太阳能光热发电与光伏发电对比分析
- 格式:pdf
- 大小:1014.48 KB
- 文档页数:6
VGB Congress Power Plants 2001 · Brussels · October 10 to 12, 2001Solar Power – Photovoltaics or Solar Thermal Power Plants?Volker Quaschning 1), Manuel Blanco Muriel 2)1) DLR, Plataforma Solar de Almería, Spain2) CIEMAT, Plataforma Solar de Almería, SpainAbstractMany people associate solar energy directly with photovoltaics and not with solar thermal power generation. Nevertheless, large commercial concentrating solar thermal power plants have been generating electricity at a reasonable cost for more than 15 years and some new solar thermal power plants are soon to be erected. This paper compares the two technologies, providing a short description of how they work, areas in which they operate and cost-developments.1 PrinciplesAbout one percent of the surface of the Sahara desert would be sufficient to supply the entire worldwide electricity demand from solar thermal power plants. For that reason, many people hope solar thermal power will be implanted in sun-belt countries. In contrast to photovoltaic plants, solar thermal power plants are not based on the photo effect, but generate electricity from the heat produced by sunlight.1.1 PhotovoltaicsSemiconductor materials such as silicon are used in photovoltaic solar cells. In the cells incoming photons separate positive and negative charge carriers. This produces an electrical voltage and the electrical current can drive a load. Since solar cells are modular, they can be assembled in units of any size (Figure 1). An inverter converts DC voltage to AC and feeds the solar power into the grid.Figure 1: Photovoltaic modules andinverters build up a photovoltaicsystem1.2 Solar Thermal Power PlantsOf the various types of solar thermal power plants, parabolic trough and solar power tower plants are described in more detail below.The “trough” collectors that make up the solar field of a parabolic trough power plant are large cylindrical parabolic mirrors that concentrate the sunlight on a line of focus (Figure 2). Several of these collectors are installed in rows about a hundred meters long and the total solar field is composed of many such parallel rows.Figure 2: Principleof the parabolictrough solarcollectorFigure 3: Principleof the parabolictrough solarpower plantAll the collectors track the path of the sun on their longitudinal axes. The mirrors concentrate the sunlight more than 80 times on a metal absorber pipe in the line of focus. This pipe is embedded in an evacuated glass tube to reduce heat loss. A selective coating on the absorber tube surface lowers emission losses. Either water or a special thermal oil, runs through the absorber tube. The concentrated sunlight heats it up to nearly 400 °C, evaporating water into steam that drives a turbine and an electrical generator. After passing through the turbine, the steam condenses back into water that is returned to the cycle (Figure 3).A fossil burner can drive the water-steam cycle during periods of bad weather or at night. In contrast to photovoltaic systems, solar thermal power plants can guarantee capacity. This option increases its attractiveness and the quality of planning distribution over the grid. Thermal storage can complement or replace the fossil burner so that the power plant can be run with neutral carbon dioxide emissions. In this case, heat from storage drives the cycle when there is no direct sunlight. Biomass or hydrogen could also be used in the parallel burner to run the power plant without carbon dioxide emissions.Figure 4:Experimental centralreceiver system atthe Europeanresearch centerPlataforma Solar deAlmería in SpainThe solar field of a central receiver system, or power tower, is made up of several hundred or evena thousand mirrors, called heliostats, placed around a receiver at the top of a central tower. (Figure4). A computer controls each of these two-axis tracking heliostats with a tracking error of less thana fraction of a degree to ensure that the reflected sunlight focuses directly on the tower receiver, where an absorber is heated up to temperatures of about 1000 °C by the concentrated sunlight. Air or molten salt transports the heat and a gas or steam turbine drives an electrical generator that transforms the heat into electricity.2 Reference SystemsBoth photovoltaics and solar thermal power plants have proven their feasibility in many operating years at a large number of reference systems. There are relevant megawatt-size reference systems in both technologies.2.1 PhotovoltaicsOnly a few photovoltaic demonstration systems in the megawatt range were built in the last decade. At the moment various large systems are planned or under construction. Reliable general conditions given by fed-in laws in Germany and Spain support the erection of new large system. The number of new systems will increase continuously within the next year resulting in decreasing costs.Table 1: Examples of photovoltaic systems in the megawatt rangePlace of large PV plants Country Installed capacity Start of operationToledo Spain 1.01994MWMW1994 Serre Italy 3.3MW 19981.0Munich Germany1999MWHerne Germany1.0Tudela Spain 1.2 MW 2001 (planned)Relzow Germany 1.5 MW 2001 (planned)Relzow Germany 3.5 MW 2002 (planned)2.2 Solar Thermal Power PlantsThe first commercial parabolic trough power plant was built in the Mojave Desert in California in the year 1984. By 1991, nine trough power plants with a total capacity of 354 MW e, which feed about 800 million kWh per year into the grid, had been erected on more than 7 km² (Figure 5). Eight of them can also be driven with fossil fuel to produce electricity during bad weather or at night. The annual share of the thermal energy produced from gas is limited by statute to 25 percent. The total investment in all of the systems was more than 1.2 billion USD. A large number of the plant components were produced in Europe. The levelized cost of solar electricity was reduced from 0.27 USD per kWh in the first power plant to about 0.12 to 0.14 USD per kWh in the last installed system.Although solar thermal electricity is much more reasonable than photovoltaic electricity, no more commercial power plants have been erected since 1991. However, an increasing number of project developments make the new construction of parabolic trough systems very probable. The World Bank has made 200 million USD in financial assistance available for new combined-cycle gas and solar thermal power plants in developing countries. In Spain, a law increasing compensation for electricity produced from solar thermal energy with a premium of 20 PTA/kWh (about 12 Eurocents/kWh) above the market price of 6 to 7 PTA/kWh (about 4 Euro cents/kWh) is expected shortly.Figure 5: Aerial view of the solar thermal power plats at Kramer Junction in the US-Californian Mojave desert (photograph: KJC)3 Areas of OperationThe areas where photovoltaic systems and solar thermal power plants can operate overlap only in a narrow range (Figure 6). Due to their modularity, photovoltaic operation covers a wide range from less than one Watt to several megawatts and photovoltaic systems are able to operate as stand-alone systems as well as grid-connected systems.Solar thermal power plants can work in both areas as well. Dish/Stirling systems are small units in the kilowatt range. The above-mentioned parabolic trough and solar tower power plants operate only in the megawatt range.Global solar irradiance consists of direct and diffuse irradiance. When skies are overcast, only diffuse irradiance is available. While solar thermal power plants can only use direct irradiance for power generation, photovoltaic systems can convert the diffuse irradiance as well. That means, they can produce some electricity even with cloud-covered skies.Since in middle and northern Europe there is only a relatively small share of direct irradiance, it does not make much sense to install solar thermal power plants there. However, in southern Europe and North Africa it is the direct irradiance that dominates.50010001500200025001 W10 W100 W 1kW10kW100kW1MW 10 M W100 MWM i n i a n d M i c r o P h o t o v o l t a i c S y s t e m s(e .g . w a t c h e s , c a l c u l a t o r s )l l P V I s l a n d S y s t e m s. s o l a r h o m e s y s t e m s )e P V I s l a n d S y s t e m s(e .g . v i l l a g e p o w e r s u p p y )S m a l l P V G r i d -c o n n e c t e d S y s t e m se P V c o n n e c t d S y s t e m sSolar Thermal Dish/Stirling Systems Solar Thermal Trough and Tower SystemsA n n u a l G l o b a l S o l a r I r r a d i a t i o n i n k W h /(m ²a )Power RangeFigure 6: Operational areas for solar thermal power plants and photovoltaic systems depending on the installed capacity and the annual global solar irradiationFigure 7 shows the increase in direct normal irradiation, that is the direct irradiance on an area perpendicular to the sun, and global horizontal irradiation with latitude in Europe and North Africa. The increase in direct normal irradiation is greater than the increase of the global horizontal irradiation, that is, the diffuse and direct irradiation on a horizontal surface. As a result the output and the profitability of solar thermal power plants in the South is much higher than for photovoltaic systems.Figure 8 presents the resulting levelized electricity costs for both technologies. Since market introduction of photovoltaic systems is much more aggressive than that of solar thermal power plants, cost reduction can be expected to be faster for photovoltaic systems. But even if there is a 50% cost reduction in photovoltaic systems and no cost reduction at all in solar thermal power plants, electricity production with solar thermal power plants in southern Europe and North Africa remains more cost-effective than with photovoltaic systems. Therefore, there are areas in which one or the other of the two technologies should be preferred for technical and economic reasons.05001000150020002500300030354045505560latitude in °Figure 7: Global horizontal irradiation and direct normal irradiation in various locations in Europe and North Africa depending on latitude00.10.20.30.40.50.60.70.830354045505560latitude in °l e v e l i z e d e l e c t r i c i t y c o s t s i n E u r o /k W hFigure 8: Present levelized electricity costs for solar thermal power plants and photovoltaicsystems as well as levelized costs for photovoltaic systems with 50 % cost reduction for locations in Europe and North Africa depending on the latitude4 Future perspectivesAlthough small photovoltaic systems and photovoltaic stand-alone systems today are already competitive with conventional electricity supply systems, the situation for grid-connected systems is totally different. Their cost can be improved if they are integrated into buildings, however, if there is no significant increase in fossil fuel prices, large grid-connected photovoltaic systems will still depend on governmental support in the mid term.The situation for solar thermal power plants is similar, although series production can reduce the levelized electricity costs significantly below 10 Euro cents/kWh. Because of future needs for climate protection, both technologies require urgent support. Together these are the renewable technologies with the highest potential that can cover not only the electricity demand in southern Europe, but can also contribute significantly to the power supply in middle and northern Europe.5 ConclusionsSolar thermal and photovoltaic electricity generation are two promising technologies for climate-compatible power with such enormous potential that, theoretically, they could cover much more than just the present worldwide demand for electricity consumption. Together both technologies can provide an important contribution to climate protection. Photovoltaic systems have advantages for low-power demand, stand-alone systems and building-integrated grid-connected systems. Solar thermal power plants are best operated in large grid-connected systems. Due to the higher direct solar irradiation in the South they are most useful in southern Europe and North Africa where their potential is very high. Solar electricity can be also exported to middle and northern Europe in the future. Even if only a small percentage of its potential put to work, solar electricity generation will be an important pillar in the struggle against global warming.Author’s addresses:Dr. Volker QuaschningDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) · Plataforma Solar de Almería (PSA)E-Mail: volker.quaschning@psa.es · phone: ++34 950 38 7906Dr. Manuel Blanco MurielCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) · Plataforma Solar de Almería (PSA)E-Mail: manuel.blanco@psa.es · phone: ++34 950 38 7913。
光热与光伏发电综合对比
李富春;刘飞;邵成成;田旭;田炜一;冯斌
【期刊名称】《电力工程技术》
【年(卷),期】2024(43)1
【摘要】光伏发电和光热发电是太阳能发电的2种典型形式。
光伏开发成本相对较低,但为保证系统安全稳定运行,须配置一定比例储能和分布式调相机,造成发电成本提升,而光热自带储热和出力友好性,因此目前对于光伏与光热的发展技术路线仍存在较大争议。
文中以青海海西地区为例,基于同一时空太阳能辐照资源和出力特性,比较光伏+储能与光热的电力保障能力;然后从电网安全稳定支撑能力角度对光伏+储能+调相机与光热进行比较;最后基于光热和光伏成本下降趋势预测进行二者的经济性对比。
研究结果表明,若将光热和光伏放到技术对等层面,则光热由于同时具备储热和常规发电机功能,能够为系统提供短路容量、无功补偿和转动惯量支撑,在成本下降后经济性与光伏+储能+调相机基本相当,甚至更优。
【总页数】8页(P246-253)
【作者】李富春;刘飞;邵成成;田旭;田炜一;冯斌
【作者单位】中国电力工程顾问集团西北电力设计院有限公司;国网青海省电力公司经济技术研究院;西安交通大学电气工程学院
【正文语种】中文
【中图分类】TM615
【相关文献】
1.光伏与光热发电发展前景对比分析
2.太阳能光伏与光热发电对比简析
3.太阳能光伏发电与光热发电的发展现状及优劣势对比
4.太阳能光伏与光热发电对比简析
5.光伏/光热与光伏发电系统的性能及节能对比分析
因版权原因,仅展示原文概要,查看原文内容请购买。
第6卷2015年12月上半月黑龙江科学HEILONGJIANG SCIENCE Vo1.6 December 2015据不完全统计,全球已装机光伏发电在2014年年底已经达到245GW ,之所以会出现这样的发展态势,主要是受到光伏发电成本削减以及光伏市场的影响,由于光热的能量存储非常高效,而且要比电能存储便宜很多,因此是目前光热发电最有利的竞争依据。
本文主要通过对比介绍的方法,对光伏发电和光热发电进行区分,表明光伏发电和光热发电这两种技术所存在的联系。
1光伏发电与光热发电的系统形式对比光伏发电主要分为并网光伏发电系统和独立光伏发电系统,具体如图1,图2所示。
图1 并网光伏发电系统图2 独立光伏发电系统一般情况下,太阳能光热发电的形式主要有三种,分别是塔式、槽式和盘式。
塔式系统充分利用定日镜,将太阳热辐射直接反射到高塔的顶部,并直接加热集热器中的水,从而产生过热的蒸汽,以此来驱动汽轮发动机组进行发电。
槽式系统是将多个槽型的抛物面聚光集热器经过相应的排列产生热蒸汽,利用热蒸汽来驱动汽轮发动机发电。
盘式系统则是利用曲面聚光反射镜将阳光聚集在某一特定的焦点处,工作人员在焦点处安放一个发动机,利用这一原理进行发电。
具体原理及使用示意图见图3。
图3 太阳能光热发电系统原理及使用示意图2光伏发电与光热发电的能量转换对比光伏发电产生直流电,光热发电经过从光到热再到电的二次转换之后产生交流电,这种交流电可以直接与现有电网相匹配,虽然转换麻烦,但更便于使用。
3光伏发电与光热发电的储能方式对比光伏发电与光热发电最直接的一个区别是各自的能量储存方式,光伏发电是由光直接转化为电能的,所以大部分多余的电能只能由电池来进行存储,也就是光伏发电的存储技术难度要大,而光热发电的存储方(下转第35页)太阳能光伏与光热发电对比简析陈林,张鹏(特变电工沈阳电力勘测设计有限公司,沈阳110025)摘要:太阳能的利用主要分为两类;一类是光伏,一类是光热。
太阳能光热发电的经济性与市场分析在当今全球能源转型的大背景下,太阳能光热发电作为一种新兴的可再生能源技术,正逐渐引起人们的关注。
太阳能光热发电不仅具有清洁、环保、可持续等优点,还在经济性和市场前景方面展现出了巨大的潜力。
一、太阳能光热发电的原理与技术特点太阳能光热发电是通过反射镜或透镜将太阳光聚焦,加热工质产生高温蒸汽,驱动涡轮机发电。
与传统的光伏发电相比,光热发电具有可储能、输出稳定、与传统火电系统兼容性好等优势。
其主要技术路线包括塔式、槽式、碟式和菲涅尔式等。
塔式光热发电系统通过大量定日镜将太阳光反射至塔顶的吸热器,产生高温,效率较高;槽式系统则是利用抛物面槽式反射镜将太阳光聚焦到集热管上,技术相对成熟;碟式系统的聚光比高,效率出色,但规模较小;菲涅尔式系统结构简单,成本较低。
二、太阳能光热发电的经济性分析1、初始投资成本太阳能光热发电的初始投资较高,主要包括集热系统、储热系统、发电系统等设备的采购和安装费用。
目前,光热电站的建设成本普遍在每千瓦数万元以上,远高于传统的火电和光伏发电。
然而,随着技术的进步和规模的扩大,成本有望逐渐降低。
2、运营维护成本在运营维护方面,光热发电需要定期对反射镜、集热管等设备进行清洗和维护,以保证发电效率。
同时,储热系统的运行和管理也需要一定的成本。
但与传统火电相比,光热发电不需要燃料采购成本,且设备的维护周期相对较长。
3、储能成本与效益储能是太阳能光热发电的一大特色和优势。
通过储热系统,可以在阳光充足时储存多余的热量,在夜间或阴天时释放,实现稳定的电力输出。
虽然储能系统的建设增加了成本,但它提高了电力的可调度性和市场价值,有助于提高电站的收益。
4、发电成本与电价目前,太阳能光热发电的成本仍高于传统能源和部分可再生能源。
但随着技术的不断进步和成本的降低,预计未来光热发电的成本将逐渐接近甚至低于传统能源。
在一些光照资源丰富、政策支持力度大的地区,光热发电已经能够实现平价上网。
太阳能光伏与光热发电对比简析陈林;张鹏【期刊名称】《黑龙江科学》【年(卷),期】2015(000)018【摘要】太阳能的利用主要分为两类;一类是光伏,一类是光热。
由于二者的发电原理不同,所以其系统形式也有很大区别。
如果要真正承担未来世界能源消费格局,太阳能将会是地球上最大的一个可再生能源。
%The utilization of solar energy is mainly divided into two categories: photovoltaic as well as light and heat. On account of the two power generation principle is different, so the system form also has a big difference. The solar energy will be the largest renewable energy on the planet.【总页数】2页(P32-32,35)【作者】陈林;张鹏【作者单位】特变电工沈阳电力勘测设计有限公司,沈阳 110025;特变电工沈阳电力勘测设计有限公司,沈阳 110025【正文语种】中文【中图分类】TM615【相关文献】1.简析太阳能光伏原理及实施光伏能源的必要性 [J], 刘杰2.太阳能光伏电站技术简析与EPC合同风险规避 [J], 姚绍辉;张继宣;茹光军3.太阳能光伏与光热发电对比简析 [J], 陈丽;付颖4.太阳能光伏发电与光热发电的发展现状及优劣势对比 [J], ;5.“光热发电创新大会”——未来太阳能热发电产业发展要素简析 [J], 董霖霖因版权原因,仅展示原文概要,查看原文内容请购买。
太阳能发电系统的分类随着人们对环境保护意识的增强和对可再生能源的需求,太阳能发电系统成为了一种绿色、清洁且可持续发展的能源解决方案。
太阳能发电系统根据其结构和应用领域的不同,可以分为几个主要的分类。
本文将对太阳能发电系统的分类进行详细介绍。
一、分布式太阳能发电系统分布式太阳能发电系统是指将太阳能电池板和发电设备安装在建筑物的屋顶或周围的小型设备中,将太阳能转化为电能供建筑物内部使用。
这种系统具有安装灵活、维护方便、无需输电线路等优势,适用于建筑物屋顶、停车棚、农业大棚、工业车间等场所。
分布式太阳能发电系统可以减少对传统电网的依赖,降低能源消耗和能源损失。
二、集中式太阳能发电系统集中式太阳能发电系统是指将大规模的太阳能电池板安装在一处集中式太阳能发电站内,然后通过输电线路将电能输送到需要的地方。
这种系统可以利用大面积的太阳能电池板吸收更多的太阳能,同时通过光电转换设备将太阳能转化为电能。
集中式太阳能发电系统适用于大范围的发电需求,如工业园区、大型建筑物等。
它可以更高效地利用太阳能资源,减少能源消耗和环境污染。
三、混合式太阳能发电系统混合式太阳能发电系统是指将太阳能发电与其他能源发电方式相结合,实现能源的多元化利用。
这种系统可以根据不同的需求和资源状况,灵活地选择太阳能发电和其他能源发电方式进行组合。
混合式太阳能发电系统可以提高能源的稳定性和可靠性,同时减少对单一能源的依赖。
它适用于一些能源供应不稳定或多样化能源需求的地区,如岛屿、偏远地区等。
四、光热太阳能发电系统光热太阳能发电系统利用太阳能将光能转化为热能,再将热能转化为电能。
这种系统主要包括太阳能集热器和热能转换设备。
太阳能集热器将太阳能吸收并转化为热能,然后通过热能转换设备将热能转化为电能。
光热太阳能发电系统适用于一些需要大量热能的场所,如工业加热、蒸汽发生器等。
它可以提高能源的利用效率,减少能源消耗和环境污染。
五、光伏发电系统光伏发电系统是指利用太阳能光伏电池板将太阳能直接转化为电能的系统。
太阳能光伏发电光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。
不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。
理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源可以无处不在。
目录1分类发电模式输送方式独立光伏发电并网光伏发电分布式光伏发电2理论3组成4电池型号5设置原理6应用领域7光伏现状引言发展现状8中国现状资源分布发展现状相关政策未来趋势分类发电模式英文名称:Solar photovoltaics (PV)太阳能发电分光热发电和光伏发电。
不论产销量、发展速度和发展前景、光热发电都赶不上光伏发电。
可能因光伏发电普及较广而接触光热发电较少,通常民间所说的太阳能发电往往指的就是太阳能光伏发电,简称光电。
太阳能光伏发电原理图:输送方式太阳能光伏发电分为独立光伏发电、并网光伏发电、分布式光伏发电独立光伏发电独立光伏发电系统也叫离网光伏发电系统。
主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。
并网光伏发电并网光伏发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电这后直接接入公共电网。
并网光伏发电系统有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,发展难度相对较大。
而分散式小型并网光伏系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。
[1]分布式光伏发电分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
学校代码: 10128学号:************ 本科毕业论文题目:太阳能光伏发电技术与光热转换技术的比较****:***学院:理学院系别:物理系专业:电子信息科学与技术班级:电科08-2指导教师:胡秀珍教授二〇一二年六月摘要当今社会,煤矿、石油等自然资源在不断被人类开采,这造成了这些经过几百万年甚至几千万年才形成的矿物能源消耗殆尽。
这些古老的化石能源并不是用之不竭的,因此在这些矿物质能源消耗完之前,人类必须要发掘出新的能源来继续满足人类的日常生活需要。
太阳能光伏发电技术和太阳能光热转换技术最近几年都获得了很大的发展,这二者在工作原理、材料和应用等各方面都各有优势,对人类未来的发展具有重要意义。
本论文首先介绍了太阳能光热发电原理和光伏发电原理,然后对太阳能电池发电技术和光热转换技术进行了论述。
再通过对太阳能典型产品如太阳能灯,太阳能热水器等的分析研究,使我对太阳能光伏发电技术与光热转换技术有了进一步的认识与理解。
最后文章重点对太阳能光伏发电技术与光热转换技术进行了各项技术比较。
使我在掌握了太阳能的知识及应用的同时,提高了自己的思维能力和创新精神。
关键词:光伏发电;光热转换;太阳能电池板;太阳能集热器;AbstractIn today's society,coal, oil and other natural resources exploitation of chemical constantly, make these after millions of years to millions of years to form the mineral chemistry natural energy consumed. These chemical energy is not inexhaustible, so be in these minerals before completing the energy consumption, humans have to find new sources of energy to replace the old chemical energy to continue to support human production and life need.As photovoltaic power generation of main equipment, solar battery in recent years obtained very big development and progress, and at the same time the solar-thermal conversion technologies such as solar energy water heaters and also widely used. The two in the working principle, materials and application and so on various aspects each have an advantage. This article through more solar photovoltaic power generation technology and solar-thermal conversion technology, solar photovoltaic power generation to solar energy technology and solar-thermal conversion technology compared and learning. To grasp the basic knowledge and application of solar energy has a huge role.This paper analyzes the solar cell power generation, and photovoltaic power generation technology principle of principle, and to the solar-thermal technology principle, the principle of warmth conversion technology is discussed. Finally by the example analysis, such as solar energy lamp, solar water heater, etc, to solar photovoltaic power generation technology and solar-thermal conversion technology have further knowledge and understanding. In further understanding and the understanding, on the basis of the development of solar energy future prospects, the master of the knowledge of the solar energy and application, and inprove my thinking ability and creative spirit.Keywords:Photovoltaic power generation; Solar-thermal conversion; Solar panels; Solar energy collector.目录引言 (1)第一章太阳能光伏发电原理与技术 (2)1.1太阳能光伏发电原理 (2)1.2太阳能光伏发电技术 (3)1.2.1 太阳能光伏发电技术概述 (3)1.2.2 太阳能电池片 (4)第二章太阳能光热转换原理与技术 (6)2.1 太阳能光热转换的原理 (6)2.2太阳能光热转换的技术 (6)2.2.1 太阳能光热技术概述 (7)2.2.2 太阳能集热器 (7)2.2.3 太阳能光热利用方式分类 (7)第三章太阳能光电和光热技术典型应用分析 (9)3.1 太阳能光伏技术典型应用分析 (9)3.1.1太阳能灯 (9)3.1.2太阳能光伏发电系统 (11)3.2太阳能光热技术典型应用分析 (12)3.2.1太阳能热水器 (12)3.1.2太阳能光热发电系统 (15)第四章太阳能光伏发电技术与光热转换技术的比较 (18)4.1光伏发电技术与光热转换技术的共同点 (18)4.2光伏发电技术与光热转换技术的不同点 (18)4.2.1对所用能源的转换方式的比较 (18)4.2.2光伏与光热转换效率比较 (19)4.3光伏发电技术与光热转换技术的对比分析 (19)4.4光伏发电技术与光热转换技术所需装置比较 (20)4.5光伏发电技术与光热转换技术的发展现状比较 (21)4.5.1太阳能光伏技术发展现状 (21)4.5.2太阳能光热技术发展现状 (23)结论 (25)参考文献 (27)谢辞 (29)引言当今社会,人类对煤矿,石油等天然资源不断开采,导致这些经过上万年才能形成的天然能源出现了供应不足的现象。
太阳能光热发电技术研究现状及其关键设备问题分析摘要:太阳能是用之不竭的可再生清洁能源,有效利用太阳能光热发电可减少对煤炭、石油、天然气等化石能源的依赖。
目前中国的太阳能利用形式主要为中低温热利用和光伏发电,中高温热利用起步较晚,尚未完成商业化。
太阳能热发电是利用大规模太阳镜场将太阳能聚集起来,产生高温蒸汽驱动汽轮机发电的技术,相比于其它太阳能利用形式,能较好地解决太阳能不稳定、不持续的弱点,有利于太阳能的大规模利用。
按照太阳能镜场的集热方式,太阳能热发电主要分为抛物槽式太阳能热发电、塔式太阳能热发电和碟式太阳能热发电,此外还可将太阳能热发电技术与常规能源集成,目前有太阳能燃煤互补电站和太阳能燃气互补电站。
太阳能光热发电技术是太阳能利用的重要方式,在未来有广阔的发展前景。
关键词:太阳能;光热发电;技术发展一、太阳能发电系统分类及工作原理目前,较为成熟的太阳能发电技术是太阳能光伏发电和太阳能光热发电。
太阳能光热发电技术又分为塔式太阳能光热发电、槽式太阳能光热发电和碟式太阳能光热发电。
目前槽式和塔式太阳能光热发电站实现了商业化示范运行,而碟式发电系统仍处于示范阶段。
光热发电的工作原理太阳能光热发电的基本原理与常规火力发电相似,它主要利用大规模阵列镜面集聚太阳热能,通过换热装置加热产生蒸汽,然后驱动传统的汽轮发电机产生电能。
光热发电涉及光—热—电之间的转换,包括以下几个过程:光的捕获与转换过程、热量吸收与传递过程、热量储存与交换过程、热电转换过程。
相比光伏发电而言,太阳能光热发电技术不需要昂贵的晶硅光电转换工艺,同时具有较高的发电效率。
另外,利用相对成熟的热存储技术,可以存储部分热能,到了晚上,利用蓄热发电。
二、技术类型、特点与存在问题1.槽式太阳能光热发电系统槽式系统主要是把太阳光聚焦到管状集热器,加热带有真空玻璃罩的管内介质(多为导热油)。
工质在吸收足够热量之后,在经过油水换热器时与其中的水进行换热,将水加热成为过热蒸汽,产生的蒸汽在汽轮机中做功并带动发电机转动发电。
太阳能热水系统与光伏系统节能比较分析李晨玉;贾海涛;王健【摘要】利用软件对屋顶的太阳能辐照量进行模拟,为太阳能热水系统与光伏系统的应用提供依据.通过理论计算,分析太阳能热水系统与光伏系统的年节能量.可知,太阳能热水系统的年节能量最为显著,太阳能晶硅光伏系统次之,薄膜光伏系统最低.【期刊名称】《住宅科技》【年(卷),期】2018(038)008【总页数】3页(P55-57)【关键词】餐厅建筑;太阳能热水系统;太阳能光伏系统;年节能量【作者】李晨玉;贾海涛;王健【作者单位】同济大学建筑设计研究院(集团)有限公司;上海科技馆;同济大学建筑设计研究院(集团)有限公司【正文语种】中文近年来,随着常规能源的日益短缺和环境污染的日益严重,可再生能源作为建筑节能、绿色建筑和低碳建筑的重要组成内容,越来越受到人们的重视。
其中,太阳能资源由于其普遍性、无害性、巨大性和长久性,具有巨大节能潜力。
太阳能热水系统和太阳能光伏发电系统是太阳能利用的两种主要方式,本文针对上海市某职工餐厅建筑这一具体案例,分别进行太阳能热水系统和光伏系统的节能计算,分析两种系统的节能潜力。
1 项目概况该职工餐厅建筑位于上海市,总建筑面积944.30m2,其中,地上881.47m2,地下62.83m2,主要使用功能为厨房、餐厅及设备用房。
2 太阳辐照量分析上海市处于北纬31°24′、东经121°29′,属亚热带湿润季风气候,1、2月最冷,最低气温为-5~-8℃,通常7月最热,最高气温达35~38℃。
每年6月中旬~7月上旬是梅雨季节。
上海市太阳能工程设计所用的气象参数详见《太阳能集中热水系统选用与安装》(GJBT—960)(表1)。
通过软件模拟,该职工餐厅建筑屋面全年的太阳能辐照量范围为210~1200kWh/m2,年太阳能辐照量平均值为1 076.0 kWh/m2。
参考浙江省工程建设标准《民用建筑可再生能源应用核算标准》(DB33/1105—2014)第4.1.2条:“年太阳能辐照量大于625 kWh/m2的屋面可利用区域宜全部安装太阳能集热器或光伏电池组件。
传统的火力发电是通过燃烧,把化石中储存的能量,转化为热能,再转化为电能。而太阳能光热发电则是通过数量众多的反射镜,将太阳的直射光聚焦采集,通过加热水或者其他工作介质,将太阳能转化为热能,然后利用与传统的热力循环一样的过程,即形成高温高压的水蒸气推动汽轮机发电机组工作,最终将热能转化成为电能,典型太阳能光热发电热力循环系统原理如图所示。太阳能光热发电热力循环系统原理图
正是通过这样的环节,太阳能光热发电技术和传统火力发电技术顺利地集成在一起。由于火力发电技术早已非常成熟,从而降低了太阳能光热发电整体技术开发的风险。中国产业信息网发布的《2013-2018年中国太阳能热利用市场专项研究及投资战略咨询报告》指出:太阳能发电技术主要包括太阳能光伏发电和太阳能光热发电两种,光伏发电的原理是当太阳光照射到太阳能电池上时,电池吸收光能,产生光生伏打效应,在电池的两端出现异号电荷积累。若引出电极并接上负载,便有功率输出。光伏发电是目前太阳能发电产业的主流技术,较为成熟,国家已明确其上网电价(不同地区在0.9~1 元/度范围变化),发电成本也下降至0.7 元/度左右;光热发电在我国发展时间较短,在太阳能聚光方法及设备、高温传热储热、电站设计等集成以及控制方面,已经取得实质性进展,但商业化业绩较小,上网电价政策尚未落实,发电成本也较高,约为0.9 元/度左右。但太阳能光热发电与光伏发电相比具有以下优点: 1)太阳能光热发电输出电力稳定,电力具有可调节性,易于并网目前太阳能光热发电系统可以通过增加储热单元或通过补燃或与常规火电联合运行改善出力特性。而光伏发电受日光照射强度影响较大,上网后给电网带来较大压力,其发电形式独特,和传统电厂合并难度大。-通过储热改善光热发电出力特性(槽式和塔式光热发电)。白天将多余热量储存,晚间再用储存的热量释放发电,这样可以实现光热发电连续供电,保证电流稳定,避免了光伏发电与风力发电难以解决的入网调峰问题。根据不同储热模式,可不同程度提高电站利用小时数和发电量,提高电站调节性能。-通过补燃或与常规火电联合运行改善光热发电出力特性。太阳能热发电站可利用化石燃料补燃或与常规火电联合运行,使其可以在晚上或连续阴天时持续发电,甚至可以以稳定出力承担基荷运行,从而使年发电利用得到7000 小时左右。 2)太阳能光热发电无污染光热发电是清洁生产过程,基本采用物理手段进行光电能量转换,对环境危害极小,太阳能光热发电站全生命周期的CO2 排放仅为13~19g/kWh。而光伏发电技术存在致命弱点为太阳能电池在生产过程中对环境的损耗较大,是高能耗、高污染的生产过程。业内专家认为,太阳能电池在生命周期所能节约的能源与生产太阳能电池本身所要消耗的资源相比,并不经济。光伏和光热发电对比光伏光热
发电原理利用太阳光中的可见光形成光电子。使用半导体吸附并形成电流,从而实现发电的过程。利用太阳光中的热能转化为动能,并使用汽轮机进一步转化为电能实现发电的过程。可利用太阳能资源60% 30%
发电成本0.7元/度0.9元/度上网电价0.9~1元/度无
储能系统使用电池进行电能储存,使用寿命短、损耗大通过一些介质如熔融盐、水等材料进行热储存,使用寿命长、损耗小每年发电小时数(小时)1800~2200 储能:5000不储能:2000 上下与传统电厂合并不能能输出电力特性不可改变可改变,调节生产过程清洁度高污染清洁转化效率10~20% 15~30%
占地面积(m2/MW)25~30 35~40
适用范围适合小规模、分布式发电由于其与火力发电有着共性,同样适合集中式大规模发电全球技术水平技术成熟应用技术已相对成熟全球产业化水平产业化程度很高产业化初步形成国内产业化水平产业化程度很高未形成产业化
优势技术和产业已相对成熟储热成本低且效率高,年发电小时数长,与其他发电可有效契合,是是最有条件逐步替代火电、担当基础电力负荷的新能源
劣势生产过程中存在污染,且稳定性不高对地理条件要求高资料来源:中国产业信息网整理根据聚光方式的不同,光热发电技术主要分为:塔式、槽式、碟式和线性菲涅尔。其共同点是利用不同技术加热工质,再驱动汽轮机发电,也可以在热能转成电能的环节上采用斯特林发动机。槽式和塔式光热电站目前均已实现了大规模商业化运行,而碟式及线性菲涅尔式则分别处于系统示范阶段。其中目前应用较为广泛的三种光热发电系统比较见下表。三种光热发电系统比较槽式碟式塔式发电规模(MW)30~150 1~50 30~400 运行温度(℃)320~400 750 230~1200
系统平均效率(%)15 25~30 20~35
商业化状态已商业化完成示范阶段已商业化已建单机最大容量280MW 100KW 133MW
技术风险低高中等能量储存可以电池可以,如熔盐多燃料设计可以可以可以成本($/W) 4.0~2.7 12.6~1.3 4.4~2.5
成本($/W)不考虑热量的存储4.0~1.3 12.6~1.1 2.4~0.9
占地规模大小中等应用可并网发电,中温段、高温段加热小容量分散发电、边远地区独立系统供电可并网发电,高温段加热
缺点使用油作为传热介质,限制了运行温度,最高400℃,只能产生中等品质的蒸汽可靠性需要加强,预计大规模生产成本目标尚未达到
性能、初期投资和商业化
运行程度不够
资料来源:中国产业信息网整理 1、槽式太阳能热发电槽式太阳能集热系统如下图所示
在太阳能集热器上利用抛物线式反射板将太阳光聚焦到中心焦点线上。在对日跟踪系统的作用下,阳光会被连续地聚集在焦点线位置的集热管上。在集热管中流动的热流体将热量连续不断地输送到高压蒸汽发生器中,通过换热器进行热量交换,产生热蒸汽。若产生的蒸汽用于发电或供热,则热蒸汽做功或放热完成后经过压缩冷凝回流到热蒸汽发生器中,再次被加热成为闭环系统不断循环的热蒸汽;若生产的蒸汽是用于其它生产工艺并被消耗,则需补水。同时,通过热交换器后的热介质流体也将返回到集热场中再次被加热。为了在太阳能不足时仍能生产蒸汽,可在系统中放置储热罐,存储富余的能量,在太阳能不足时对系统进行补给,从而加大太阳能的利用效率。 2、碟式太阳能热发电碟式又称盘式,其主要技术特征是采用盘状抛物面聚光集热器,它也是一种点聚焦集热器,其聚光比可以高达数百倍到数千倍,因而可以产生非常高的温度。在其接收器上安装热电转换装置,比如斯特林发动机或朗肯循环热机等,从而将热能直接转换成电能。可以单台使用或多台并联使用,适宜小规模发电,所以比较适合偏远山区远离电网地区,进行分布式离网供电。碟式太阳能光热发电站示意图
3、菲涅尔式集热发电菲涅尔式集热系统如图8所示,1990 年澳大利亚科学家在总结了槽式和塔式的经验基础上,提出了紧凑线性菲涅尔反射聚光器和蒸汽发生系统的构想,并于2002年由德国 FRAUNHOFER 设计,比利时索拉门多公司制作了5000 m2 的菲涅尔(Fresnel)太阳能聚光器。相比较槽式,这套系统的一个关键优势就在于菲涅尔的聚焦比大,可以获得比较高的温度,每平米镜面所需要的基础和电机很少,系统通过使用标准的平面镜代替需要特殊方法加工的曲面反射镜,让所有的镜子贴近地面,降低风载和钢的使用,从而降低成本。菲涅尔式太阳能光热发电站基本原理图 4、塔式太阳能热发电塔式系统如下图所示,具有规模大、热传递路程短、热损耗小、聚光比和温度较高等特点,是几种光热发电系统中可达到发电成本最低的一种。它利用众多定日镜形成的定日镜场阵列,将太阳辐射反射到置于高塔顶部的吸热器上,加热吸热工质使其直接产生蒸汽或者换热后再产生蒸汽,以此驱动汽轮机带动发电机组,从而将太阳能转换为电能。整个系统主要由 4 大基本部分构成:聚光系统、吸热系统、储热系统和发电系统。塔式太阳能光热发电站基本原理图
目前,槽式和塔式光热发电已经实现商业化,菲涅尔和碟式技术所占的份额依旧很少,短期看也没有出现大跨步发展的迹象。世界范围内槽式光热发电系统占比最高,因为塔式光热发电系统的初始投资高、碟式发电系统能量储存困难。但塔式光热发电系统综合效率高,非常适合于大规模、大容量商业化应用,在规划建设的光热电站项目中塔式所占的比例已经超出了槽式技术。我们认为,未来塔式光热发电技术将是光热发电的主要技术流派。四种光热发电技术的装机比例统计(截至2013 年3 月份)类别槽式塔式菲涅尔碟式已建成26.9% 0.8% 0.6% 0.04%
在建28.6% 7.4% 1.8% —
计划建设15.9% 17.6% 0.3% —合计71.4% 25.9% 2.7% —
现阶段被广泛商业化运行的槽式聚光系统多为管桁架式,耗用的钢材多,自重大,成本高,加之是单轴跟踪,聚光比低,光热转换效率低。而碟式聚光系统虽然具有较高的光学效率和较低的跟踪误差,并采用了高效率的集热器,从而具有较高的热电转换效率等这些优点。但是在增大聚光面积时,增加了支撑架体设计难度,由于抗风等级的要求导致用钢量大幅度提高,造成系统成本增加。作为线性菲涅尔聚光系统,虽然建设和维护成本相对来说低廉,但其普遍存在遮挡和阴影问题,造成系统效率低,聚光倍数只有数十倍。导热管路上能量损失问题也是线性菲涅尔集热器上不容忽视的问题。相比上述不足,秦皇岛瑜阳光能科技有限公司的复合碟作为一种新型聚光系统,具有以下优点:(1)焦点固定设计(即系统集热装置固定)——具有塔式焦点不移动的特点。本发明降低了太阳能聚光系统接收器的设计难度,解决其它系统中普遍存在的管路安装困难的问题。