当前位置:文档之家› 高分子材料对社会的影响

高分子材料对社会的影响

高分子材料对社会的影响
高分子材料对社会的影响

高分子材料对社会的影响

高分子材料在我们的生活中无处不在.对我们的社会和生活影响巨大.它的影响是两方面的,寄给我们的生活带来了足多方便之处,同时也使得我们的生活坏境受到污染.

首先应该了解到什么是高分子材料. 高分子材料即以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础,人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。

高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。

很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。

. 现代社会生活与生产主要以材料,能源,信息作为三大支柱,而材料是主要的物质基础。塑料与钢铁、木材、水泥一起共同构成了现代工业四大基础材料,在国民经济发展中占有重要地位。其中以塑料为例来简单阐述一下其对人们生活和社会带来的影响.塑料是目前世界上产量最多、应用最广的材料,年产量约占全部高分子材料的70%以上。塑料具有其独特的优点,但也有不少的缺点。目前,塑料已成为促进社会经济发展,提高人们生活质量不可缺少的材料。塑料工业将持续快速发展,发挥其不可替代的作用。

塑料是一类具有可塑性的合成高分子材料。它与合成橡胶、合成纤维形成了当今日常生活不可缺少的三大合成材料。具体地说,塑料是以天然或合成树脂为主要成分,加入各种添加剂,在一定温度和压力等条件下可以塑制成一定形状,在常温下保持形状不变的材料。

塑料的主要性能特点:

塑料与其他材料相比较,有以下几方面的性能特点。重量轻,塑料是较轻的材料,相对密度分布在0.90—2.2之间。很显然,塑料能不能浮到水面上?特别是发泡塑料,因内有微孔,质地更轻,相对密度仅为0.01。这种特性使得塑料可用于要求减轻自重的产品生产中。优良的化学稳定性绝大多数的塑料对酸、碱等化学物质都具有良好的抗腐蚀能力。特别是俗称为塑料王的聚四氟乙烯(F4),它的化学稳定性甚至胜过黄金,放在“王水”中煮十几个小时也不会变质。由于F4具有优异的化学稳定性,是理想的耐腐蚀材料。如F4可以作为输送腐蚀性和粘性液体管道的材料。优异的电绝缘性能普通塑料都是电的不良导体,其表面电阻、体积电阻很大,用数字表示可达

109一1018欧姆。击穿电压大,介质损耗角正切值很小。因此,塑料在电子工业和机械工业上有着广泛的应用。如塑料绝缘控制电缆。热的不良导体具有消声、减震作用一般来讲,塑料的导热性是比较低的,相当于钢的1/75—1/225,泡沫塑料的微孔中含有气体,其隔热、隔音、防震性更好。如聚氯乙烯(PVC)的导热系数仅为钢材的1/357,铝材的1/1250。在隔热能力上,单玻塑窗比单玻铝窗高40%,双玻高50%。将塑料窗体与中空玻璃结合起来后,在住宅、写字楼、病房、宾馆中使用,冬天节省暖气、夏季节约空调开支,好处十分明显。机械强度分布广和较高的比强度有的塑料坚硬如石头、钢材,有的柔软如纸张、皮革;从塑料的硬度、抗张强度、延伸率和抗冲击强度等力学性能看,分布范围广,有很大的使用选择余地。因塑料的比重小、强度大,因而具有较高的比强度。与其它材料相比,塑料也存在着明显的缺点,如易燃烧,刚度不如金属高、耐老化性差、不耐热等。

塑料的发展趋势塑料的发展方向可概括为两方面。一是提高性能,即以各种方法对现有品种进行改性,使其综合性能得到提高;二是发展功能,即发展具有光、电、磁等物理功能的高分子材料,使塑料能够具有光电效应、热电效应、压电效应等。

塑料对社会和生活带来的危害:

塑料容易燃烧,燃烧时产生有毒气体,且生产资源有限回收价值低例如聚苯乙烯燃烧时产生甲苯,这种物质少量会导致失明,吸入有呕吐等症状,PVC 燃烧也会产生氯化氢有毒气体,除了燃烧,就是高温环境,会导致塑料分解出有毒成分,例如苯环等。

塑料是由石油炼制的产品制成的,石油的资源是有限的。我们通常所用的塑料并不是一种纯物质,它是由许多材料配制而成的。其中高分子聚合物(或称合成树脂)是塑料的主要成分,此外,为了改进塑料的性能,还要在聚合物中添加各种辅助材料,如填料、增塑剂、润滑剂、稳定剂、着色剂等,才能成为性能良好的塑料污染了的废塑料因无法保证质量,其利用价值也很低;回收利用废弃塑料时,分类十分困难,而且经济上不合算。

塑料对环境主要有两种危害,即“视觉污染”和“潜在危害”视觉污染是指散落在环境中的废塑料制品对市容、景观的破坏。在我国城市、旅游区、水体中、公路和铁路两侧均不同程度存在的废塑料垃圾的视觉污染,这些废塑料散落在地面上,或随风挂在树枝上飘扬、或漂浮在水面,污染环境、传播疾病、给人们的视觉带来不良刺激,影响城市、风景点的整体美感。而且损害了我们国家和国民的形象

潜在危害是指废塑料制品进入自然环境后难以降解而带来的长期的深层次环境问题。塑料结构稳定,不易被天然微生物菌破坏,在自然环境中长期不分离。这就意味着废塑料垃圾如不加以回收,将在环境中变成污染物永久存在并不段累积。

影响工农业生产的发展废塑料制品混在土壤中不断累积,会影响农作物吸收养分和水分导致农作物减产废塑料随垃圾填埋不仅会占用大量土地,而且被占用的土地长期得不到恢复,影响土地的可持续利用。有的塑料的生活垃圾不适用于堆肥,要从垃圾中分拣出来废塑料,这样又增加了堆肥成本。漂浮在长江中的塑料制品给水源取用带来很大困难,造成泵抽空和堵塞,给工业生产和水电站造成巨大损失。

其中一塑料袋为例: 目前市面上用来包装食品的塑料袋的制造材料,一般都是聚乙烯和聚丙烯,而一次性塑料袋大多是聚氯乙烯和聚苯乙烯制成的再生塑料制品,对人体是有害的。其中有相当数量是利用垃圾站收购的废旧塑料再生材料,且未经消毒,很可能含有大量病菌。有的生产厂家在加工一次性塑料袋的过程中还会加入一些有毒的稳定剂,这类塑料袋是绝对不能用于包装食品的。如果用这类塑料袋盛装含油类食品及高温食物,塑料中的有害成分就会溶解到食品中,危害人们的身体健康。

目前,市面上的塑料袋可分为两种:即无毒塑料袋和有毒塑料袋。无毒塑料袋是用聚乙烯、聚丙烯和密胺等原料制成的,可以用来包装食品;有毒塑料袋如聚氯乙烯(PVC)制成的塑料袋有毒,不能做食品的包装袋使用。现在,人们在市场上、马路边上购买熟食品用的大多是经营者为了压缩成本而购买的最便宜的一次性塑料袋,它们没有经过消毒,且表面充满大量的滑石粉,经常使用这种塑料制品包装直接入口的熟食品、特别是热的食物,虽然不会引起突发性病变,但会使人体健康状况下降,等于慢性食物“中毒”。据健康专家介绍,一次性塑料袋含有各种病毒、细菌和致癌物,其中,滑石粉吃多了会形成钙沉积,造成人体器官结石;在一次性塑料袋中装入滚烫食品极其容易引发铅中毒。再生塑料袋还含有严重超标的大量肉眼所无法看到的病菌和致癌物。健康专家表示,一次性塑料制品含有多种对人体有害毒素,高温下可产生多达16种有毒物质,能渗入到食物中,不仅会损害人的肝脏和肾脏,还有可能干扰人的内分泌,造成生育能力下降以及男性雌化现象等。另外,遗弃的塑料制品如粘有污染物,会成为蚊蝇和细菌生存、繁殖的温床,危害人体健康。健康专家强调,为了自己的身体健康,也为了保护好环境,我们应尽量减少一次性塑料餐具的使用,不要过度依赖塑料袋,可用菜篮子或布袋,也可以使用自备的不锈钢或塑胶饭盒,这样做既卫生、又环保,还不会对身体健康造成危害。

研究开发生物降解塑料成为当今世界各国塑料加工业的研究热点。目标是开发出一种能在微生物环境中降解,完全进入生态循环的塑料。减少地膜、包装废弃物对环境的污染。同时,这种塑料的生产成本较低,具有相应的经济性,在使用后就可与普通生物垃圾一起堆肥,而不必花费很大代价进行收集、分类和再生处理。

开发塑料制品新的应用领域,拓展塑料制品的应用范围是塑料制品业的发展方向。随着塑料原料及加工工艺的发展,塑料已在包装领域中占据重要地位,目前塑料包装已成为塑料制品中应用最多的品种。

科技对人类的影响

科技对人类的影响 侦查国保一区 石海波 200920310039 马克思认为,技术是现实生产力,是改造世界的物质力量。科技的状况决定人们利用自然的能力,科技进步促进人类的文化进步,推动历史的前进。在人类的发展历程中,科学技术占据了不可替代的重要地位。古代科技的发明,将人类由野蛮带入文明;近代自然科学的诞生和产业技术革命的兴起,使人类从农业文明社会迈入工业文明社会。随着现代科技的迅猛发展,科学技术在世界经济社会发展中所占的比重越来越大,所起的主导和决定作用也越来越显著。 科学技术的发展使人类不断获得征服自然的新的力量和财富,享受到科技进步带来的种种好处;但也使人类从来没有像今天这样面临着科技的挑战,承担着与现代科技密切相关的令人不堪忍受的沉重的代价,如科学技术的发展,使人类消耗的物质大量增加,排放物增加,造成看环境污染;科学技术强大了军事和国防力量,潜在的战争隐患有可能给地球予毁灭性的破坏;科学技术的高速发展与法制建设的相对滞后,给犯罪分子带来新的犯罪手段和方法等。 一、科技对人类发展产生的积极影响 1、现代科学技术是生产力的新增长点 当今知识经济时代, 特别是随着现代科技革命的发展,现代科学技术发展的新趋势表现出科学技术化、技术科学化、科学技术一体化以及科技与经济社会发展一体化。科学技术可以渗透到新的劳动工具和劳动对象之中, 也可以提高劳动者的技能和科学文化素养, 还可以使生产过程的管理更加科学。最终, 科学技术通过物、人和科学管理的途径进入生产力系统, 并使科技含量成为生产力中的首要因素。 其最突出的表现就是,每一现代科学理论及其相关技术领域的突破,都会带动一批产业的发展。而且, 现代科学技术不只是在个别的科学理论上、个别的生产技术上获得了发展, 而是几乎各门科学技术领域都发生了深刻的变化, 出现了新的飞跃。从国际发展形势来看, 高新技术产业已经成为体现一个国家竞争力的重要先导产业和国民经济发展的新增长点。 2、提高了人们的物质和精神文化生活水平。

高分子材料在国民经济中的作用及发展趋势

高分子材料在国民经济中的作用及发展趋势 摘要:材料是现代文明进步的基石。自高分子材料的问世以来,其发展突飞猛进,已开发 出许多性能优异,应用范围广的高分子材料,已在信息、生命、工农业以及航空航天等方面应用广泛,使高分子材料对于人们的日常生活以及国民经济社会发展方面都起到了非常重要的作用。本文主要介绍了高分子材料的分类,以及其在国民经济和人们生活中的作用和广泛的应用,同时也分析了高分子材料在未来的发展趋势。 关键词:功能高分子材料医用高分子材料离子交换树脂胶黏剂高分子光纤人造器官1.前言: 1.1 高分子材料的分类: 高分子材料,是指相对分子质量较大的化合物组成的材料。它是以高分子化合物为基体,再配以其它添加剂所构成的一类材料的总称。按其来源来分,可分为天然高分子材料和合成高分子材料。按性能和用途来分又可分为塑料、橡胶、纤维、胶黏剂、涂料,功能高分子材料及聚合物高分子材料。 1.2高分子材料的现状: 在这个科学技术迅猛发展的21世纪,人们对知识的不断探索以及对物质生活的高度要求,使得高分子材料的飞速发展。而高分子新材料的制备以及新应用领域的拓展,对国民经济又有重大的影响,以成为社会进步和发展的重要技术之一。 高分子材料已经普遍应用于生产,生活,科技等各个领域,我们日常生活所用所穿都离不开它,尤其是塑料,橡胶,纤维这三大高分子材料,已广泛存在我们周围。同时在航空、航天、交通运输、生物医学等方面已有突出的贡献,但是有些高分子材料在性能和使用期限,以及环保方面还有待提高,所以开发出新的高性能,高功能以及绿色化的高分子材料已成为现在高分子行业的迫切要求。 2.高分子材料在国民经济中的作用 2.1 通用高分子材料的作用 2.1.1 塑料: 塑料是一类重要的高分子材料,也是现如今人们日常生活不可缺少的一类物质,它具有质轻,绝缘性能好,耐腐蚀新能强,容易加工成型等优点,在某些方面甚至是木材和金属所不及的,可以说,没有塑料,我们今天的生活将会是另一番局面。 应用最广的当属聚乙烯,它具有突出的电绝缘性和节电性能,优良的化学稳定性以及无毒性,广泛的应用于食品包装中,主要制作板材、管、薄膜、贮槽和容器,用于工业、农业及日常生活用品。具有优良的机械性能的聚丙烯则应用于日用器皿,娱乐体育用品,玩具汽车部件,家电零件。聚苯乙烯则以其电绝缘性能好,刚性大,印刷性能好的特点广泛应用于工业装饰,各种仪器仪表零件、灯罩、电子工业等。氟塑料的用途产量最广,在国防、电子、航空航天、化工、冷藏、机械方面占有重要地位。 2.1.2 橡胶: 橡胶是有机高分子弹性体。天然橡胶具有优良的综合性能,大量用于制造各种轮胎及工业橡胶制品,如胶管胶带、胶鞋雨衣及医疗卫生用品等。合成橡胶因其高弹性和耐低温性能好,耐磨性,主要用于制造轮胎,胶鞋等耐磨制品,医疗制品,运动器材等。 2.1.3 纤维:

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

高分子化学复习题——简答题

第一章绪论 1、与低分子化合物相比,高分子化合物有什么特点能否用蒸馏的方法提纯高分子化合物 答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~ 106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成 聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等 的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高 分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质。 不能。由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化 温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸 馏的方法提纯高分子化合物。 2、何谓相对分子质量的多分散性如何表示聚合物相对分子质量的多分散性 答: 聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值. 这种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用 重均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n. 分子量均一的聚合物其D为越大则聚合物相对分子质量的多分散程度越大. 相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量 为横坐标, 以所含各种分子的质量或数量百分数为纵坐标, 即得相对分子质量的质量或数 量分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能. 聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定. 3、各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶; 生物高分子:蛋白质、核酸 (2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯 (3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶 化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化 剂 4、什么叫热塑性塑料什么叫热固性塑料试各举两例说明。 热塑性塑料是指可反复进行加热软化或熔化而再成型加工的塑料,其一般由线型或支链型聚合物作为基材。如以PE、PP、PVC,PS和PMMA等聚合物为基材的塑料。 热固性塑料是指只能进行一次成型加工的塑料,其一般由具有反应活性的低聚物作基材,在成型加工过程中加固化剂经交联而变为体型交联聚合物。一次成型后加热不能再软化或熔化,因而不能再进行成型加工。其基材为环氧树脂、酚醛树脂、不饱和聚酯树脂和脲醛树脂等。 5、高分子链的结构形状有几种它们的物理、化学性质有何不同 答: 高分子链的形状主要有直线形、支链形和网状体形三种,其次有星形、梳形、梯形等(它 们可以视为支链或体形的特例). 直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支 链的存在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低, 而溶解性能更好, 其中对结晶度的影响最为显著. 网状体形高分子分子链间形成化学键, 其硬度、力学强度大为提高. 其中交联程度低的具有 韧性和弹性, 加热可软化但不熔融, 在溶剂中可溶胀但不溶解. 交联程度高的, 加热不软化, 在溶剂中不溶解. 第二章逐步聚合反应

科学技术对人类社会影响

科学技术对人类社会影响 探讨科学技术对人类社会影响 摘要从20世纪初,特别是20世纪中叶以来,科学技术日益暴露出它对社会的负面影响。这种负面影响尖锐反映了工业文明的危机,人和自然、物质和精神的深层矛盾;同时,在西方世界形成了反科学技术的思潮。因此,如何正确地认识和评价科学技术对人类社会影响日显重要。关键词科学技术社会 什么是科学技术 “科学”一词的英文是Science,它源于拉丁语Scientia,意思是学问、知识,科学是一种反映客观事实和规律的系统化、理论化的知识;“技术”的英文是Technology,它源于希腊文Τεχγη,是指经过实践获得的经验、技能和技艺,按照狭义的理解,习惯上技术指以协调人和自然关系为主旨的生产技术。人类为了生存和发展,必须认识自然和改造自然,从自然获取生活资料。科学技术就是人类认识自然、改造自然的成果和手段。整个人类文明史实质上就是人利用科学技术认

识和改造自然,从自然的束缚下解放出来,不断提高自己的物质生活和精神生活水平的历史。 当代社会,科学技术对社会经济、文化、生活方式的影响主体是积极的、正面的。但在现实社会中,科学技术也对人们的日常生活造成了一定的消极的、负面的影响。 科学技术对人类社会的积极影响 从近代文艺复兴以来,人类共经历了三次科技革命,每一次都使生产力发生巨大的飞跃,对世界经济发展和生产、生活方式的变革产生了极其深刻的影响。第一次科技革命,以纺织技术的改进为开端,以蒸汽动力技术达到实用为标志,形成了一个以机器技术为主导技术的技术体系。使得人类社会面貌发生了根本变化,从传统的农业革命向近代工业社会跃进,极大地提高了社会生产力。第二次科技革命以电气化技术为主导技术,推动了工业的电气化进程,使社会生产力又有了一次新的飞跃。第三次科技革命和产业革命以原子能、电子计算机和空间技术极其产业为标志。在第三次科技革命的推动下,二战后出现了一个人类历史上罕见的生产大发展时期。 从近代以来,特别是现代,科学技术迅速地、大规模地转化

高分子材料的发展历程及未来趋势

1 什么是高分子材料 高分子材料是由相对分子质量较高的化合物构成的材料。我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。一般称在生活中大量采用的,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。 2 高分子材料的发展历程 树枝,兽皮,稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 2.1从天然树脂到合成树脂 一些树木的分泌物常会形成树脂,不过琥珀却是树脂的化石,虫胶虽然也被看成树脂,但却是紫胶虫分泌在树上的沉积物。由虫胶制成的虫胶漆,最初只用作木材的防腐剂,但随着电机的发明又成为最早使用的绝缘漆。然而进入20世纪后,天然产物已无法满足电气化的需要,促使人们不得不寻找新的廉价代用品。 以煤焦油为原粒的酚醛树脂,在1940年以前一直居各种合成树脂产量之首,每年达20多万吨,但此后随着石油化工的发展,聚合型的合成树脂如:聚乙烯、聚丙烯、聚氯乙烯以及聚苯乙烯的产量也不断扩大,随着众多年产这类产品10万吨以上大型厂的建立,它们已成当今产量最多的四类合成树脂。合成树脂再加上添加剂,通过各种成型方法即得到塑料制品,到今天塑料的品种有几十种,世界年产量在1.2亿吨左右,我国也在500万吨以上,它们已经成为生产、生活及国防建设的基础材料。 2.2从天然纤维到合成纤维

人类使用棉、毛、丝、麻等天然纤维的历史已经有几千年,但由于全球人口的不断增加和对纺织品质量的更高要求,从19世纪起,人们就为寻求新的纺织品原料而努力。 1846年制成硝化纤维;1857年制成铜氨纤维;1865年制成醋酸纤维;1891年制成粘胶纤维。由于粘胶纤维的原料是来源丰富的木材浆粕、棉短绒及棉纱下脚料等,再加上制成的纤维性能好,以至它的产量到20世纪50年代已经超过羊毛。 尽管上述几种称为“纤维素纤维”或“人造纤维”的出现是继纺织机械发明之后的又一次纺织革命,但它仍意味着人只是用化学方法,对天然植物纤维的再加工,而通过化学方法,制取全合成的、性能更为优异的纺织纤维阶段,才迎来了第三次纺织革命。 1928年32岁的美国化学家卡罗塞斯经过6年后的研究,终于在合成的数百种产品中,找到有希望成为优良纺织纤维的聚酰胺-66(即尼龙Nylon)。 1938年德国研制出聚酰胺-6,即聚己内酰胺;1941年英国制出了聚对苯二甲酸乙二醇酯纤维,商品名Dacron、“的确凉”、或涤纶;1939年德国人又研制出聚丙烯腈纤维,但到1949年才在美国投产,商品名Orlon,我国称腈纶,此又出现多种新型合成纤维,满足了多种需要,但从应用范围和技术成熟等方面看,仍以上述几种为主,其产量约占总量的90%。 2.3从天然橡胶到合成橡胶 自然界中虽然含有橡胶的植物很多,但能大量采胶的主要是生长在热带雨区的巴西橡胶树。从树中流出的胶乳,经过凝胶等工艺制成的生橡胶,最初只用于制造一些防水织物、手套、水壶等,但它受温度的影响很大,热时变粘,冷时变硬、变脆,因而用途很少。 1839年美国一家小型橡胶厂的厂主古德易(Goodyear)经过反复摸索,发现生橡胶与硫黄混合加热后能成为一种弹性好、不发粘的弹性体,这一发现推进

高分子物理知识点总结与习题

聚合物的结构(计算题:均方末端距与结晶度) 1.简述聚合物的层次结构。 答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。一级结构包括化学组成、结构单元链接方式、构型、支化与交联。二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 构型:是指分子中由化学键所固定的原子在空间的几何排列。 (要改变构型,必须经过化学键的断裂和重组。) 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成 间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。 构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位 高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,

可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。 这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。 自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度)

科学技术对现代人类生活方式的影响

科学技术对现代人类生活方式的影响 人类生活方式的历史考察表明,人们怎样生活,人的生活方式和行为特征,是由生产力和科学技术发展决定的。当生产方式和科学技术发展到一个新水平时,一种生活方式发展成为另一种新的生活方式,一种社会结构向更高级的生活结构转化。生活方式的这种历史性发展,呈现如下的总特征: 1、人类劳动工具或劳动技术,从使用石器—犁耕—机器系统—电脑的发展,生产工具从简单到复杂再到简化的发展,使人们从艰苦的体力劳动中解放出来,不断克服异化劳动的性质。信息技术的发展,智能机器人的应用,所有艰苦繁重的劳动将由机器人完成,劳动强度大大减弱,劳动时间大大缩短,未来,劳动最终成为快乐的事情。 2、人类社会和物质生活,总的方面是从简单到复杂再到简化的发展,越来越进步。衣食住行用各方面的,质量越来越高,越来越符合人的需要,越来越舒适和方便,但是,随着科学技术发展,人的生活节奏加速,突然的变化增多,人们的生活面临更多的选择和挑战。 3、人类修复创伤,抵御死亡的能力,随着医学的发展,不断提高。人类对自身以及对人与自然关系的认识不断深化,医疗条件不断改善,人类生命质量和寿命不断提高。 4、人类的精神生活、科学、文化、信仰、审美、娱乐、旅游等,越来越丰富和多样化。精神生活和物质生活比较,精神生活越来越重要,在人类生活中所占的分量越来越大。在未来的网络经济时代,通过信息高速公路,人类活动的半径超过工业社会的10倍甚至1万倍,甚至可以说,人类的交往差不多已经不受时间的限制。 科学技术的发展,使得一系列高新技术应允长生,它们具有科学与技术融合的特点,因而被称为“高科技”,它们对生活方式的影响是深刻、普遍和全面的。高科技发展到引起人的生活活动和行为方式的变化,出现新的生活方式。 (1) (2)信息技术的飞跃 a、电子技术和信息技术的发展:人的“数字化生存” 信息DNA正在迅速取代工业经济时代的原子,成为人类生活的交换物。各种各类的数字化产品,进入人类生活,成为日常生活用品,改变我们的生活方式,数字化生存成为一种新的生活方式。奥运期间北京还投入了500辆新能源汽车服务赛场内外,在奥运史上首次实现了奥林匹克中心区域交通“零排放”。 b、网络技术,信息高速公路和因特网的发展:人的“网络生存” 互联网突破了空间上的限制使世界更紧密的人们的工作和生活方式发生了很大变化人们可在家中或任何一个地方完成工作不仅提高了效率还增加了乐趣 互联网大大方便了人们的日常生活,生活更加丰富多彩,社会交往方式也发

高分子材料的历史与发展趋势(精)

高分子材料的历史与发展趋势 材料、能源、信息是当代科学技术的三大支柱。材料科学是当今世界的带头学科之一。材料又是一切技术发展的物质基础。人类的生活和社会的发展总是离不开材料,而新材料的出现又推动生活和社会的发展。人们使用及制造材料虽已有几千年的历史,但材料成为一门科学——材料科学,仅有30多年的时间,此为一门新兴学科,是一门集众多基础学科与工程应用学科相互交叉、渗透、融合的综合学科,因而对于材料科学的研究,具有深远的意义。高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。目前高分子材料在尖端技术、国防建设和国民经济各个领域得到广泛应用,已成为现代社会生活中衣、食、住、行、用各个方面所不可缺少的材料。高分子材料由于原料来源丰富,制造方便,品种繁多,用途广泛,因此在材料领域中的地位日益突出,增长最快,产量相当于金属、木材和水泥的总和。高分子材料不仅为工农业生产及人们的日常生活提供不可缺少的材料,而且为发展高新技术提供更多更有效的高性能结构材料、高功能材料以及满足各种特殊用途的专用材料。 高分子科学是研究高分子化合物的合成、改性、高分子及其聚集态的结构、性能、聚合物的成型加工等内容的一门综合性学科。它由高分子化学、高分子物理学、高分子工程学三个分支学科领域所组成,其主要研究目标是为人类获取高分子新材料提供理论依据和制备工艺。高分子科学具有广阔的开发新材料的背景,二十世纪三十年代首先由有机化学派生出高分子化学,当时恰好处在世界经济飞跃发展的氛围中,对新材料的需求日益迫切,因此高分子化学进而又融合了物理化学、物理学、数学、工程学、医学等有关学科的内容,逐渐形成了高分子科学这门独立的综合性学科,现在的高分子科学已经形成了高分子化学、高分子物理、高分子工程三个分支领域相互交融、相互促进的整体学科。 高分子材料的发展大致经历了三个时期,即:天然高分子的利用与加工,天然高分子的改性和合成,高分子的工业生产(高分子科学的建立。

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

高分子化学复习题——填空题精选

一、填空题 1. 聚合物有两个分散性,是相对分子质量多分散性和聚合度多分散性。 2. 聚合反应按机理来分逐步聚合和连锁聚合两大类,如按单体与聚合物组成差别分为加聚反应、缩聚反应和开环反应。 3.阻聚和缓聚反应的本质:链自由基向阻聚剂和缓聚剂的链转移反应,可能生成没有引发活性的中性分子,也可能是活性低的新自由基。两者的区别是程度上的不同,前者使聚合反应完全终止,后者只是使聚合反应速度降低。 4. 在自由基聚合中,具有能同时获得高聚合和高相对分子质量的实施方法有乳液聚合 5.乳液聚合的特点是可以同时提高相对分子质量和反应速率,原因是:乳化剂浓度对聚合反应速率和聚合度的影响是一致的,对乳化程度的强化而可以同时达到较高的聚合速率和聚合度的目的。 6.合成高聚物的几种聚合方法中,能获得最窄的相对分子质量分布的是阴离子聚合 7. 线形缩聚的核心问题是相对分子质量的影响因素和控制;体形缩聚的关键问题是凝胶点的控制。所有缩聚反应共有的特征是逐步特性 8.在自由基聚合和缩聚反应中,分别用单体的转化率和反应程度来表征聚合反应进行的深度。 9. 线形缩聚相对分子质量的控制手段有加入单官能团的单体,进行端基封锁和控制反应官能团加入的当量比。 10.所谓的配位聚合是指采用的引发剂是金属有机化合物与过渡化合物的络合体系,单体在聚合反应中通过活性中心进行配位而插入活性中心离子与反离子之间,最后完成聚合过程。所谓的定向聚合是指指能够生成立构规整性聚合物为主(>=75%)的聚合反应。 11.自由基聚合的特征慢引发、快增长、速终止。阳离子的聚合特征是快引发、快增长、难终止、易转移。阴离子的聚合特征是快引发、慢增长、易转移、无终止。 12.自由基聚合的实施方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合。逐步聚合的实施方法溶液聚合、界面聚合、熔融聚合。 13.用动力学推导共聚组成方程时做了五个假定,分别是等活性理论、稳态、忽略链转移、双基终止、无解聚反应和无前末端效应。 14.推导微观聚合动力学方程,作了4个基本假定是:链转移反应无影响、等活性理论、聚合度很大、稳态假设。 15.自由基聚合规律是转化率随时间而增高,延长反应时间可以提高转化率。缩聚反应规律是转化率随时间无关,延长反应时间是为了提高聚合度。 16. 在聚合过程中,加入正十二硫醇的目的是调节相对分子质量,原理是发生链转移反应 17. 悬浮聚合的基本配方是水、单体、分散剂、油溶性引发剂,影响颗粒形态的两种重要因素是分散剂和搅拌。乳液聚合的配方是单体、水、水溶性引发剂、水溶性乳化剂 18.Ziegler-Natta引发剂的主引发剂是IVB~VIIIB族过渡金属化合物,共引发剂是IA~IIIA 族金属有机化合物。 19. 三大合成材料是塑料、纤维、橡胶。 20. 非晶高聚物随温度变化而出现的三种力学状态是玻璃态、高弹态、粘流态。 21. 影响聚合物反应活性的化学因素主要有极性效应和共轭效应。 22. 两种单体的Q、e值越接近越易发理想共聚聚合,相差越远易发生交替共聚聚合。 23.熔点是晶态聚合物的热转变温度,而玻璃化温度则主要是非晶态聚合物的热转变温度。 24. 室温下,橡胶处于高弹态,粘流温度为其使用上限温度,玻璃化温度为其使用下限温度。 25.高分子,又称聚合物,一个大分子往往由许多简单的结构单元通过共价键重复键接而成。 26.玻璃化温度和熔点是评价聚合物耐热性的重要指标。

科技对我们生活影响

科技的发展对我们生活的影响 科技发展与我们的社会生活息息相关。我们的生活每天都在发生变化,而且越变越好,这是由于科技融入了生活,丰富了生活,给我们的生活带来了方便,带来了舒适,没有科技的发展,也就没有我们今天幸福的生活。 我还记得我妈曾经对我说过他们小时候,从小就帮家里人干活,不敢想象能有现在这样的生活,我妈说从前只想着只要不再推磨,每天能吃饱穿暖,那就感天谢地了,真的是不敢想象现在翻天覆地的生活。 以前人们穿的衣服,质量一般,面料单一,如今我们衣服,品种多样,质量也很好,让我们的生活变的更加的丰富多彩了。以前我们的食物只能是离家很近的的地方生产的,但是冷藏保鲜技术的发展,使我们可以吃到南方的蔬菜也能吃到北方的水果,还能品尝到国外的很多美味食品。以前我们出门只有,自行车,汽车,火车,现在我们有地铁,轻轨,磁悬浮列车。这为我们的出行节约了不少时间,使得我们的时间得到了高效的利用,让我们不必再因为交通而花费很多的时间。以前小孩们玩的游戏是跳格子、打陀螺、弹玻璃珠、丢沙包等,现在的孩子们玩手机、电脑、电玩等游戏。以前人们住的都是平房,现在到处是高楼林立。总之科技时时刻刻改变着我们的生活。 科技不单单改变了我们的衣、食、住、行,更是改变了我们的各个方面,改变了我们农业的发展,医疗技术的革新,通讯技术的提高,使得我们的生活更加的方便、快捷、幸福。 科技对农业的影响非常之大,以前播种、撒种、收割都是人工作业,效率低,成本高,产量也提不上去,但是由于科技的迅速发展,现代农业全部都是机械化操作,免去了大量的人力物力,也大大提高了生产的效率,产量也是翻了几番;随着生物技术的提高,现在小麦、水稻的品种要比以前的提高产量好几成,成活率也大大的提高;以前农民浇水都是肩挑手提的,既费力又费时,并且还浪费水,效率也不高,现在随着滴灌技术的应用,使得农民种粮更是如虎添翼,也省去了不少的麻烦。可以说科技对农业的发展起到了至关重要的作用,如果没有科技的发展,很难想象中国怎样用世界百分之七的耕地来养活世界百分之二十的人。 科技使医疗技术迅猛发展,医疗环境也得到了很好的改善,挽救了大量生命垂危的病人,人类的平均寿命也得到了提高,以前人们认为的绝症,现在都顺利

高分子材料发展史

高分子材料发展史 随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子材料是材料领域之中的后起之秀,是在人们长期的生产实践和科学实验的基础上逐渐发展起来的。几千年前,人们就开始使用棉、麻、丝、毛等天然高分子作丝织物材料。有些加工方法还改变了天然高分子的化学组成,如:天然橡胶硫化,皮革鞣制,天然纤维制成人造丝等。但由于当时受科学技术发展的限制,直到19世纪中叶,人们仍未能探究到高分子材料的本质。高分子材料科学的发展萌芽于19世纪后期和20世纪初。当时天然橡胶由异戊二烯,纤维素和淀粉由葡萄糖残体,蛋白质由氨基酸组成的确立,使高分子的长链概念获得了公认,孕育了高分子的思想。1872年德国化学家拜耳(A.Bayer)首先发现苯酚与甲醛在酸性条件下加热时能迅速结成红褐色硬块或粘稠物,但因它们无法用经典方法纯化而停止实验。20世纪以后,苯酚已经能从煤焦油中大量获得,甲醛也作为防腐剂大量生产,因此二者的反应产物更加引人关注。1907年贝克兰和他的助手不仅制出了绝缘漆,而且还制出了真正的合成可塑性材料—Bakelite,它就是人们熟知的“电木”、“胶木”或酚醛树脂。Bakelite一经问世, 很快厂商发现,它不但可以制造多种电绝缘品,而且还能制日用品,于是一时间把贝克兰的发 明誉为20世纪的“炼金术”。20世纪30~40年代是高分子材料科学的创立时期。新的聚合物单体不断出现,具有工业化价值的高效催化聚合方法不断产生,加工方法及结构性能不断改善。美国化学家卡罗塞斯(W.H.Carothers)于1934年合成了优良纺织纤维的聚酰胺-66,尼龙(Nylon)是它在1939年投产时公司使用的商品名。这一成功不仅是合成纤维的第一次重大

高分子化学复习笔记

第一章绪论 1.1 高分子的基本概念、特点 单体:能通过相互反应生成高分子的化合物。 高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。相对分子质量低于1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。相对分子质量大于1 000 000的称为超高相对分子质量聚合物。 主链:构成高分子骨架结构,以化学键结合的原子集合。 侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。支链可以较小,称为侧基;也可以较大,称为侧链。 聚合反应:由低分子单体合成聚合物的反应称做~. 重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。 结构单元:构成高分子链并决定高分子性质的最小结构单位称为~ 单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 聚合反应(Polymerization):由低分子单体合成聚合物的反应。 线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子. 热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)等均属于此类。 热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。酚醛树脂、

科学技术对人类生活影响

科学技术对人类生活影响 从20世纪初,特别是20世纪中叶以来,科学技术日益暴露出它对生活的负面影响。这种负面影响尖锐反映了工业文明的危机,人和自然、物质和精神的深层矛盾;同时,在西方世界形成了反科学技术的思潮。因此,如何正确地认识和评价科学技术对人类生活影响日显重要。 科学技术对人类生活的积极影响 从近代文艺复兴以来,人类共经历了三次科技革命,每一次都使生产力发生巨大的飞跃,对世界经济发展和生产、生活方式的变革产生了极其深刻的影响。第一次科技革命,以纺织技术的改进为开端,以蒸汽动力技术达到实用为标志,形成了一个以机器技术为主导技术的技术体系。使得人类生活面貌发生了根本变化,从传统的农业革命向近代工业生活跃进,极大地提高了生活生产力。第二次科技革命以电气化技术为主导技术,推动了工业的电气化进程,使生活生产力又有了一次新的飞跃。第三次科技革命和产业革命以原子能、电子计算机和空间技术极其产业为标志。在第三次科技革命的推动下,二战后出现了一个人类历史上罕见的生产大发展时期。 从近代以来,特别是现代,科学技术迅速地、大规模地转化为生产力,给人类生活带来空前的繁荣。一些学者竭力赞美科学技术,认为科技进步毫无疑义带来了幸福美好的生活,甚至消除了人世间的一切不平和痛苦。培根曾说:“在所有的能为人类造福的财富中,我发觉,再没有什么能比改善人类生活的新技术、新贡献和新发明更加伟大的了。” 科学技术对人类生活的负面影响 科学技术的发展,使我们的生活发生了很大的变化。不过这些变化不都是朝着好方向发展的。 一、环境污染。随着科学技术的迅猛发展,现代工业生产的急剧增长,环境污染日益显出全球性,对整个人类的生存构成了威胁,温室效应、臭氧层空洞、酸雨、

高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。 说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。 然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞”的塑料材料。再比如,橡胶的改性,早在11世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。 从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

相关主题
文本预览
相关文档 最新文档