绕线型三相异步电机转子电路串电阻启动
- 格式:doc
- 大小:259.00 KB
- 文档页数:12
交流电动机转子串电阻启动设计引言三相异步电动机是目前应用最为广泛的电动机。
要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。
异步电动机是交流电动机的一种。
由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。
异步电动机按供电电源相数的不同,有三相、两相和单相之分。
三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。
三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。
我的设计为三相绕线型异步电动机转子电路串电阻启动。
1 三相异步电动机1.1三相异步电动机的结构(1) 子(静止部分)①定子铁心作用:电机磁路的一部分,并在其上放置定子绕组。
构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。
定子铁心槽型有以下几种:半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。
一般用于小型低压电机中。
半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。
所谓成型绕组即绕组可事先经过绝缘处理后再放入槽内。
开口型槽:用以嵌放成型绕组,绝缘方法方便,主要用在高压电机中。
②定子绕组作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。
构造:由三个在空间互隔120°电角度、对称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。
定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。
1)对地绝缘:定子绕组整体与定子铁心间的绝缘。
2)相间绝缘:各相定子绕组间的绝缘。
3)匝间绝缘:每相定子绕组各线匝间的绝缘。
电动机接线盒内的接线:电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2).将三相绕组接成星形接法或三角形接法。
●填空1、电枢磁动势对主磁动势的影响称为直流电机的电枢反应。
2、直流电机中同时交链励磁绕组和电枢绕组的磁通是主磁通;只交链_励磁绕组__的是主磁极漏磁通。
3、直流电机的电刷位于几何中性线上时的电枢反应特点为使气隙磁场发生畸变_和_____对主磁场起去磁作用___________。
4、直流电机的电力拖动系统运动方程式描述了___系统的运动状态,系统的运动状态取决于做哟在原动机转轴上的各种转矩__________。
5、他励直流电动机的起动,一般有三点要求:1、_____要有足够大的启动转矩____________;2、___启动电流要限制在一定的范围内_____________3、____起动设备要简单可靠_____________。
6、变压器通过线圈间的__电磁感应作用______作用,可以把____一种电压等级的交流电能____________转换成____另一种电压等级的交流电能____________。
7、对三相变压器而言,额定容量是指__铭牌规定的额定使用条件下所能输出的视在功率,对三相变压器而言,额定容量指三相容量之和__________。
8、转差率直接反映了转子__转子转速的快慢__________或电动机___负载的大小_。
9、笼型异步电动机的起动方法有两种:____直接起动__和__降压起动。
10、三相绕线转子异步电动机的起动中所用到的频敏变阻器,它的__等效电阻Rm ________是随___频率f2_______的变化而自动变化的。
11、对于单相异步电动机,为获得起动转矩,通常在定子上安装_起动绕组_。
12、同步电机主要用作___发电机_______,也可用作___电动机_______和____调相机。
13、直流电机的电枢绕组根据连接规律的不同,可分为__单叠绕组______、__单波绕组______、__复叠绕组______、___混合绕组______及__复波绕组______。
此主题相关图片如下:1.jpg绕线式电动机转子回路串频敏变阻器启动电路原理图一、频敏变阻器的工作原理:频敏变阻器实际上是一个特殊的三相铁芯电抗器,它有一个三柱铁芯,每个柱上有一个绕组,三相绕组一般接成星形。
频敏变阻器的阻抗随着电流频率的变化而有明显的变化电流频率高时,阻抗值也高,电流频率低时,阻抗值也低。
频敏变阻器的这一频率特性非常适合于控制异步电动机的启动过程。
启动时,转子电流频率fz 最大。
Rf 与Xd 最大,电动机可以获得较大起动转矩。
启动后,随着转速的提高转子电流频率逐渐降低,Rf 和Xf 都自动减小,所以电动机可以近似地得到恒转矩特性,实现了电动机的无级启动。
启动完毕后,频敏变阻器应短路切除。
二、启动电路原理:启动过程可分为自动控制和手动控制。
由转换开关SA完成。
1、自动控制㈠合上空气开关QF接通三相电源。
㈡将SA板向自动位置,按SB2交流接触器KM1线圈得电并自锁,主触头闭合,动机定子接入三相电源开始启动。
(此时频敏变阻器串入转子回路)。
㈢此时时间继电器KT也通电并开始计时,达到整定时间后KT的延时闭合的常开接点闭合,接通了中间继电器KA 线圈回路,KA其常开接点闭合,使接触器KM2 线圈回路得电,KM2的常开触点闭合,将频敏变阻器短路切除,启动过程结束。
㈣线路过载保护的热继电器接在电流互感器二次侧,这是因为电动机容量大。
为了提高热继电器的灵敏的度和可靠性,故接入电流互感器的二次侧。
㈤另外在启动期间,中间继电器KA的常闭接点将继电器的热元件短接,是为了防止启动电流大引起热元件误动作。
在进入运行期间KA常闭触点断开,热元件接入电流互感器二次回路进行过载保护,2、手动控制㈠合上空气开关QF接通三相电源㈡将SA搬至手动位置㈢按下启动按钮SB2, 接触器KM1线圈得电,吸合并自锁,主触头闭合电动机带频敏变阻器启动。
㈣待转速接近额定转速或观察电流表接近额定电流时,按下按钮SB3中间继电器KA线圈得电吸合并自锁,KA的常开触点闭合接通KM2线圈回路,KM2的常开触点闭合将频敏变阻器短路切除。
1、直流电机的绕组有叠绕组、波绕组和混合绕组三种。
2、并励发电机自励的三个条件是:⑴:磁极铁芯中要有剩磁;(2):励磁磁动势与剩磁方向一致;(3):励磁回路的总电阻必须小于临—「。
3、他励直流电动机带负载运行,电源电压与负载电流均维持不变,若转速上升20%,则当磁路线性时,励磁电流是原来的_5/6倍。
卜Ea=Ce^ n (n T 20%4、感应电动机运行时可定义转差率s,根据s的不同可以确定其三种工作状态,其中,当s>1 时工作于电磁制动状态,当0VSV1是工作于电动运行状态。
5、感应电机在实际应用中,根据其自身特点,可以从三方面进行调速,即:(1):改变极对数;(2)改变电源频率fl ; (3改变转差率。
6在研究电机磁路问题时,若沿着回线L,磁场强度H的方向总在切线方向、其大小处处相等,且闭合回线所包围的总电流是由通有电流i的N匝线圈所提供,则常用的安培环流定律可表达为:O HL=Ni 。
7、从空间和时间两方面来看单相交流绕组基波磁动势的变化规律为,空间上:位置固定,正弦分布,时间上:幅值按正弦规律变化。
三相对称绕组通以三相对称交流电~基波合成磁动势的旋转速度可以表达为:60f/P。
8 感应电机运行时的转子反应是指转子磁动势对电子磁动势的影响。
9、根据磁路的基尔霍夫第二定律,沿任意闭合磁路的磁动势恒等于各段磁路磁压降的代数和。
10、在他励直流发电机中,随着负载的增加,输出电压将稍微下降。
这是由交轴电枢反应的去磁效果和电枢电阻压降增加造成的。
11、直流电机按照其励磁方式不同,分为他励式,并励式,串励式,复励式。
12、感应电机按照其转子结构不同,分为鼠笼式和绕线式感应电机。
13、电动机按所接的电源种类不同,可分为直流电机和交流电机。
14、直流电动机电磁制动的实质是让电动机产生与转子旋转方向相反的转矩。
它有三种电磁制动方法,分别为能耗制动、反接制动、回馈制动。
15、对于三相4极50Hz感应电机,当额定转速为1550r/min时,其额定转差率为0.03 , 转子电路的频率为4色Hz,转子磁动势相对于转子的转速为_50 r/min,转子磁动势相对于定子的转速为1500 r/min。
绕线电动机的转子串频敏变阻器起动
的动作原理
绕线型异步电动机转子串电阻的起动方法中,转子电阻是逐级切除的,转子电流及转矩会突然变化,产生机械冲击,使运行不平稳。
频敏变阻器的阻抗能够随着电动机转速的上升、转子电流频率的下降而自动减小,它是绕线型异步电动机较为理想的一种起动装置。
(1)频敏变阻器
频敏变阻器就是一个铁心损耗非常大的三相电抗器。
它的铁心由较厚的钢板叠成,三个绕组接成星形串联在转子电路中,电动机转速增高时,转子和旋转磁场的相对转速减小,转子电流频率降低,频敏变阻器的磁滞损耗减小,阻抗减小,电动机转子串频敏变阻器起动的控制电路如图1所示。
图1 电动机转子串频敏变阻器起动的控制电路
(2)电动机转子串频敏变阻器起动的控制电路的工作过程
合上电源开关QS,按下起动按钮SB2,接触器KMl线圈通电自锁,电动机接通三相交流电源转子串频敏变阻器起动,同时时间继电器KT线圈通电延时开始。
延时结束时,KT 的延时闭合触点闭合,K线圈通电并自锁,K的动断触点断开热继电器FR的旁路触点加入电路作过载保护,K的一个常开触点接通KM2线圈,KM2动合触点闭合切除频敏变阻器。
(3)频敏变阻器的使用和调整
使用中当频敏变阻器的起动特性不太理想时,就需要结合现场情况作某些调整,来满足生产的需要。
主要包括如下两点:
①改线圈匝数:频敏变阻器绕组有三个抽头,分别为100%(起动电流过大时用)、85%(出厂)、71%匝数(起动电流过小时用)。
②磁路调整:刚起动和切除频敏变阻器时,防止冲击电流,加大上轭板与铁芯气隙。
绕线型异步电动机降压启动方式
异步电动机降压启动是指在电动机启动时,通过降低其定子绕组上的电压来减小启动电流,从而降低启动时对电网的冲击。
常见的降压启动方式有以下几种:
1. 定子串电阻降压启动:在电动机启动时,在定子绕组中串接电阻,使电动机定子绕组电压降低,从而减小启动电流。
这种启动方式适用于轻载或空载启动的场合。
2. 自耦变压器降压启动:在电动机启动时,利用自耦变压器降低电动机的电压,从而减小启动电流。
这种启动方式适用于较大容量的电动机启动。
3. 星-三角降压启动:在电动机启动时,将电动机的定子绕组接成星形,从而降低电动机的电压,减小启动电流。
当电动机启动后,再将定子绕组切换成三角形接法,使电动机正常运行。
这种启动方式适用于轻载或空载启动的场合。
4. 延边三角形降压启动:在电动机启动时,将电动机的定子绕组接成延边三角形,从而降低电动机的电压,减小启动电流。
当电动机启动后,再将定子绕组切换成三角形接法,使电动机正常运行。
这种启动方式适用于较大容量的电动机启动。
摘要进一少巩固和加深“电机与拖动”课程的基本知识,了解绕线型异步电动机转子串电阻起动设计知识在工程实际中的应用。
综合运用“电机与拖动”课程和等候课程的理论及生产实际知识去分析和解决直流电动机调速设计中的一些问题,进行电机设计的训练。
通过计算和绘图,学会运用标准、规范的手册、图册和查阅有关资料等,培养电机设计的基本技能。
掌握绕线型异步电动机转子串电阻起动的原理与步骤;培养独立的思维和动手能力。
一、绕线型异步电动机转子串电阻起动设计原理本次课程设计的主要内容为绕线型异步电动机转子串电阻起动。
为了理解这一课程设计的主要内容,首先必须了解一些与之相关的内容。
三相异步电动机的定义:旋转电机都是利用电与磁的互相转化和互相作用制成的。
三相异步电动机则是利用三相电流通过三相绕组产生在空间旋转的磁场。
三相异步电动机的工作原理:为了能形象的说明问题,将定子三相绕组通入三相电流后产生的旋转磁场用一对旋转的磁极来表示,它以同步转速n0顺时针方向旋转。
于是,转子绕组切割磁感线而产生感应电动势,它的方向可用右手定则来确定。
在N极下,穿出纸面,在S极下,进入纸面。
由于转子绕组是闭合的,在交变的感应电动势作用下,其中就有交变的感应电流流动。
各导体中的感应电流的有功分量和感应电动势同相,两者的方向一致。
根据安培定律,导体中电流的有功分量和旋转磁场互相作用而产生电磁力F,它们的方向按照左手定则来决定。
电磁力将对转子产生电磁转矩,推动转子沿着旋转磁场的旋转方向转动。
至于转子导体中电流的无功分量,因滞后感应电动势90°,根据左手定则,这时电磁力F的作用彼此抵消,不会构成电磁转矩。
由于转子与旋转磁场之间有相对运动时,转子绕组才会切割磁感线而产生感应电动势和感应电流,才能产生电磁转矩,所以转子的转速总是小于同步转速,两者不可能相等,故称为异步电动机,又称感应电动机。
二、异步电动机的结构1.定子(静止部分)1)定子铁心作用:电机磁路的一部分,并在其上放置定子绕组。
引言三相异步电动机是目前应用最为广泛的电动机。
要想讨论电力拖动中经常遇到的绕线型异步电动机转子串电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。
异步电动机是交流电动机的一种。
由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。
异步电动机按供电电源相数的不同,有三相、两相和单相之分。
三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。
一、异步电动机的原理三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。
二、异步电动机的结构组成(一)定子异步电动机的定子由定子铁心、定子绕组和机座三部分组成。
1.定子铁心定子铁心是异步电动机主磁通磁路的一部分。
为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。
对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。
定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。
从提高电动机的效率和功率因数来看,半闭口槽最好。
2,定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。
能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。
开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽内必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。
引言三相异步电动机是目前应用最为广泛的电动机。
要想讨论电力拖动中经常遇到的绕线型异步电动机转子串电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。
异步电动机是交流电动机的一种。
由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。
异步电动机按供电电源相数的不同,有三相、两相和单相之分。
三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。
一、异步电动机的原理三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。
二、异步电动机的结构组成(一)定子异步电动机的定子由定子铁心、定子绕组和机座三部分组成。
1.定子铁心定子铁心是异步电动机主磁通磁路的一部分。
为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。
对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。
定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。
从提高电动机的效率和功率因数来看,半闭口槽最好。
2,定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。
能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。
开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽内必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。
一般根据定子绕组在槽内布置的情况,有单层绕组及双层绕组两种基本型式。
容量较大的异步电动机都采用双层绕组。
双层绕组在每槽内的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。
小容量异步电动机常采用单层绕组。
槽内定子绕组的导线用槽楔紧固。
槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。
3.机座机座的作用主要是固定和支撑定子铁心。
中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。
例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。
为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。
对于大中型异步电动机,一般采用钢板焊接的机座。
(二)转子异步电机的转子由转子铁心、转子绕组和转轴组成。
1.转子铁心转子铁心也是电动机主磁通磁路的一部分,一般也由0.5毫米厚冲槽的硅钢片叠成,铁心固定在转轴或转子支架上。
整个转子铁心的外表面成圆柱形。
2.转子绕组转子绕组分为笼型和绕线型两种结构,在以下文章中将分别说明这两种绕组结形式特点。
(三)气隙异步电动机定、转子之间的气隙是很小的,中小型电机—般为0.2~2mm。
气隙的大小与异步电动机的性能关系极大。
气隙愈大,磁阻也愈大。
磁阻大时,产生同样大小的旋转磁场就需要较大的励磁电流。
励磁电流是无功电流(与变压器中的情况一样),该电流增大会使电机的功率因数变坏。
然而,磁阻大可以减少气隙磁场中的谐波含量,从而可减少附加损耗,且改善起动性能。
气隙过小,会使装配困难和运转不安全。
如何决定气隙大小,应权衡利弊,全面考虑。
一般异步电动机的气隙以较小为宜。
异步电动机主要分为笼式(又称为鼠笼式)和绕线式。
虽然我们主要介绍绕线式异步电动机转子串电阻启动,但我们还是先了解一下鼠笼式电机启动的优点和局限,以方便和绕线形电动机进行性能比较。
三、鼠笼电机结构优点和启动性能局限我们知道,鼠笼电机结构简单紧凑,在电机行业属于“吃电大户”,推广最为普及,需求量也占绝对份额。
但与绕线电机相比,启动性能有其自身的局限性:鼠笼电动机的启动电流一般达到额定电流的5-7倍,而启动转矩只有额定转矩的0.4—1.6倍(小电机能达到2.2倍)。
这种情况在电网条件和工艺条件允许的情况下,能够直接启动。
这里的电网条件一般指电机启动时电网保证电机机端压降不大于10%;工艺条件是指电机的启动转矩满足机组系统惯量和负载的加速特性要求。
但过大的启动电流、过小的启动转矩和过长的启动时间给电动机和电网将造成极大的潜在危害。
定转子绕组的发热量随其流过的电流大小成平方倍关系变化。
按照上述的启动电流倍数,电机启动时的单位时间发热量是正常运行时的25—49倍,产生的电磁力也将大幅度增加。
过快的加热速度、过高的温度、过大的温度梯度和电磁力产生了极大的破坏力,缩短了定转子绕组的使用寿命。
特别是对一些大惯量负载,如大惯量风机、磨机,利用集肤效应降低启动电流产提高启动转矩的电机,也易出现频繁多次启动后转子断条现象。
鼠笼电机的启动转矩及机械特性在电动机做成后即成定局,无法改变其启动性能。
下面我们主要研究一下绕线形异步电动机转子串电阻启动。
先了解一下绕线型异步电动机的结构特点。
四、绕线式电机的结构绕线型绕组是一个对称三相绕组,这个对称三相绕组接成星形,并接到转轴上三个集电环,再通过电刷使转子绕组与外电路接通。
这种转子的特点是,通过集电环和电刷可在转子回路中接入附加电阻或其它控制装置,以便改善电动机的起动性能或调速特性。
为了减小电刷的磨损与摩擦损耗,中等容量以上的异步电动机还装有一种提刷短路装置。
这种装置当电动机起动以后而又不需要调节速度时,移动其手柄,可使电刷提起,与集电环脱离接触,同时使三只集电环彼此短接起来。
五、绕线型异步电动机转子串电阻启动1、转子串电阻启动的原理绕线型转子异步电动机转子串三相对称电阻启动时,一般采用分级切除启动电阻的方法。
这是因为随着转子转速的增高,转子电流、电机转矩将逐渐降低。
为了充分利用电动机的启动转矩,应当随着转速的增高,逐渐减少转子回路电阻,使电动机维持较高的启动电流和转矩。
由式(1)可以看出,若使转子回路电阻2R 与转差率s 成正比例减少,则电动机在加速过程中可以获得恒定的启动电流和启动转矩。
2223R sE I N(1)2、启动电阻计算原则目前国内广泛使用的启动电阻是金属电阻,它是由一箱电阻片构成的。
电阻值的改变是靠开关电器将金属电阻一段段的短接来实现的,所以电阻值的变化不连续,有级。
每短接一段,启动电流和启动转矩便突变一次。
启动电阻分级数越少,则在启动过程中没次短接电阻所引起的启动电流冲击幅度就大,轴上转矩的突变也大。
从启动电流对供电电网的冲击和机械的受力考虑,启动电阻的分级数目不能太少,一般为5—8级。
对容量较大的电动机,启动电阻分级要多些。
对于功率较小的电动机可采用一般三相变阻器或油浸启动变阻器,对于功率较大的电动机则采用小电阻。
3、启动过程(1)容量较小的的异步电动机启动容量较小的三相绕线型异步电动机可采用转子串联启动变阻器的方法启动。
启动变阻器通过手柄接成星形。
启动前先把启动变阻器调到最大值,在合上电源开关,电动机开始启动。
随着转速的升高,逐渐减小启动变阻器的电阻,知道全部切除,使转子绕组短接。
(2)容量较大的异步电动机启动容量较大的绕线型异步电动机一般采用分级启动的方法以保证启动过程中都有较大转矩和较小的启动电流。
图2 绕线转子电动机的启动特性转子串电阻启动的计算步骤(A )根据生产机械的启动要求和电动机容量确定启动电阻的级数m ,其中预备级数为i ,加速级数为n 。
(B )根据加速度要求,初步确定加速转矩的上限a T 。
Z 在没有加速度限制的情况下,可考虑充分利用电动机的启动转矩,选a T =(0.8—0.9)m ax T 。
(C )根据a T 确定第一加速级的额定转差率1N s 。
在第一加速级上,em T =a T ,s=1s ,1s =1,则:m ax 11211a m m T T s s =+ ,2m ax 11210m m aT s s T -+=解上式得:max 1[1m aT s T =+设m axa a T T μ=,则:11(1)m as μ=+第一加速级的额定转差率1N s 与起临界转差率1m s 间的关系为:11(m N s s λ=+或写成:1N s =(D )利用式q =n,各级启动电阻的公比为q ,R 和r 为各级电阻)求出公比q,nq =(E )求第一加速级电阻 121N S N R R =(F )利用式12142234232324122N SN R R R qr R qR q r R qR q r R qR q r ⎧⎫=⎪⎪=⎪⎪⎪⎪==⎨⎬⎪⎪==⎪⎪⎪⎪==⎩⎭⇒432112342::::::::1R R R R r q q q q =(G )利用式45422222343422232223232224331212222(1)(1)(1)(1)R R r qr r q r R R R q r qr q q r R R R q r q r q q r R R R q r q r q q r =-=-=-⎧⎫⎪⎪=-=-=-⎪⎪⎨⎬=-=-=-⎪⎪⎪⎪=-=-=-⎩⎭⇒ 3212233445::::::1R R R R q q q =(H )求平均启动转矩。
在加速过程中,启动转矩始终在a T 和b T 之间变动,其平均启动转矩可用算术平均值表示,即:2a bav T T T +=或用几何平均值表示:av T = 当a T 被选定后,b T 便是一个确定的值,即为:m ax 12122b m m T T s s s s =+在第一加速级上,12s qs =,1s =1,所以21s q=。
将2s 代入上式得:121max11221()11b m b m m m T qs qs T qs qs μ===++六.电动机的具体设计三相绕线行异步电动机拖动某生产机械。
已知电动机的P N =40KW,n=1435r/min,α=2.6,U 2n =290V ,I 2N =86A 。
起动时的负载转矩T L =200N •M,采用转子电路串电阻起动。
起动级数m=3。
求各级应串联的起动电阻。
1)选择起动转矩T 1T N =60P N /2πn N =(60×40×103)/(2×3.14×1435) N •m=266.32 N •m T M = αT M T N =2.6×266.32 N •mT 1=(0.8~0.9)T M =(0.8~0.9) ×692.43 N.m=(553.94~623.19)N.m取T 1=600 N.m2)求出起切转矩比βS N =(n 0-n n )/n 0=(1500-1435)/1500=0.0433β=2.25800433.032.26631=⨯=mN N T s T3)求出切换转矩T 2T 2=T 1/β=580/2.2 =263.64 N.m由于T 2>1.1T L ,所以所选m 和β合适。