油脂氧化与抗氧化
- 格式:doc
- 大小:116.50 KB
- 文档页数:13
食用油的氧化过程及防止方法食用油在长时间暴露于空气、光线和热量的情况下,会发生氧化反应,导致油品质量下降,产生有害物质。
本文将介绍食用油的氧化过程以及一些常用的防止方法。
一、食用油氧化的过程食用油的氧化是指在氧气的作用下,食用油中的脂肪酸和其他成分发生化学反应,产生反应产物。
食用油氧化的过程可以分为以下几个阶段:1. 初期氧化阶段:当食用油与空气接触后,氧分子开始逐渐进入油中,与油中的不饱和脂肪酸结合形成过氧化物。
这个阶段一般不易被察觉到。
2. 加速氧化阶段:初期氧化物的积累会加速油脂的氧化反应。
此时,食用油的颜色开始变暗,产生酸味,并且油的抗氧化能力逐渐减弱。
3. 末期氧化阶段:食用油的氧化反应进一步加剧,产生了更多的氧化物,如自由基、醛类物质等。
此时,食用油的质量已经明显下降,出现了明显的变质迹象,如恶臭和腐败味。
二、食用油氧化的影响和危害食用油氧化反应会引起食用油中脂肪酸、维生素、矿物质等营养成分的破坏,产生有害物质,对人体健康造成危害。
以下是食用油氧化的主要影响和危害:1. 营养价值降低:食用油中的不饱和脂肪酸和维生素等营养成分会在氧化过程中被破坏,使食用油的营养价值降低。
2. 产生有害物质:食用油在氧化过程中会产生多种有害物质,如自由基、醛类物质等,对人体健康有害。
3. 引发疾病:长期摄入氧化的食用油可能增加罹患心血管病、癌症等慢性疾病的风险。
三、食用油氧化的防止方法为了延长食用油的保质期,保持其良好的品质和营养价值,我们可以采取以下几种方法来防止食用油的氧化:1. 避免暴露于光线和高温:将食用油存放在阴凉、干燥的地方,远离阳光直射和热源,可以减缓油的氧化速度。
2. 尽量减少空气接触:购买包装完好的油品,并在使用过程中及时封好瓶盖,避免空气进入。
3. 选择适合的储存容器:采用不透明、不易渗漏氧气的容器储存食用油,如不锈钢、陶瓷或玻璃瓶。
4. 注意烹饪温度:烹饪食用油时,应注意避免高温过热,尽量控制在适宜的烹饪温度范围内。
第三节 油脂自动氧化的机制及其控制油脂氧化是油脂及油基食品败坏的主要原因之一。
油脂在食品加工和贮藏期间,因空气中的氧气、光照、微生物、酶等的作用,产生令人不愉快的气味,苦涩味和一些有毒性的化合物,这些统称为酸败。
但有时油脂的适度氧化,对于油炸食品香气的形成是必需的。
油脂氧化的初级产物是氢过氧化物,其形成途径有自动氧化、光敏氧化和酶促氧化三种。
氢过氧化物不稳定,易进一步发生分解和聚合。
一、油脂氧化的类型1、自动氧化不饱和油脂和不饱和脂肪酸可被空气中的氧氧化,这种氧化称为自动氧化。
氧化产物进一步分解成低级脂肪酸、醛酮等恶臭物质,使油脂发生酸败。
其大致过程是不饱和油脂和脂肪酸先形成游离基,再经过氧化作用生产过氧化物游离基,后者与另外的油脂或脂肪酸作用生成氢过氧化物和新的脂质游离基,新的脂质游离基又可参与上述过程,如此循环形成连锁反应。
示意如下:油脂的自动氧化是油脂酸败的最主要的原因,它对于油脂和含油食品质量的控制极为重要。
2、油脂的光敏氧化不饱和油脂和不饱和脂肪酸可因光而发生光敏氧化。
其速度比自动氧化的速度快得多(约高103倍)。
油脂的光敏氧化中不形成初始游离基(R .),而是通过直接加成,形成氢过氧化物。
一个双键可产生两种氢过氧化物,生成的氢过氧化物继续分解产生醛、酮及低级脂肪酸等。
有些次级过氧化物如C5--C9的氢过氧化烯醛有强毒性,可破坏一些酶的催化能力,危害性极大。
3、酶促氧化脂肪在酶参与下发生的氧化反应,称为酶促氧化。
油脂在酶的作用下氧化产生的中间产物也是一些氢过氧化物。
以上各种途径生成的氢过氧化物均不稳定,当体系中的浓度增至一定程度时,就开始分解。
可能发生的反应之一是氢过氧化物单分子分解为一个烷氧基和一RH R . ROOH 天然油脂或脂肪酸 油脂游离基 过氧化物游离基 氢过氧化物 R . + 新生的脂质游离基个羟基游离基,烷氧基游离基的进一步反应生成醛、醇或酮等。
醛、醇或酮等这些小分子具有令人不愉快的气味即哈喇味,导致油脂酸败。
油脂在贮藏与加工过程中的氧化反应及其控制措施
油脂在贮藏与加工过程中容易发生氧化反应,导致食品品质下降,产生异味、色泽变化和营养成分的损失。
以下是油脂氧化反应及其控制措施的一些例子:
1. 脂肪酸氧化:油脂中的不饱和脂肪酸容易被氧化,产生过氧化脂质。
过氧化脂质会引起油脂的酸败,导致异味和不良口感。
控制措施包括低温贮藏、添加自由基清除剂(如BHT、BHA)和使用抗氧化剂(如维生素E、C)。
2. 自由基反应:油脂中的不饱和脂肪酸会与自由基发生反应,形成自由基链反应,加速油脂的氧化。
控制措施包括添加抗氧化剂、减少暴露在高温和光照下的时间、使用惰性气氛贮藏等。
3. 过氧化反应:氧与油脂中的脂肪酸分子反应,形成过氧化物。
过氧化物不稳定,会进一步分解产生醛类化合物和酸类化合物,导致油脂发黄、产生异味。
控制措施包括密封贮藏、低温贮藏、加入合适的抗氧化剂。
4. 色泽变化:油脂氧化后会出现颜色变化,如从黄色到褐色。
这是由于氧化反应引起了色素的变化。
控制措施包括减少油脂暴露在空气中的时间、添加抗氧化剂等。
综上所述,在贮藏与加工过程中,控制油脂的氧化反应可以采取以下措施:低温贮藏、密封贮藏、添加抗氧化剂、减少暴露在高温和光照下的时间、使用惰性气氛贮藏等。
食用油与抗氧化剂的关系食用油是我们日常饮食中不可或缺的一部分,它为我们提供了能量和必需的脂肪酸。
然而,食用油中存在着一种叫做氧化的过程,这个过程会导致油脂的质量下降,甚至产生有害的物质。
为了延长食用油的保存期限和保持其营养成分,抗氧化剂被广泛添加到食用油中。
本文将探讨食用油与抗氧化剂之间的关系。
1. 食用油的氧化过程食用油中的脂肪酸在与氧气接触时会发生氧化反应。
这个过程会导致油脂中的营养成分、风味和色泽的变化。
氧化还会产生一些有害物质,如自由基和过氧化物。
这些物质对身体健康有不利影响,可能导致细胞损伤和炎症等问题。
2. 抗氧化剂的作用为了延缓食用油的氧化过程,抗氧化剂被添加到油中。
抗氧化剂可以与自由基等有害物质发生反应,阻止它们进一步蔓延。
同时,抗氧化剂还可以保护食用油中的营养成分,减少氧化对其造成的损失。
这样,食用油的质量和稳定性得以提高。
3. 常见的抗氧化剂在市场上,常见的抗氧化剂包括但不限于维生素E、维生素C、咖啡因和多酚化合物等。
这些物质具有良好的抗氧化性能,能有效延缓油脂的氧化速度。
同时,它们也是食物中重要的营养物质,对身体健康具有益处。
4. 抗氧化剂的添加量和安全性虽然抗氧化剂对食用油的保护作用不可忽视,但添加量的控制和安全性也是重要的考虑因素。
过量的抗氧化剂可能对人体健康造成负面影响。
因此,在食用油生产过程中需要精确控制抗氧化剂的添加量,以确保其在范围内的安全性。
5. 如何选择健康的食用油为了获得健康的饮食,选择适合自己的食用油至关重要。
在购买食用油时,我们可以关注以下几点:- 查看产品标签,了解是否添加了抗氧化剂以及种类和添加量;- 选择正规渠道购买,确保产品的质量和安全性;- 适量食用,避免过量摄入油脂。
结论食用油与抗氧化剂之间存在密切的关系。
抗氧化剂在延长食用油保存期限、保护营养成分以及减少有害物质生成等方面起着重要作用。
然而,抗氧化剂的添加量和安全性也需要注意。
在日常饮食中,我们应该选择适合自己的食用油,并注意适量摄入,以维持健康的生活方式。
简述油脂氧化的机理及影响因素一、引言油脂氧化是指油脂中的脂肪酸与氧气发生反应,产生臭味、变质、失去营养价值等不良后果的过程。
油脂在食品加工和储存过程中,常常会遭受氧化反应的影响,从而导致食品质量下降。
因此,研究油脂氧化机理及影响因素对于保障食品安全和提高食品质量至关重要。
二、油脂氧化的机理1.自由基反应自由基反应是油脂氧化的主要机理之一。
当油脂暴露在空气中时,其中的不饱和脂肪酸会与空气中的氧分子发生反应,产生自由基。
这些自由基进一步反应,形成更稳定的自由基,并与其他分子结合形成新的物质。
这个过程会不断进行下去,直到所有不饱和脂肪酸被消耗殆尽。
2.金属离子催化作用金属离子如铁、铜等可促进油脂氧化反应。
金属离子可以通过氧化还原反应产生自由基,同时也可以加速自由基的形成和反应,从而促进油脂氧化反应的进行。
3.光氧化作用油脂暴露在光线下时,其中的不饱和脂肪酸会与空气中的氧分子发生反应,这个过程称为光氧化作用。
这个过程会导致油脂中的营养物质丢失以及产生有害物质。
三、影响油脂氧化的因素1.温度温度是影响油脂氧化的最主要因素之一。
随着温度升高,油脂中的不饱和脂肪酸分子更容易与空气中的氧分子发生反应,从而导致油脂更快地变质。
2.水分水分也会影响油脂氧化。
当油脂中含有水分时,水分会促进自由基反应,并且使金属离子催化作用更加明显。
3.金属离子金属离子是促进油脂氧化反应的重要因素之一。
铁、铜等金属离子在油脂中存在时,会加速自由基的形成和反应,从而促进油脂氧化反应的进行。
4.光照油脂暴露在光线下时,其中的不饱和脂肪酸会与空气中的氧分子发生反应,这个过程称为光氧化作用。
这个过程会导致油脂中的营养物质丢失以及产生有害物质。
5.抗氧化剂抗氧化剂可以减缓油脂氧化反应。
抗氧化剂能够与自由基结合,从而阻止它们进一步反应,并保护油脂不被氧化。
四、结论综上所述,油脂氧化是食品加工和储存过程中常见的问题。
了解油脂氧化机理及影响因素对于提高食品质量、保障食品安全具有重要意义。
油脂的氧化稳定性与抗氧化剂王宪青余善鸣(哈尔滨商业大学食品工程学院,哈尔滨150076)刘妍妍(黑龙江八一农垦大学食品学院,密山158308)摘要论述了油脂的氧化稳定性与影响因素,介绍了国内外最新的研究进展,即油脂的氧化稳定度与脂肪酸组成以及生育酚浓度之间的量化关系。
并对几种天然抗氧化剂作了介绍。
关键词油脂氧化稳定性抗氧化剂前言油脂作为人们的必须食品和食品工业的主要原料之一,其氧化稳定性直接影响到油脂品质的好坏,而油脂的品质是与人们的健康和食品的质量息息相关的。
近年来,人们在油脂的氧化稳定性方面作出了不懈的努力,这包括在油脂本身的稳定性方面的研究和抗氧化剂的研究。
不同的油脂具有不同的脂肪酸组成和不同的抗氧化成分,成为影响油脂稳定性的重要因素。
传统的化学合成抗氧化剂如二丁基羟基甲苯(B H T)、丁基羟基茴香醚(BHA)、没食子酸丙酯(PG)和叔丁基对苯二酚(TBH Q)具有显著的抗氧化效果,并且在油脂中也得到了一定的应用,然而对于这些化学合成抗氧化剂的安全性却引起了人们严重的关注,不少国家已明文规定限制使用化学合成的抗氧化剂。
所以对天然抗氧化剂的研究与开发已成为当今关注的对象,一些天然抗氧化剂已经得到广泛的应用。
本文对国内外一些新的研究作一综述。
1油脂的氧化稳定性及测定油脂氧化稳定度(Oil Stability Index,OSI)是表征油脂自动氧化变质的灵敏度,即油脂抵御自动氧化的能力,反映了油脂的耐贮性。
OSI可以通过测量油脂的诱导期(Induction Period)来获得。
油脂的氧化初期是缓慢的,在这一过程中,从不饱和脂肪酸的自由基反应开始,生成油脂氧化的第一级产物-氢过氧化物。
诱导期后为氧化期,在这一阶段,生成第二级氧化产物-醇类和羧基化合物,并进一步分解为羧酸,此时的过氧化值、氧吸收和挥发性反应物显著增加,表明油脂开始劣变。
此时为测定诱导期的终点。
据T. A.Isbell等人报道,OSI测定时,将一定温度的热空气通入油样中,加速甘油脂肪酸酯的氧化,产生挥发性有机酸。
油脂的氧化机理及天然抗氧化物的简介穆同娜1,张 惠1,景全荣2(中国农业大学食品科学与营养工程学院,北京 100083)(中国农业机械化科学研究院,北京 100083)摘要:本文简要介绍了油脂主要的三种抗氧化方式自动氧化,光氧化和酶氧化的氧化机理,以及影响油脂氧化的主要因素。
并对高效无毒的天然抗氧化剂进行简要的分类介绍。
关键词:油脂; 氧化机理; 天然抗氧化剂Abstract: This paper introduces three main oxidant ways of foil: auto-oxidation, light-oxidation and enzyme-oxidation, discusses theirs oxidation mechanism and main factors affecting on oxidation of oil. Based upon assortmrnt of Antioxidant mechanism, this paper introduces briefly several kinds of natural antioxidant.Key words: oil; oxidation mechanism; natural antioxidant油脂是人类三大营养素之一,是很好的热能营养素,在人体内具有重要的生理功能。
而油脂氧化是影响油脂品质的一个重要因素。
油脂氧化所产生的产物会对食用油脂的风味、色泽以及组织都会产生不良的影响,以至于缩短货架期降低油脂的营养品质。
同时,油脂的脂质过氧化还会对膜、酶、蛋白质造成破坏,甚至可以导致老年化的很多疾病还可以致癌,严重危害人体健康。
油脂的氧化主要包括三种类型,分别是油脂的自动氧化,光氧化和酶氧化。
通过这主要的三种氧化方式先将油脂氧化生成氢过氧化物,氢过氧化物可以继续氧化(其他双键)生成二级氧化产物,可能聚合形成多聚物,可以脱水形成酮基酸酯,二级氧化产物也可分解生成一系列小分子化合物。
课程论文题目:油脂氧化与抗氧化学院(直属系):生物工程学院年级、专业:2011级食品工程学生姓名:李鹏飞学号:212011085231012 指导教师:王维香教授完成时间:2011年12月4日目录1 油脂的氧化的机理 (1)1.1油脂的自动氧化 (1)1.1.1 自动氧化 (1)1.1.2 自动氧化的特征 (1)1.1.3 自动氧化的过程 (1)1.2影响油脂氧化速率的因素 (5)1.3重要脂类氧化的测定方法 (7)1.3.1过氧化值 (7)1.3.2硫代巴比妥酸值(TBA) (7)1.3.3活性氧法(AOM) (7)1.3.4史卡尔(Schaal)温箱实验 (8)1.3.5 色谱法 (8)1.3.6感官评定 (8)2 脂类的抗氧化(ANTI-OXIDANT) (8)2.1脂类抗氧化机理 (8)2.2影响抗氧化剂抗氧化效果的因素 (9)2.3主要抗氧化剂 (9)2.4 抗氧化的增效作用 (12)2.5抗氧化剂的选择 (12)3体会 (13)脂类自动氧化与抗氧化摘要:食品在加工、储存以及精制过程中,脂类发生了复杂的化学变化,产生许多新的化合物,有的可改善食品品质,但有的则生成有害的物质,对食品的色泽、风味、营养价值产生不良影响。
脂类的有自动氧化,热氧化,酶促氧化等,本文以油脂的自动氧化的机理和实例解析为基础,探讨脂类的抗氧化工艺。
1油脂的氧化的机理1.1 油脂的自动氧化1.1.1 自动氧化自动氧化作用是脂类分子与氧分子之间的反应,是脂类氧化变质的主要原因。
脂类的自动氧化是一个自由基连锁反应,诱导期中启动自由基的诱发剂可能是脂氧酶、光氧化,但多数为过渡金属离子。
氧化酸败的过程通常可分为四个阶段。
油脂的诱导期是油脂氧化稳定性的标志,影响脂类氧化速度的因素很多,主要是抗氧化剂、金属及脂类本身的不饱和度,抗氧化剂的加入能延长脂类的诱导期。
1.1.2 自动氧化的特征大量证据表明,脂类的自动氧化是典型的游离基反应历程,凡是能干扰游离基反应的化学物质,都将具有明显的抗氧化作用,延缓氧化反应的速度;光和产生游离基的物质对反应起催化作用,氢过氧化物ROOH产率高;光引发氧化反应时量子产率超过1;纯底物时,有较长的诱导期。
植物油脂氧化及其氧化稳定性的研究植物油脂是一类重要的天然食用油脂,其广泛应用于食品加工、烹饪和调味等方面。
然而,由于植物油脂中存在着一定的不饱和脂肪酸,因此容易发生氧化反应,导致油脂品质下降和产生有害物质。
因此,研究植物油脂的氧化以及其氧化稳定性具有重要意义。
植物油脂氧化是指当油脂与氧气接触时,其中的不饱和脂肪酸发生氧化反应,产生过氧化物和自由基等有害物质。
这些有害物质会破坏油脂的营养价值,导致脂肪酸的降解和产生异味,同时还会产生对人体有害的物质,如氢氧化物和醛类化合物。
因此,探究植物油脂氧化的发生机制以及寻找有效的抗氧化剂对于保持油脂品质和食品安全具有重要意义。
研究发现,植物油脂中的抗氧化剂可以延缓其氧化反应。
常见的天然抗氧化剂包括维生素E、角鲨烯、类黄酮和多酚等。
这些抗氧化剂能够捕捉自由基,中和其活性,从而减少自由基引发的氧化反应。
此外,研究还发现一些天然植物提取物具有较好的抗氧化性质,如花青素、儿茶素和花生四烯醇等。
除了天然抗氧化剂外,还有一些化学合成的抗氧化剂被广泛应用于植物油脂的稳定性研究中,如BHT(叔丁基羟基苯)、BHA(对叔丁基羟基苯甲酸)和TBHQ(三丁基羟基氢化物)等。
这些化学合成的抗氧化剂具有较强的抗氧化性能,能够有效抑制油脂氧化反应的发生。
为了研究植物油脂的氧化稳定性,一般会采用各种物理化学方法进行定量分析,如过氧化值法、酸价法和铜盐法等。
通过这些方法可以测定植物油脂中的氧化产物含量,从而评估油脂的氧化程度。
总之,植物油脂氧化及其氧化稳定性的研究对于保持油脂的品质和食品安全具有重要意义。
通过探究氧化的发生机制以及寻找有效的抗氧化剂,可以有效减缓植物油脂的氧化反应,延长其保质期,从而保持油脂的品质和营养价值。
同时,还需要进一步研究探索新的抗氧化剂和开发创新的保鲜技术,以应对不同植物油脂形式的氧化问题。
油脂氧化osi油脂氧化(Oxidative Stability Index, OSI)是一种用于评估油脂抗氧化性能的指标。
在食品加工和储存中,油脂容易受到氧化的影响,从而导致食品品质下降甚至变质。
因此,对油脂的抗氧化性能进行评估和监测具有重要意义。
油脂氧化是指油脂中的脂肪酸与氧发生反应,产生过氧化物等氧化产物的过程。
氧化不仅会使油脂的口感、香气和色泽发生变化,还会导致有害物质的产生,对人体健康造成潜在威胁。
因此,了解油脂的氧化稳定性十分重要。
油脂的氧化稳定性可以通过测定其氧化指数来评估。
氧化指数是指油脂在特定条件下开始发生氧化反应所需的时间。
而油脂氧化指数(OSI)则是一种常用的评估油脂抗氧化性能的方法。
为了测定油脂的OSI,通常采用的是Rancimat法。
该方法通过将油脂样品加热至一定温度,然后以一定速率通入空气,通过测定样品中氧化产物的生成速率来计算OSI值。
OSI值越高,表示油脂的抗氧化性能越好。
油脂的氧化过程是一个复杂的化学反应过程。
在油脂中,主要存在的是不饱和脂肪酸,它们容易受到氧化的攻击。
氧化反应的过程中,自由基的生成是一个重要的步骤。
自由基是一种高度活跃的化学物质,它们会与油脂中的不饱和脂肪酸发生反应,产生过氧化物等氧化产物。
为了延缓油脂的氧化过程,可以采取一系列的措施。
首先,要尽量减少油脂与空气的接触,避免氧化反应的发生。
其次,可以添加抗氧化剂来抑制氧化反应的进行。
常见的抗氧化剂有维生素E、维生素C等。
此外,还可以通过调节油脂的酸度、水分含量等来提高其氧化稳定性。
油脂氧化对食品的品质和口感有着重要影响。
当油脂发生氧化反应时,会产生一系列的挥发性物质和有机酸,导致食品变质。
此外,氧化反应还会导致食品中的营养物质的损失,进一步降低食品的营养价值。
对于食品加工和储存过程中的油脂选择,了解其氧化稳定性是非常重要的。
通过测定油脂的OSI值,可以评估其抗氧化性能,为食品加工和储存提供科学依据。
油脂的氧化与抗氧化技术油脂的氧化与抗氧化技术00油脂的氧化与抗氧化技术周丽凤(中国粮油学会油脂分会,北京,100083)油脂是人类膳食中的基础营养素之一。
随着国民经济的发展和人民生活水平的提高,食用油脂的安全也越来越受关注。
食用油脂和含油食品在贮存过程中很容易发生酸败现象,从而导致油脂和食品变质。
食用已发生酸败的油脂和食品会引起严重的食品安全事故。
产生酸败的主因是油脂发生了水解和氧化反应。
水解一般是由脂酶催化而使油脂水解为甘油、单双甘油脂和游离脂肪酸。
可通过加热、精炼等方式破坏或消除脂酶,达到防止水解反应的目的。
经过精炼的油脂中不含水和脂肪酶,很少发生因水解而导致变质现象;而油脂的氧化是造成油脂变质的主因。
一、油脂氧化机理脂类化合物RH与氧反应生成相应的脂肪酸,其化学式可表示为:RH+O2(基态)→ROOH然而,按照自旋角动量守衡原理,一个脂类化合物(单线态)与基态氧(三线态)之间的反应是不能自发进行的,反应活化能高达146~272kJ/mol。
研究表明,在油脂中发生的氧化反应历程是自由基连锁反应,可描述为三阶段:自由基引发:自由基传递:自由基终止:此外,温度、紫外线、油脂的不饱和度以及重金属、碱土金属离子等都对加快油脂氧化反应有较大的影响。
二、油脂的抗氧化方法要避免油脂被氧化,按上述反应历程,必须从清除参与反应的氧或清除引发氧化反应的自由基着手。
现代工业生产上常采用的方法有三种:一是采用吸氧剂清除与油脂接触的氧;二是在油贮罐内充氮气,将油与氧隔开;三是在油脂中添加自由基吸收剂(抗氧化剂),阻止氧化反应的发生。
吸氧剂加入到密闭的食品包装物或食品中,能与残留在包装中的氧气或溶解在食品中的氧反应,使食品或油脂处于与氧隔离状态,从而达到保护食品和油脂不被氧化的目的。
现常用的吸氧剂有两类:一类是不能直接添加到食品或油脂中(不能作为食品添加剂使用)的吸氧剂,如活性铁粉等,通常做成小包放置在密闭的食品包装中。
油脂的自动氧化及各类抗氧化剂的作用机制(一)油脂的自动氧化自然油脂裸露在空气中会自发地发生氧化反应,氧化产物分解生成低级脂肪酸、醛、酮等,产生恶劣的酸臭和口味变坏等,这一现象就称为油脂的自动氧化酸败,此现象是油脂及含油食品败坏变质的主要缘由。
当有光、热、金属离子等存在下,脂肪可产生非酶促氧化即自动氧化,遵循游离基反应机制。
属于一种链式反应,可分为三个阶段:引发、传递、终止(其中的RH代表一个脂肪或脂肪酸分子)。
脂肪氧化基本过程:不饱和脂肪酸或脂肪酸甘油酯——脂肪自由基——氢过氧化物——分解产物(包括酸败臭味氧聚合物、深色、可有毒)——蛋白质不溶物 (二)各类抗氧化剂的作用机制氧化的三因素——诱导剂、氧、自由基。
1.金属离子螯合剂——抗氧化增效剂食用油脂通常含有微量的金属离子。
柠檬酸、EDTA和磷酸衍生物可螯合金属离子,以消退自由基产生的催化因子。
加入增效剂,含油食品货架期延伸很长时光。
2.氧清除剂作为除氧剂的化合物主要有抗坏血酸、抗坏血酸棕榈酸酯、异抗坏血酸(Na)等。
延缓植物油酸败,0.0l%的抗坏血酸棕榈酸酯比BHA、BHT更有效。
当抗坏血酸起氧清除剂作用时,本身被氧化成脱氢抗坏血酸。
在顶部空间有空气存在的罐头和瓶装食品中,抗坏血酸好,而在含油食品中抗坏血酸棕榈酸酯抗氧化活性更强一些。
3.阻断油脂自动氧化的链式反应 (1)自由基汲取剂自由基汲取剂主要是指在油脂氧化中能够阻断自由基连锁反应的物质,普通为酚类化合物,具有电子赋予体的作用,如丁基羟基茴香醚、特丁基对苯二酚、生育酚等。
脂类化合物的氧化反应是自由基历程的反应,因而消退自由基即可阻断氧化反应。
作用模式如下(以AH代表抗氧化剂): AH+R·——RH+A· AH十ROO·——ROOH+A·抗氧化剂的自由基A·没有活性,它不能引起链式反应,却能参加一些终止反应。
属于这类抗氧化剂的有:BHA(丁基羟基茴香醚)、BHT(二丁基羟基甲苯)、PG(没食子酸丙酯)、TBHQ(叔丁基对苯二酚)、TP(茶多酚)、VE(维生素E)等。
食品中油脂氧化与抗氧化机制的研究近年来,人们对食品中的油脂氧化与抗氧化机制越来越关注。
油脂氧化是指油脂受到氧气、光线、热量等外界因素的作用后,发生质量变化的过程。
而食品中的油脂氧化除了会影响食品的口感和储存寿命外,还可能产生一些有害物质,对人体健康带来潜在风险。
因此,研究食品中油脂氧化的机制,并寻找有效的抗氧化方法,对于确保食品的安全和品质具有重要意义。
首先,了解油脂氧化的机制对于研究抗氧化方法至关重要。
油脂氧化的机制可以简单概括为自由基链式反应。
当油脂受到外界的刺激后,脂质分子中的不饱和脂肪酸会被氧气氧化生成自由基,这些自由基会不断地反应并产生新的自由基,从而引发一系列的链式反应。
在这个过程中,油脂中的营养成分和风味物质会不断流失,同时产生的有害物质如过氧化物会对人体健康带来风险。
针对油脂氧化的问题,科学家们开展了大量的研究工作,寻找抗氧化方法来延缓油脂氧化的过程。
一种常见的抗氧化方法是添加天然或人工合成的抗氧化剂。
抗氧化剂可以帮助抑制自由基的生成,从而减缓油脂氧化的速度。
常见的天然抗氧化剂包括维生素C、维生素E和多酚化合物等,而人工合成的抗氧化剂则多为一些化学合成物。
然而,食品添加剂的使用也引发了一些争议,因为有些合成抗氧化剂会对人体健康产生负面影响。
因此,研究人员也在探索使用天然食物来提取抗氧化物质的方法,以期能够替代或减少对合成抗氧化剂的使用。
除了添加抗氧化剂外,科学家们还研究了其他抗氧化方法,其中包括改变食品加工方式和改变油脂组成等。
在食品加工过程中,可以通过控制温度、光线和氧气的暴露时间等方式来减缓油脂氧化的速度。
此外,提高食品中的酸度和降低水分含量也能有效延缓油脂氧化的过程。
此外,将油脂中的饱和脂肪酸替换为较不容易被氧化的单不饱和脂肪酸也是一种有效的抗氧化方法。
值得注意的是,在研究油脂氧化与抗氧化机制时,科学家们还发现了油脂氧化对人体健康的一些影响。
例如,油脂氧化后会产生一些有害物质,如醛类、酮类和羟基脂肪酸等。
第三节 油脂自动氧化的机制及其控制油脂氧化是油脂及油基食品败坏的主要原因之一。
油脂在食品加工和贮藏期间,因空气中的氧气、光照、微生物、酶等的作用,产生令人不愉快的气味,苦涩味和一些有毒性的化合物,这些统称为酸败。
但有时油脂的适度氧化,对于油炸食品香气的形成是必需的。
油脂氧化的初级产物是氢过氧化物,其形成途径有自动氧化、光敏氧化和酶促氧化三种。
氢过氧化物不稳定,易进一步发生分解和聚合。
一、油脂氧化的类型1、自动氧化不饱和油脂和不饱和脂肪酸可被空气中的氧氧化,这种氧化称为自动氧化。
氧化产物进一步分解成低级脂肪酸、醛酮等恶臭物质,使油脂发生酸败。
其大致过程是不饱和油脂和脂肪酸先形成游离基,再经过氧化作用生产过氧化物游离基,后者与另外的油脂或脂肪酸作用生成氢过氧化物和新的脂质游离基,新的脂质游离基又可参与上述过程,如此循环形成连锁反应。
示意如下:油脂的自动氧化是油脂酸败的最主要的原因,它对于油脂和含油食品质量的控制极为重要。
2、油脂的光敏氧化不饱和油脂和不饱和脂肪酸可因光而发生光敏氧化。
其速度比自动氧化的速度快得多(约高103倍)。
油脂的光敏氧化中不形成初始游离基(R .),而是通过直接加成,形成氢过氧化物。
一个双键可产生两种氢过氧化物,生成的氢过氧化物继续分解产生醛、酮及低级脂肪酸等。
有些次级过氧化物如C5--C9的氢过氧化烯醛有强毒性,可破坏一些酶的催化能力,危害RH R .ROOH 天然油脂或脂肪酸 油脂游离基 过氧化物游离基 氢过氧化物 R . + 新生的脂质游离基性极大。
3、酶促氧化脂肪在酶参与下发生的氧化反应,称为酶促氧化。
油脂在酶的作用下氧化产生的中间产物也是一些氢过氧化物。
以上各种途径生成的氢过氧化物均不稳定,当体系中的浓度增至一定程度时,就开始分解。
可能发生的反应之一是氢过氧化物单分子分解为一个烷氧基和一个羟基游离基,烷氧基游离基的进一步反应生成醛、醇或酮等。
醛、醇或酮等这些小分子具有令人不愉快的气味即哈喇味,导致油脂酸败。
第四章脂类(Lipids)第三节油脂的氧化和抗氧化由于脂肪中脂肪酸残基含有不饱和键,暴露于空气中很容易发生自动氧化。
脂肪的自动氧化是油脂和含油食品酸败的主要原因,食品酸败降低了油脂的营养价值和品质,生成的过氧化物和游离基可引起急性、慢性中毒,甚至诱发癌症,所以油脂的氧化和抗氧化是食品化学的研究重点之一。
一、油脂自动氧化(一)油脂自动氧化机理油脂自动氧化是典型的游离基反应。
此反应分为三个阶段:链的引发期、增殖期和链的终止。
1.引发期:少量脂肪被光、热或金属催化剂等活化,使其双键相邻的亚甲基碳原子有一个H原子被解离,形成不稳定的游离基。
2.增殖期:当有O2存在时,游离基可与O2结合生成过氧化物游离基;此过氧化物游离基又与一个脂肪分子反应生成氢氧化物ROOH和游离基R。
终止期:当游离基与游离基结合,或游离基与游离基失活剂结合,产生稳定的化合物时,反应终止。
过氧化物是油脂氧化的第一中间产物,本身并无异味,因此感官上尚无酸败的特征,但已有过高的过氧化值(POV),此时生成的氢过氧化物不稳定,达到一定浓度时就转变成醛、酮等异味物质。
(二)氢过氧化物的生成和它的结构自动氧化生成的氢过氧化物的结构与其底物不饱和脂肪酸的结构有关,生成游离基时所裂解的H是与双键相连的-CH2-上的氢,然后O2进攻连接在双键上的α碳原子并生成相应的氢过氧化物:油酸分子中8位、11位碳原子上的H活泼性相同故可以生成两个不同的游离基并有四种氢过氧化物生成。
亚油酸由于1l位氢特别活泼所以只有一种游离基生成并生成两种氢过氧化物有三个双键的亚麻酸除了生成与上述相同的氢过氧化物外,还可以生成环过氧化物:(三)氢过氧化物的裂解油脂自动氧化生成的氢过氧化物再分解生成各种物质,其中挥发性物质是油脂酸败后产生的特殊气味的主要成分。
氢过氧化物的分解主要有1.烷氧游离基的生成,2.醛、酮、酸、醇的生成,3.丙二醛的生成。
1.烷氧游离基的生成2.醛、酮、酸、醇等化合物的生成3.丙二醛(MDA)的生成:油脂氧化后生成的丙二醛对食品风味产生不良的影响,还与食品或生物体内的蛋白质反应生成席夫碱(Schiff base),对人体有害。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。