X射线残余应力测定
- 格式:docx
- 大小:33.73 KB
- 文档页数:12
2.测试方法目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。
盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较;X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力;磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。
对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。
尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。
因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。
残余应力的测量方法残余应力的测量方法可以分为有损和无损两大类。
有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。
机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。
物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性法和超声法。
X射线衍射法依据X射线衍射原理,即布拉格定律。
布拉格定律把宏观上可以准确测定的衍射角同材料中的晶面间距建立确定的关系。
材料中的应力所对应的弹性应变必然表征为晶面间距的相对变化。
当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。
因此有可能通过测量衍射角2θ随晶面取向不同而发生的变化来求得应力σ。
从这里可以看出X射线衍射法测定应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件,包括大型工件的现场测量。
残余应力无损检测方法嘿,你知道不?残余应力那可是个大问题呢!无损检测方法就像个超级侦探,能在不破坏材料的情况下找出残余应力。
那咱就说说这神奇的无损检测方法吧!首先,X 射线衍射法就超厉害。
把材料放在那,X 射线一照,就像医生给病人拍片子似的,能看出材料内部的残余应力分布。
步骤嘛,就是调整好设备,让X 射线准确地照射到材料上,然后分析反射回来的X 射线信号。
这多牛啊!注意事项呢,可得小心操作设备,别让X 射线伤着自己。
那安全性咋样?放心吧,只要按规定操作,那是妥妥的安全。
稳定性也没得说,每次检测结果都挺靠谱。
这种方法适合检测各种金属材料,优势就是准确、快速。
比如说在航空航天领域,那飞机零件的残余应力检测可离不开它。
检测得准,飞机飞得才安心嘛!再说说超声检测法。
这就像用超声波给材料做体检。
把探头放在材料上,超声波在材料里传播,通过分析超声波的变化就能知道残余应力的情况。
步骤简单,放好探头,启动设备就行。
注意别把探头弄坏了。
安全性那是杠杠的,超声波又不会伤人。
稳定性也不错,检测结果比较稳定。
这种方法应用场景可广了,汽车制造、机械加工都能用。
优势就是方便、快捷,可以在生产线上直接检测。
这不就像有个随时待命的小助手嘛!还有磁测法呢!就像用魔法探测材料的残余应力。
通过测量材料的磁性变化来判断残余应力。
步骤不难,把仪器靠近材料就行。
注意别让磁场干扰其他设备。
安全性好得很,没啥危险。
稳定性也还行。
在钢结构检测中很管用。
优势就是可以快速检测大面积的材料。
哇塞,这多厉害!总之,残余应力无损检测方法那是超级棒!各种方法都有自己的优势和应用场景。
在实际生产中,根据不同的需求选择合适的方法,就能让我们的产品更安全、更可靠。
这难道不是超赞的事情吗?咱可一定要重视残余应力检测,让我们的生活更美好!。
X 射线应力测定技术预备知识一、X 射线的本质与产生1、X 射线的本质1895 年德国物理学家伦琴发现了 X 射线。
1912年德国物理学家劳埃等人成功地观察到 X 射线在晶体中的衍射现象,从而证实了 X 射线在本质上是一种电磁波。
依据电磁波的波长,从 3×10-4m 以上到10-13m 以下,可以把它们分别称为无线电波、红外线、可见光、紫外线、X 射线、γ射线和宇宙射线 等(如图 1 所示)。
X 射线的波长范围在 10-12m ~ 10 - 8m 之间。
用于衍射分析的 X 射线波长通常在0.05nm ~0.25nm 范围,用于金属材料透视的 X 射线 波长为 0.1nm ~0.005 nm ,甚至更短。
实验证明,波长越长的电磁波,其波动性越明 显,波长越短的电磁波,其粒子性越明显。
X 射线 和可见光、紫外线同其它基本粒子一样都同时具有 波动性和粒子性二重特性。
正因为它们的具有波动 性,光的干涉衍射现象才得以圆满解释;也正因为 它们的粒子性,探测器才可以接收到一个个不连续的 图1、电磁波谱光量子。
反映波动性的波长λ、频率υ与反映粒子性 各个区域的上下限难以明确指定,本图中各种电磁波的边界是臆定的的光子能量ε之间存在以下关系: ε=h υ=hc/λ 式中 h 为普朗克常数,h =6.626×10-34J ·s ;c 为光速,也是 X 射线的传播速度,c =2.2998 ×108m/s 。
2、X 射线的产生 研究证明,当高速运动的电子束(即阴极射线)与物体碰撞时,他们的运动便急遽的 被阻止,从而失去所具有的动能,其中一小部分能量变成 X 射线的能量,发生 X 射线,而 大部分能量转变成热能,使物体温度升高。
从原则上讲,所有基本粒子(电子、中子、质子 等)其能量状态发生变化时,均伴随有 X 射线辐射。
通常使用的 X 射线都是从特制的 X 射 线管中产生的。
图 2 是 X 射线管的结构和产生 X 射线示意图。
X射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的内应力σφ。
残余应力检测标准一、检测方法标准残余应力检测方法通常采用X射线衍射法和超声波法。
其中,X 射线衍射法是最常用的一种,其原理是利用X射线衍射图谱对材料内部的残余应力进行测定。
超声波法则是利用超声波在材料中的传播速度和方向变化来测定材料内部的残余应力。
在检测过程中,需要根据实际情况选择合适的检测方法,并遵循相应的操作规范和技术要求。
二、检测仪器标准残余应力检测仪器应符合国家有关标准和行业标准的要求,具备高精度、高稳定性和高可靠性的特点。
仪器的各项技术指标应经过法定计量部门的标定和校准,并取得相应的合格证书。
此外,仪器还应具备安全保护装置和防护设施,以确保检测过程的安全性和可靠性。
三、检测程序标准残余应力检测程序包括以下步骤:1. 试样制备:按照相关规定和标准制备试样,并确保试样的表面平整、光洁度和尺寸精度符合要求。
2. 仪器校准:对检测仪器进行校准,以确保其各项技术指标符合要求。
3. 试样安装:将试样安装在检测设备上,并确保安装位置和方向的正确性。
4. 数据采集:按照规定的操作程序和技术要求进行数据采集,包括X 射线衍射图谱或超声波传播速度和方向等。
5. 数据处理:对采集到的数据进行处理和分析,包括数据转换、拟合和计算等,以得出试样内部的残余应力分布和大小。
6. 报告编制:根据处理后的数据编制检测报告,包括试样残余应力分布图、数据统计表和结论等。
四、检测报告标准残余应力检测报告应包括以下内容:1. 试样信息:包括试样的名称、材质、尺寸和制备方法等。
2. 检测方法:说明所采用的残余应力检测方法及其原理和操作流程。
3. 仪器信息:包括检测仪器的型号、生产厂家和标定证书等。
4. 检测结果:包括试样内部的残余应力分布和大小等数据,以及相应的图表和统计表。
5. 结论评价:对试样的残余应力状况进行评价,指出可能存在的问题和改进建议。
6. 其他相关信息:如检测人员的资格证书、检测时间和地点等。
五、检测人员要求从事残余应力检测的人员应具备相关专业知识和技能,熟悉检测仪器的使用和维护方法,能够正确操作检测设备和处理数据。
残余应力检测方法残余应力是指在物体内部或表面上存在的一种内部应力状态。
残余应力的存在对材料的性能和使用寿命都有很大的影响,因此对残余应力的检测和分析显得尤为重要。
下面将介绍几种常用的残余应力检测方法。
首先,X射线衍射方法是一种常用的残余应力检测方法。
通过对材料表面或内部进行X射线照射,然后观察X射线的衍射图样,可以得到材料的晶格参数,从而计算出残余应力的大小和方向。
这种方法具有非破坏性、快速、准确的特点,因此在工程实践中得到了广泛的应用。
其次,光弹法也是一种常见的残余应力检测方法。
通过在材料表面或内部施加一定的载荷,观察材料的形变情况,再结合材料的弹性参数,可以计算出残余应力的大小和分布情况。
这种方法适用于各种材料,尤其对于复杂形状和大尺寸的工件也有很好的适用性。
此外,声发射方法也可以用于残余应力的检测。
当材料内部存在应力时,会引起微裂纹的扩展和移动,产生声波信号。
通过对这些声波信号的监测和分析,可以得到材料内部残余应力的信息。
这种方法对于复杂结构和高温环境下的残余应力检测具有独特的优势。
最后,磁性方法也是一种常用的残余应力检测方法。
当材料内部存在应力时,会对材料的磁性产生影响,通过对磁性信号的监测和分析,可以得到材料内部残余应力的信息。
这种方法适用性广泛,可以用于各种金属材料的残余应力检测。
总的来说,残余应力的检测对材料的质量控制和工程结构的安全性具有重要意义。
以上介绍的几种方法都具有各自的特点和适用范围,可以根据具体的情况选择合适的方法进行残余应力的检测和分析。
希望以上内容对残余应力检测方法有所帮助。
无损检测技术中的残余应力测量与分析方法剖析残余应力是指在物体内部存在的,由于外部加载和热应变引起的应力状态。
残余应力的存在对材料的性能和稳定性有着重要影响,因此在工程领域中需要对其进行准确测量和分析。
无损检测技术在残余应力测量与分析中起到了重要的作用,本文将对无损检测技术中的残余应力测量与分析方法进行剖析。
一、X射线衍射法X射线衍射(XRD)技术是一种常用的测量材料残余应力的方法。
该方法通过分析材料中晶体的衍射图谱来确定其残余应力。
当材料发生应力时,晶格的排列会发生变化,从而引起X射线的衍射角度的变化。
通过测量和分析这种变化,可以得到材料的残余应力信息。
XRD技术具有测量范围广、准确性高、可重复性好等优点。
对于单晶材料,XRD技术能够直接测量晶体中的残余应力,精度较高。
而对于多晶材料,则需要通过倾角扫描或者称为θ-2θ扫描,来获得材料中的残余应力信息。
不过,XRD技术对于非晶态材料的测量精度较低。
二、中子衍射法中子衍射(ND)技术是一种利用中子进行测量的方法,可用于测量材料的残余应力。
中子的波长大约为0.1-1.0纳米,相较于X射线而言,中子的波长更适合用于测量晶体结构。
中子与材料作用时,受到材料中的晶格排列和残余应力的影响,从而产生衍射。
中子衍射技术具有穿透性强、对非晶态材料测量精度高等优点。
相较于XRD技术,中子衍射技术在测量多晶材料的残余应力时精度更高,适用范围更广。
不过,中子衍射技术的设备成本较高,且实验条件要求较为苛刻。
三、位错法位错法是一种基于物理模型的测量残余应力的方法。
位错是材料晶体结构中的缺陷,它们是材料中形成应力的主要机制之一。
位错法通过测量材料中位错的密度和分布来推导残余应力。
位错法具有非常高的空间分辨率和准确性,适用于各种材料的残余应力测量。
位错法可以通过电子显微镜和X射线繁切分析仪等设备进行实施。
但是,位错法需要对材料进行特殊制备和取样,且实验条件更为复杂。
四、光弹法光弹法是一种基于光学和力学原理的测量方法,通过测量光线透过或反射于材料表面时产生的应力光学效应来推断残余应力。
测试残余应力的方法
1. X射线衍射,这是一种常用的方法,通过测量材料中晶格的微小变化来确定残余应力的存在和大小。
X射线衍射技术可以提供非常精确的残余应力测量。
2. 中子衍射,类似于X射线衍射,中子衍射也可以用于测量材料中的残余应力。
中子衍射对于一些特定类型的材料有其独特的优势,例如对于氢含量较高的材料。
3. 光学方法,包括全息干涉法和光栅法等,这些方法利用光的干涉原理来测量材料中的残余应力。
4. 荧光法,通过在材料表面施加荧光材料,并观察其发光的变化来测量残余应力。
5. 超声波法,利用超声波在材料中传播的速度和衰减来推断材料中的残余应力。
6. 磁性方法,包括磁滞回线测量和磁致伸缩测量等,这些方法利用材料中的磁性特性来推断残余应力。
综合利用以上方法,可以全面、多角度地测量材料中的残余应力,从而更好地了解材料的性能和行为。
这些方法在工程、材料科学和制造业等领域都有广泛的应用。
X射线残余应力测定 一、材料中内应力的分类 1、引言 当产生应力的因素不存在时(如外力去除、温度已均匀、相变结束等),由于材料内部不均匀塑性变形(包括由温度及相变等引起的不均匀体积变化),致使材料内部依然存在并且自身保持平衡的弹性应力称为残余应力,或内应力。
一方面,残余应力可能对材料疲劳强度及尺寸稳定性等均成不利的影响。 另一方面,为了改善材料的表层性能(如提高疲劳强度),有时要在材料表面还要引入压应力(如表面喷丸)。
当多晶材料中存在内应力时,必然还存在内应变与之对应,导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映,通过分析这些衍射信息,就可以实现内应力的测量。
2、内应力的分类 材料中内应力可分为三大类。 第I类应力,应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
第II类内应力,应力的平衡范围为晶粒尺寸,一般是造成衍射谱线展宽。 第III类应力,应力的平衡范围为单位晶胞,一般是导致衍射强度下降。
由于第I类内应力的作用与平衡范围较大,属于远程内应力,应力释放后必然要造成材料宏观尺寸的改变。
第II类及第III类应力的作用与平衡范围较小,属于短程内应力,应力释放后不会造成材料宏观尺寸的改变。
在通常情况下,这三类应力共存与材料的内部。 因此其X射线衍射谱线会同时发生位移、宽化及强度降低的效应。
A、第I类内应力 材料中第I类内应力属于宏观应力,其作用与平衡范围为宏观尺寸,此范围包含了无数个小晶粒。
在X射线辐照区域内,各小晶粒所承受内应力差别不大,但不同取向晶粒中同族晶面间距则存在一定差异。
当材料中存在单向拉应力时,平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大),同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小),其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时,其晶面间距及衍射角的变化与拉应力相反。 材料中宏观应力越大,不同方位同族晶面间距或衍射角之差异就越明显,这是测量宏观应力的理论基础。
上述规律适用于单向应力、平面应力以及三维应力的情况。
B、第II类内应力 第II内应力是一种微观应力,其作用与平衡范围为晶粒尺寸数量级。 在X射线的辐照区域内,有的晶粒受拉应力,有的则受压应力。不同取向晶粒中同族晶面间距差异不大。
各晶粒的同族(hkl)晶面具有一系列不同的晶面间距 dhkl±Δd值。 因此,在材料X射线衍射信息中,不同晶粒对应的同族晶面衍射谱线位置将彼此有所偏移。
各晶粒衍射线将合成一个在 2θhkl±Δ2θ 范围内的宽化衍射谱线。 材料中第II类内应力(应变)越大,则X射线衍射谱线的宽度越大,据此来测量这类应力(应变)的大小。
必须指出的是,多相材料中的相间应力,从应力的作用与平衡范围上讲,应属于第II类应力的范畴。 然而,不同物相的衍射谱线互不重合,不但造成宽化效应,而且可能导致各物相的衍射谱线发生位移。
因此,其X射线衍射效应与宏观应力相类似,故又称为伪宏观应力,可利用宏观应力测量方法来评定这类应力。
C、第III类内应力 材料中第III类内应力也是一种微观应力,其作用与平衡范围为晶胞尺寸数量级,是原子之间的相互作用应力,例如晶体缺陷周围的应力场等。
根据衍射强度理论,当X射线照射到理想晶体材料上时,被周期性排列的原子所散射,各散射波的干涉作用,使得空间某方向上的散射波互相叠加,从而观测到很强的衍射线。
在第III类内应力的作用下,由于部分原子偏离其初始的平衡位置,破坏了晶体中原子的周期性排列,造成了各原子X射线散射波周相差的发生改变,散射波叠加值即衍射强度要比理想点阵的小。
这类内应力越大,则各原子偏离其平衡位置的距离越大,材料的X射线衍射强度越低。 由于该问题比较复杂,目前尚没有一种成熟方法,来准确测量材料中的第III类内应力。
二、宏观平面应力测定 1、测定原理 由于X射线穿透深度较浅(约10μm),材料表面应力通常表现为二维应力状态,法线方向的应力(σz )为零。
图中φ及ψ为空间任意方向OP的两个方位角,εφψ 为材料沿OP方向的弹性应变,σx及σy 分别为x及y方向正应力。
根据弹性力学的理论,应变εφψ 可表示为 式中E及ν分别是材料的弹性模量及泊松比。
如果X射线沿PO方向入射,则εφψ 还可表示为垂直于该方向(hkl)晶面间距改变量,根据布拉格方程,这个应变为
式中d0及2θ0分别是材料无应力状态下(hkl)晶面间距及衍射角。
2、测量方法 根据ψ平面与测角仪2θ扫描平面的几何关系,可分为同倾法与侧倾法两种测量方式。 同倾法的衍射几何特点,是ψ平面与测角仪2θ扫描平面重合。 同倾法中设定ψ角的方法有两种,即固定ψ0法和固定ψ法。
A、同倾法 同倾法的衍射几何特点 ,是ψ 平面与测角仪2θ 扫描平面重合。
同倾法中设定ψ角的方法有两种,即固定ψ0法和固定ψ法。 同倾固定ψ0法要点是,在每次探测扫描接收反射X射线的过程中,入射角ψ0保持不变,故称之为固定ψ0法。
选择一系列不同的入射线与试样表面法线之夹角ψ0来进行应力测量工作。根据其几何特点不难看出,此方法的ψ与ψ0之间关系为
同倾固定ψ 法的要点是,在每次扫描过程中衍射面法线固定在特定ψ角方向上,即保持ψ不变,故称为固定ψ法。
测量时X光管与探测器等速相向(或相反)而行,每个接收反射X光时刻,相当于固定晶面法线的入射角与反射角相等。
通过选择一系列衍射晶面法线与试样表面法线之间夹角ψ,来进行应力测量工作。同倾固定ψ法的ψ角设置要受到下列条件限制
B、侧倾法 侧倾法的衍射几何特点是平面与测角仪2θ扫描平面垂直,如图所示。
3、试样要求 为了真实且准确地测量材料中的内应力,必须高度重视被测材料组织结构、表面处理和测点位置设定等,相关注意事项如下。
A、材料组织结构 常规的X射线应力测量,只是对无粗晶和无织构的材料才有效,否则会给测量工作带来一定难度。
对于非理想组织结构的材料,必须采用特殊的方法或手段来进行测试,但某些问题迄今未获得较为圆满的解决。
如果晶粒粗大,各晶面族对应的德拜环则不连续,当探测器横扫过各个衍射环时,所测得衍射强度或大或小,衍射峰强度波动很大,依据这些衍射峰测得的应力值是不准确的。
为使德拜环连续,获得满意的衍射峰形,必须增加参与衍射的晶粒数目。 为此,对粗晶材料一般采用回摆法进行应力测量。目前的大多数衍射仪或应力仪,都具备回摆法的功能。
材料中织构,主要影响应力测量2θ与 sin2ψ的线性关系,影响机制有两种观点:一种观点认为,2θ与sin2ψ的非线性,是由于在形成织构过程中的不均匀塑性变形所致;
另一观点则认为,这种非线性与材料中各向异性有关,不同方位即ψ角的同族晶面具有不同的应力常数K值,从而影响到2θ与 sin2ψ的线性关系。
由于理论认识上的局限,使得织构材料X射线应力测量技术一直未获得重大突破。 目前唯一没有先决条件并具有一定实用意义的方法是,测量高指数的衍射晶面。 选择高指数晶面,增加了所采集晶粒群的晶粒数目,从而增加了平均化的作用,削弱了择优取向的影响。 这种方法的缺点是,对于钢材必须采用波长很短的Mo-Kα线,而且要滤去多余的荧光辐射,所获得的衍射峰强度不高等。
B、表面处理 对于钢材试样,X射线只能穿透微米至十几微米的深度,测量结果实际是这个深度范围的平均应力,试样表面状态对测试结果有直接的影响。要求试样表面必须光滑,没有污垢、油膜及厚氧化层等。
特别提醒,由于机加工而在材料表面产生的附加应力层最大可达100μm,因此需要对试样表面进行预处理。
预处理的方法,是利用电化学或化学腐蚀等手段,去除表面存在附加应力层的材料。
如果实验目的就是为了测量机加工、喷丸、表面处理等工艺之后的表面应力,则不需要上述预处理过程,必须小心保护待测试样的原始表面,不能进行任何磕碰、加工、电化学或化学腐蚀等影响表面应力的操作。
为测定应力沿层深的分布,可用电解腐蚀的方法进行逐层剥离,然后进行应力测量。 或者先用机械法快速剥层至一定深度,再用电解腐蚀法去除机械附加应力层。
C、测点位置设定 对于一个实际试样,应根据应力分析的要求,结合试样的加工工艺、几何形状、工作状态等综合考虑,确定测点的分布和待测应力的方向。校准试样位置和方向的原则为:
(a)测点位置应落在测角仪的回转中心上; (b)待测应力方向应处于平面以内; (c)测角仪=0o位置的入射光与衍射光之中线应与待测点表面垂直。
4、测量参数 在常规X射线衍射分析中,选择正确的测量参数,目的是获得完整且光滑的衍射谱线。 而对于X射线应力测量,除满足以上要求外,还必须考虑诸如角设置、辐射波长、衍射晶面以及应力常数等因素的影响。
A、ψ角设置 如果被测材料无明显织构,并且衍射效应良好,衍射计数强度较高,在每一个φ角下只设置两个ψ角即可,例如较为典型的0o~45o法,这样在确保一定测量精度的前提下,可以提高测量的速度,节省仪器的使用资源。
一般情况是,在每个φ角下,ψ角设置越多则应力测量精度就越高。 对于多ψ角情况的应力测试,ψ角间隔划分原则是尽量确保各个sin2ψ值为等间隔,例如ψ角可设置为0o、24o、35o及45o,这是一种较为典型的ψ角系列。
B、辐射波长与衍射晶面 为减小测量误差,在应力测试过程中尽可能选择高角衍射,而实现高角衍射的途径则是选择合适辐射波长及衍射晶面。
由于X射线应力常数K与cotθ0值成正比,而待测应力又与应力常数成正比,因此布拉格角θ0越大则K越小,应力的测量误差就越小。