,这个解叫做个体极值p Best,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值.[编辑]PSO算法介绍[1]如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物.在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域.PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟.我们称之为“粒子”。
粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。
【优秀作业】粒子群优化算法粒子群优化算法一、概述粒子群优化算法(Particle Swarm Optimization,PSO)的思想来源于对鸟捕食行为的模仿,最初,Reynolds.Heppner 等科学家研究的是鸟类飞行的美学和那些能使鸟群同时突然改变方向,分散,聚集的定律上,这些都依赖于鸟的努力来维持群体中个体间最佳距离来实现同步。
而社会生物学家 E.O.Wilson 参考鱼群的社会行为认为从理论上说,在搜寻食物的过程中,尽管食物的分配不可知,群中的个体可以从群中其它个体的发现以及以往的经验中获益。
粒子群从这种模型中得到启发并用于解决优化问题。
如果我们把一个优化问题看作是在空中觅食的鸟群,那么粒子群中每个优化问题的潜在解都是搜索空间的一只鸟,称之为“粒子”(Particle),“食物”就是优化问题的最优解。
每个粒子都有一个由优化问题决定的适应度用来评价粒子的“好坏”程度,每个粒子还有一个速度决定它们飞翔的方向和距离,它根据自己的飞行经验和同伴的飞行经验来调整自己的飞行。
粒子群初始化为一群随机粒子(随机解),然后通过迭代的方式寻找最优解,在每一次的迭代中,粒子通过跟踪两个“极值”来更新自己,第一个是粒子本身所经历过的最好位置,称为个体极值即;另一个是整个群体经历过的最好位置称为全局极值。
每个粒子通过上述的两个极值不断更新自己,从而产生新一代的群体。
二、粒子群算法算法的描述如下:假设搜索空间是维,并且群体中有个粒子。
那么群体中的第个粒子可以表示为一个维的向量,,即第个粒子在维的搜索空间的位置是,它所经历的“最好”位置记作。
粒子的每个位置代表要求的一个潜在解,把它代入目标函数就可以得到它的适应度值,用来评判粒子的“好坏”程度。
整个群体迄今为止搜索到的最优位置记作,是最优粒子位置的索引。
()为惯性权重(inertia weight),为第个粒子到第代为止搜索到的历史最优解,为整个粒子群到目前为止搜索到的最优解,,分别是第个粒子当前的位置和飞行速度,为非负的常数,称为加速度因子,是之间的随机数。
粒子群优化方法(原创版3篇)目录(篇1)一、粒子群优化算法的概念和原理二、粒子群优化算法的参数设置三、粒子群优化算法的应用实例四、粒子群优化算法的优缺点正文(篇1)一、粒子群优化算法的概念和原理粒子群优化算法(Particle Swarm Optimization,简称 PSO)是一种基于群体搜索的优化算法,它建立在模拟鸟群社会的基础上。
在粒子群优化中,被称为粒子”(particle)的个体通过超维搜索空间流动。
粒子在搜索空间中的位置变化是以个体成功地超过其他个体的社会心理意向为基础的,因此,群中粒子的变化是受其邻近粒子(个体)的经验或知识影响。
二、粒子群优化算法的参数设置在应用粒子群优化算法时,需要设置以下几个关键参数:1.粒子群规模:粒子群规模是指优化过程中粒子的数量。
对种群规模要求不高,一般取 20-40 就可以达到很好的求解效果,不过对于比较难的问题或者特定类别的问题,粒子数可以取到 100 或 200。
2.粒子的长度:粒子的长度由优化问题本身决定,就是问题解的长度。
粒子的范围由优化问题本身决定,每一维可以设定不同的范围。
3.惯性权重:惯性权重是粒子群优化算法中的一个重要参数,它影响了粒子在搜索空间中的移动方式。
惯性权重的取值范围为 0-1,当惯性权重接近 1 时,粒子移动方式更接近于粒子群优化算法的原始模型,当惯性权重接近 0 时,粒子移动方式更接近于随机搜索。
4.学习因子:学习因子是粒子群优化算法中另一个重要参数,它影响了粒子在搜索空间中的搜索方式。
学习因子的取值范围为 0-1,当学习因子接近 1 时,粒子搜索方式更偏向于全局搜索,当学习因子接近 0 时,粒子搜索方式更偏向于局部搜索。
三、粒子群优化算法的应用实例粒子群优化算法广泛应用于各种优化问题中,如函数优化、机器学习、信号处理、控制系统等。
下面以函数优化为例,介绍粒子群优化算法的应用过程。
假设我们要求解函数 f(x)=x^2-6x+5 的最小值,可以通过粒子群优化算法来实现。
粒子群优化法-概述说明以及解释1.引言1.1 概述粒子群优化法(Particle Swarm Optimization,简称PSO)是一种用于求解优化问题的启发式算法。
它模拟了鸟群或鱼群中的群体协作行为,通过不断更新粒子的位置和速度,逐步逼近最优解。
PSO算法最早由Russell Eberhart和James Kennedy于1995年提出,并在之后的二十多年里得到了广泛应用和研究。
PSO算法是一种简单但高效的优化算法,其灵感源于群体智能中的群体行为。
它通过模拟从鸟群和鱼群等自然界中观察到的协同行为,将搜索空间中的解表示为“粒子”,每个粒子根据自己当前的位置和速度信息动态调整,并通过与其他粒子的互动来引导搜索过程。
在PSO算法中,每个粒子都有自己的位置和速度,并且能够记忆并更新自己及其他粒子的最优解。
通过不断地根据历史最优值和邻域最优值进行位置和速度的更新,粒子能够在搜索空间中逐渐找到最优解。
PSO算法具有计算简单、易于实现、收敛速度较快等优点,能够应用于解决连续优化问题、离散优化问题以及多目标优化问题等多个领域。
总的来说,粒子群优化法是一种基于群体智能的优化算法,通过模拟自然界中群体的协同行为,实现了对复杂优化问题的求解。
在实际应用中,PSO算法已经在函数优化、图像处理、机器学习、工程设计等众多领域展现出了良好的性能和广阔的应用前景。
本文将详细介绍粒子群优化法的原理和应用领域,并探讨其优势和发展前景。
1.2文章结构1.2 文章结构本文将按以下顺序展开对粒子群优化法的深入研究和讨论:1.2.1 粒子群优化法的概述首先,我们将介绍粒子群优化法的概念以及其基本原理。
我们将讨论其运作方式,了解粒子群如何模拟鸟群在搜索问题中寻找全局最优解的行为。
1.2.2 粒子群优化法的应用领域接下来,我们将探讨粒子群优化法在不同领域中的广泛应用。
粒子群优化法已被应用于许多问题领域,包括函数优化、图像处理、数据挖掘等。
粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO)算法 . 这种算法以其实现容易、精度高、收,并且在解决实际问题中展示了其优越性.敛快等优点引起了学术界的重视粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通( Evolu2tionary Algorithm - EA) .PSO过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法操作. 它通过追随当前搜索到的最优值来寻找全局最优 .的“交叉”(Crossover) 和“变异”(Mutation)粒子群算法1. 引言,有Eberhart博士和kennedy博士粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation)发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。
粒子群优化算法理论及应用粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的行为。
它具有简单易实现、收敛速度快等优点,被广泛应用于函数优化、机器学习、图像处理、工程设计等领域。
粒子群优化算法以群体的方式来解决优化问题,其中每个个体被称为粒子,每个粒子代表一个解。
粒子的目标是找到最优解或尽量接近最优解。
每个粒子通过迭代不断地更新自身的位置和速度,以及记录自身的最佳位置和全局最佳位置,通过群体的协作来逐渐靠近最佳解。
粒子的位置表示解空间中的一个候选解,速度表示粒子移动的方向和距离。
每个粒子根据自己的当前位置和速度,以及最佳位置和全局最佳位置,更新自己的速度和位置。
这种更新过程包括两个方面的信息:个体认知(局部)和群体认知(全局)。
个体认知是指粒子根据自身经验来更新速度和位置,群体认知是指粒子根据全局最佳位置来更新速度和位置。
具体算法步骤如下:1.初始化粒子群,包括粒子的初始位置和速度。
2.对于每个粒子,根据当前位置计算适应度值,并记录个体最佳位置。
3.根据全局最佳位置,更新每个粒子的速度和位置。
4.判断是否达到停止条件,如果没有,则返回第2步;否则输出全局最佳位置作为最优解。
粒子群优化算法有很多应用。
其中最常见的是在函数优化中。
通过寻找函数的最小值或最大值,可以帮助解决实际问题中的约束优化、参数优化、函数拟合等任务。
在机器学习领域,粒子群优化算法可以用于优化神经网络中的权重和阈值,提高神经网络的性能。
在图像处理中,可以利用粒子群优化算法来进行图像分割、特征选择和图像重建等任务。
在工程设计中,粒子群优化算法可以用于优化传感器布局、机器人路径规划、电力系统调度等问题。
总之,粒子群优化算法是一种简单而有效的优化算法,可以用于解决各种优化问题。
通过模拟生物群体的行为,粒子群优化算法能够快速找到最优解或近似最优解,广泛应用于科学研究和工程实践中。