半导体存储器分类介绍
- 格式:doc
- 大小:616.00 KB
- 文档页数:10
RAM/ROM存储器ROM和RAM指的都是半导体存储器,RAM是Random Access Memory的缩写,ROM是Read Only Memory的缩写。
ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
一、 RAM有两大类:1、静态RAM(Static RAM,SRAM),静态的随机存取存储器,加电情况下,不需要刷新,数据不会丢失;而且,一般不是行列地址复用的。
SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。
但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,而SRAM却需要很大的体积,所以在主板上SRAM存储器要占用一部分面积。
优点:速度快,不必配合内存刷新电路,可提高整体的工作效率。
缺点:集成度低,功耗较大,相同的容量体积较大,而且价格较高,少量用于关键性系统以提高效率。
2、动态RAM(Dynamic RAM,DRAM),动态随机存取存储器,需要不断的刷新,才能保存数据。
而且是行列地址复用的,许多都有页模式。
DRAM利用MOS管的栅电容上的电荷来存储信息,一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。
由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的很大。
DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快;DRAM存储单元的结构非常简单,所以从价格上来说它比SRAM要便宜很多,计算机内存就是DRAM的。
DRAM分为很多种,常见的主要有FPRAM/ FastPage、EDORAM、SDRAM、DDRRAM、RDRAM、SGRAM以及WRAM等 I.SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。
半导体存储器工作原理和最新技术随着现代社会的快速发展,信息技术技术的发展也日新月异。
作为信息技术中不可或缺的部分,存储器技术一直在不断地更新发展。
其中,半导体存储器作为一种重要的存储器类型,其工作原理和最新技术备受人们关注。
一、半导体存储器工作原理半导体存储器是一种将位于半导体芯片上的电荷量代表数据的存储器。
半导体存储器主要分为两大类:随机访问存储器(RAM)和只读存储器(ROM)。
1.1 随机访问存储器(RAM)RAM分为动态随机访问存储器(DRAM)和静态随机访问存储器(SRAM)两种。
DRAM的存储单元为电容器,单元大小为1位。
SRAM的存储单元为双稳态触发器,单元大小为1至4位。
DRAM的电容器存储单元会因电容器内部漏载而持续降低,因此需要周期性地重新刷新。
此外,DRAM单元还需要进行复杂的读写时间控制。
SRAM则不需要刷新电容器和时间控制,但存储单元占用面积较大,并需要额外的电源驱动。
1.2 只读存储器(ROM)ROM是一种只可读取而不能修改的存储器。
ROM中存储单元的电荷量是由制成时设置的金属焊点决定,即“掩膜”制造技术,这种存储器能够非常方便地实现电路的控制功能。
二、半导体存储器最新技术半导体存储器技术也在不断更新发展中。
这里将介绍三种最新的半导体存储器技术。
2.1 革命性大规模存储器技术革命性大规模存储器技术是一种新的存储器类型,它能够实现超过TB级别的数据存储。
这种存储器采用叠层非易失存储器和InP HEMT收发器,能够实现一次读取数百Gbits的数据,传输速度极快。
2.2 基于电容器的晶体管门极控制技术基于电容器的晶体管门极控制技术是实现高密度存储的一种方法。
目前的主流半导体存储器采用平面电容器单元,但其占用面积较大。
所以,一种新的基于电容器的晶体管门极控制技术被提出。
这种新技术利用了电容器单元与相邻晶体管的栅极之间的短距离联系,降低了存储单元面积,同时提升了数据存取速度。
2.3 基于氧化硅和二氧化硅的存储器技术基于氧化硅和二氧化硅的存储器技术被广泛应用于普通高密度存储器。
RAM / ROM 存储器ROM和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写。
ROM在系统停止供电的时候仍然可以保持数据,而RAM 通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
RAM 有两大类:1) 静态RAM(Static RAM/SRAM),SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。
2) 动态RAM(Dynamic RAM / DRAM),DRAM保留数据的时间很短,速度也比SRAM 慢,不过它还是比任何的ROM都要快,但从价格上来说DRAM相比SRAM要便宜很多,计算机内存就是DRAM的。
DRAM分为很多种,常见的主要有FPRAM/FastPage、EDORAM、SDRAM、DDR RAM、RDRAM、SGRAM以及WRAM等,这里介绍其中的一种DDR RAM。
DDR RAM(Double-Date-Rate RAM)也称作DDR SDRAM,这种改进型的RAM和SDRAM 是基本一样的,不同之处在于它可以在一个时钟读写两次数据,这样就使得数据传输速度加倍了。
这是目前电脑中用得最多的内存,而且它有着成本优势,事实上击败了Intel的另外一种内存标准——Rambus DRAM。
在很多高端的显卡上,也配备了高速DDR RAM来提高带宽,这可以大幅度提高3D加速卡的像素渲染能力。
ROM也有很多种:1) PROM(可编程ROM),是一次性的,也就是软件灌入后,就无法修改了,这种是早期的产品,现在已经不可能使用了;2) EPROM (可擦除可编程ROM),是通过紫外光的照射擦出原先的程序,是一种通用的存储器。
3) EEPROM,是通过电子擦除,价格很高,写入时间很长,写入很慢。
举个例子,手机软件一般放在EEPROM中,我们打电话,有些最后拨打的号码,暂时是存在SRAM中的,不是马上写入通话记录(通话记录保存在EEPROM中),因为当时有很重要工作(通话)要做,如果写入,漫长的等待是让用户忍无可忍的。
第7章半导体存储器内容提要半导体存储器是存储二值信息的大规模集成电路,本章主要介绍了(1)顺序存取存储器(SAM)、随机存取存储器(RAM)、只读存储器(ROM)的工作原理。
(2)各种存储器的存储单元。
(3)半导体存储器的主要技术指标和存储容量扩展方法。
(4)半导体存储器芯片的应用。
教学基本要求掌握:(1)SAM、RAM和ROM的功能和使用方法。
(2)存储器的技术指标。
(3)用ROM实现组合逻辑电路。
理解SAM、RAM和ROM的工作原理。
了解:(1)动态CMOS反相器。
(2)动态CMOS移存单元。
(3)MOS静态及动态存储单元。
重点与难点本章重点:(1)SAM、RAM和ROM的功能。
(2)半导体存储器使用方法(存储用量的扩展)。
(3)用ROM 实现组合逻辑电路。
本章难点:动态CMOS 反相器、动态CMOS 移存单元及MOS 静态、动态存储单元的工作原理。
7.1■■■■■■■■■半导体存储器是存储二值信息的大规模集成电路,是现代数字系统的 重要组成部分。
半导体存储器分类如下:I 融+n 右西方性翼静态(SRAM )(六管MO 白静态存储单元) 随机存取存储器〔^^'{动态侬^1口3网又单管、三管动态则□吕存储单元) 一固定艮cmil 二极管、M 口号管) 可编程RDM (PROM )[三极管中熠丝上可擦除可编程ROM (EPROM )[叠层栅管、雪崩j1-电可擦除可编程良口财(EEPROM^【叠层栅管、隧道)按制造工艺分,有双极型和MOS 型两类。
双极型存储器具有工作速度快、功耗大、价格较高的特点。
MOS 型存储器具有集成度高、功耗小、工艺简单、价格低等特点。
按存取方式分,有顺序存取存储器(SAM )、随机存取存储器(RAM )和只读存储器(ROM )三类。
(1)顺序存取存储器(简称SAM ):对信息的存入(写)或取出(读)是按顺序进行的,即具有“先入先出”或“先入后出”的特点。
(2)随机存取存储器(简称RAM ):可在任何时刻随机地对任意一个单元直接存取信息。
半导体存储器分类介绍§ 1. 1 微纳电子技术的发展与现状§1.1.1 微电子技术的发展与现状上个世纪50年代晶体管的发明正式揭开了电子时代的序幕。
此后为了提高电子元器件的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高。
1962年,由金属-氧化物-半导体场效应晶体管(MOSFET)组装成的集成电路(IC)成为微电子技术发展的核心。
自从集成电路被发明以来[1,2],集成电路芯片的发展规律基本上遵循了Intel 公司创始人之一的Gordon Moore在1965年预言的摩尔定律[3]:半导体芯片的集成度以每18个月翻一番的速度增长。
按照这一规律集成电路从最初的小规模、中规模到发展到后来的大规模、超大规模(VLSI),再到现在的甚大规模集成电路(ULSI)的发展阶段。
随着集成电路制造业的快速发展,新的工艺技术不断涌现,例如超微细线条光刻技术与多层布线技术等等,这些新的技术被迅速推广和应用,使器件的特征尺寸不断的减小。
其特征尺寸从最初的0.5微米、0.35 微米、0.25 微米、0.18 微米、0.15 微米、0.13 微米、90 纳米、65 纳米一直缩短到目前最新的32纳米,甚至是亚30纳米。
器件特征尺寸的急剧缩小极大地提升了集成度,同时又使运算速度和可靠性大大提高,价格大幅下降。
随着微电子技术的高速发展,人们还沉浸在胜利的喜悦之中的时候,新的挑战已经悄然到来。
微电子器件等比例缩小的趋势还能维持多久?摩尔定律还能支配集成电路制造业多久?进入亚微米领域后,器件性能又会有哪些变化?这一系列的问题使人们不得不去认真思考。
20世纪末期,一门新兴的学科应运而生并很快得到应用,这就是纳电子技术。
§1.1.2 纳电子技术的应用与前景2010年底,一篇报道英特尔和美光联合研发成果的文章《近距离接触25nm NAND闪存制造技术》[4],让人们清楚意识到经过近十年全球范围内的纳米科技热潮,纳电子技术已逐渐走向成熟。
电子信息技术正从微电子向纳电子领域转变,纳电子技术必将取代微电子技术主导21世纪集成电路的发展。
目前,半导体集成电路的特征尺寸已进入纳米尺度范围,采用32纳米制造工艺的芯片早已问世,25纳米制造技术已正式发布,我们有理由相信相信亚20纳米时代马上就会到来。
随着器件特征尺寸的减小,器件会出现哪些全新的物理效应呢?(1)量子限制效应。
当器件在某一维或多维方向上的尺寸与电子的徳布罗意波长相比拟时,电子在这些维度上的运动将受限,导致电子能级发生分裂,电子能量量子化,出现短沟道效应、窄沟道效应以及表面迁移率降低等量子特性。
(2)量子隧穿效应。
当势垒厚度与电子的徳布罗意波长想当时,电子便可以一定的几率穿透势垒到达另一侧。
这种全新的现象已经被广泛应用于集成电路中,用于提供低阻接触。
(3)库仑阻塞效应。
单电子隧穿进入电中性的库仑岛后,该库仑岛的静电势能增大e2/2C,如果这个能量远远大于该温度下电子的热动能K B T,就会出现所谓的库仑阻塞现象,即一个电子隧穿进入库仑岛后就会对下一个电子产生很强的排斥作用,阻挡其进入。
以上这些新的量子效应的出现使得器件设计时所要考虑的因素大大增加。
目前,国际上较为先进的是25nm半导体制造工艺,在这样小的尺寸范围内进行器件设计不仅仅要考虑单个器件可能因尺寸等比例缩小所带来的各种量子效应,还要考虑器件与器件间距不断缩小可能出现的各种可靠性问题以及Cu互联线之间的各种耦合效应。
目前,包括Intel、IBM、Samsung以及TSMC在内的各大企业都投入了大量的人力、物力用于研究纳米尺度下可能面临的理论问题和技术问题,建立适应纳米尺度的新的集成方法、技术标准和检测手段。
在这样的背景下,如何更好地掌握和利用这些新的物理效应,并将其应用于新型的纳米器件中就显得尤为重要,而这正是本文研究的出发点。
§ 1. 2 新一代非易失性半导体存储器的分类与发展§1.2.1 非易失性半导体存储器的种类与特点2008年,美国IBM实验室提出“存储级内存”(SCM, Storage-Class Memory)的概念[5],用于概括新一代的非易失性闪存技术。
IBM公司对SCM的定义为:能够取代传统硬盘并对DRAM起到补充作用的这样一类非易失性数据存储技术[8]。
据IBM提供的资料,SCM大约在五年之内可实现商品化,到时1Gb的成本大约只有闪存的1/3,同时具有比传统存储器更高的性能,高的性价比使得SCM 能够很快取代传统存储设备中的硬盘。
如图1.1所示,SCM的出现必将对计算机数据存储系统的发展路线产生深远影响。
图1.1 半导体存储器发展路线示意图(图片来源:IBM Research Center)有望成为下一代非易失性存储器候选者的SCM主要包括以下几种:铁电随机存储器(FeRAM)、磁阻随机存储器(MRAM)、阻变随机存储器(RRAM)、相变随机存储器(PCRAM)。
FeRAM利用铁电晶体的铁电效应来实现数据存储,铁电晶体在自然状态下分为正、负两极。
当在外加电场时,晶体中心原子在电场作用下运动,极性统一最终达到稳定状态;当电场撤除后,中心原子恢复原来的位置,因此能够保存数据。
FeRAM的一个基本存储单元由电容和场效应管(所谓的2T2C结构)组成,如图1.2所示。
电容由两电极板中间沉淀晶态铁电晶体薄膜材料组成,目前应用最多的铁电晶体主要为钙钛矿材料。
FeRAM的优点是速度快、功耗低、无需擦除即可反复写入;存在的问题是当达到一定的读写次数后将失去耐久性,另外,减小单个存储单元尺寸,提高存储密度以及提高器件可靠性也是亟待解决的问题。
图1.2 铁电随机存储器结构示意图(图片来源:)MRAM的核心是磁性隧道结(Magnetic Tunnel Junction,MTJ),常用的材料为氧化镁(MgO)、氧化铝(Al2O3)等等。
通过外加磁场(如图1.3左所示)或电场(如图1.3右所示)驱使MTJ极化方向发生变化,出现平行和反平行两种状态,而这两种状态所对应的磁阻(Tunneling Magnetoresistance,TMR)有很大差异,因而可以用低阻和高阻作为“0”和“1”两种不同的状态。
MRAM的擦写速度极快、耐久性很高同时功耗也很低,但磁性材料大多与常规的CMOS 工艺不兼容,要做到大规模集成还有很多困难。
近年来,MRAM作为SCM一个强有力的候选者得到很多闪存厂商的青睐,相关研究工作也在紧锣密鼓地进行,相信假以时日MRAM一定可以大展宏图。
图1.3 磁阻随机存储器原理示意图(图片来源:http://techon.nikkeibp.co.jp)RRAM是忆阻器(memristor)最简单也是最重要的应用,是目前存储器领域的研究热点之一。
忆阻器简单说来就是一种有记忆功能的非线性电阻,通过控制电流的变化改变阻值,实现高阻“1”和低阻“0”的数据存储功能。
金属氧化物的电阻转变特性发现于20世纪60年代,由于受到实验条件的制约,直到2000年美国休斯顿大学报道了PCMO氧化物薄膜的电阻转换特性之后,人们才又重新认识到这一现象,随后惠普公司科学家在2008年5月的《自然》杂志上撰文研究了RRAM的机理,将对RRAM的研究推向高潮。
RRAM的结构非常简单,如图1.4所示,作为候选的材料主要有有机化合物、钙钛矿多元氧化物以及简单的二元氧化物,最具潜力的当属二元过渡金属氧化物半导体材料,比如CuO、ZnO、NiO、TiO、ZrO等。
RRAM的优点主要有:制备简单、擦写速度快、存储密度高、与传统CMOS工艺兼容性好。
目前,RRAM作为一种全新的存储技术,其电致阻值转变的物理机制尚不清楚,但RRAM众多的优点使其仍然很具吸引力。
图1.4 RRAM结构示意简图(图片来源:)PCRAM依靠相变材料非晶态和晶态之间相互转换时所表现出的不同电阻特性来存储数据,在相变材料上施加复位电压或电流就能触发两个状态之间的切换,PCRAM的基本结构如图1.5所示,上下电极之间是一层相变材料,周围是绝热材料。
目前,被广泛采用的相变材料为Ge:Se:Te(GST)。
PCRAM主要的优点是:单元体积小、读写速度快、功耗低、寿命长并且可实现多级存储。
以IBM 为代表的业界认为PCRAM在65纳米以后将凸显其优势,是下一代新型存储器最有希望的候选者。
尽管如此,PCRAM还是有其固有的缺点,例如在相变过程中如何绝热以及存储数据可靠性等问题。
图1.5 PCRAM结构示意图(图片来源:http://www.iht.rwth-aachen.de)最后,将这几种不同的新型存储器性能进行比较,如表1.1所示。
表1.1 几种新型存储器性能比较简表§1.2.2 闪存领域当前面临的机遇与挑战闪存(Flash)领域一直是纳电子高新技术应用的最前沿,也是各种新型存储器商品化进程中竞争最为激烈的领域。
因而,闪存领域更能体现存储器制造业目前面临的机遇与挑战。
自从1989年日本东芝公司提出NAND结构以后,越来越多的处理器使用NAND接口,并能直接从NAND(没有NOR)导入数据。
如今随着数码产品的普及,闪存领域的发展可谓日新月异。
数码相机、MP3/MP4播放器、PDA、智能手机等等数码产品目前已经完全被闪存占据,市场旺盛的需求驱使各大闪存厂商竞相扩大产能,引进新技术的同时大幅提升闪存的容量和速度。
大概在2007年,一个容量为1G的U盘市场价格大约为几百元,而在2009年年初一个4G的U盘售价竟然降至35元,闪存市场竞争之激烈让人吃惊[6]。
闪存价格骤降对于消费者而言无疑是件好事,但对于生产商而言却苦不堪言。
在闪存领域占主导地位、被人称之为“半导体产业成长最快产品”的NAND flash同样面临这样的挑战。
三星(Samsung)、东芝(Toshiba)、海力士(Hynix)和美光(Micron)并称NAND flash“四巨头”,占据闪存市场90%的份额。
但即使是这样的大公司也在2008-2009年的价格战中背负了沉痛的代价。
在这场残酷的市场竞争中,大多数公司依靠进一步减小特征尺寸来降低成本,25-28纳米这样的特征尺寸在NAND制造业已经或即将投入运营,而我们大家熟知20纳米将是光刻技术的极限,因此单靠缩小器件尺寸来降低闪存价格的这种方法不是长久之计。
包括NAND flash在内的存储器行业已经到了十字路口,传统的存储器单元已经无法满足闪存行业急速发展的需求。
在这种严峻的形势下,闪存行业将何去何从[7]?据报道称,英特尔、美光闪存技术公司(Intel-Micron Flash Technologies,IMFT)宣布即将采用多层存储的新技术来降低固态硬盘(Solid-State Drives, SSD)的价格。