圆中最值问题的常见解法
- 格式:docx
- 大小:317.91 KB
- 文档页数:7
xx与圆有关的最值(范围)问题圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助. 类型一:圆上一点到直线距离的最值问题应转化为圆心到直线的距离加半径,减半径例1 已知P 为直线y=x +1上任一点,Q 为圆C :22(3)1x y -+=上任一点,则PQ 的最小值为 。
【分析】:这是求解“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,这一结论在解题时可直接应用.解:如图1,圆心C到直线y=x +1的距离d =圆半径1r =,故1PQ PC r ≥-=变题1:已知A (0,1),B (2,3),Q 为圆C 22(3)1x y -+=上任一点,则QABS的最小值为 。
【分析】本题要求QABS的最大值,因为线段AB 为定长,由三角形面积公式可知,只需求“Q 到AB l 的最小值",因此问题转化为“圆上一动点到直线的最小距离”,即例1. 解:如图2,设Q h 为Q 到AB l 的距离,则11)42QABQ Q SAB h =⋅===+图1 图2变题2:由直线y=x +1上一点向圆C :22(3)1x y -+=引切线,则切线长的最小值为 【分析】一般地,当直线和圆相切时,应连接圆心和切点,构造直销三角形进行求解.因为222PA PC r =-,故即求PC 的最小值,即例1.解:如图3,22221PA PC r PC =-=-,∵min PC=∴min PA变题3:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB ,A 、B 为切点,则当PC= 时,APB ∠最大.【分析】APB APC ∠=∠,故即求角APC ∠的最大值,利用其正弦值即可转化为求PC 的最小值,即例1.解:如图4,∵APB APC ∠=∠,1sin APC PC∠=,∵min PC =,∴PC =APC ∠最大,即APB ∠最大.图3 图4变题4:已知P 为直线y=x +1上一动点,过P 作圆C :22(3)1x y -+=的切线PA ,PB,A 、B 为切点,则四边形PACB 面积的最小值为 .【分析】将四边形面积转化为两个全等的三角形的面积,从而转化为PA 的最小值,问题又转化为求切线段的最小值问题.解:如图4,1222PAC PAB PAB S S S S PA AC PA ∆∆∆=+==⨯⋅⋅=四边形PACB ,由变式2可知,min PA =PACB【解题回顾】在上面例1及几个变试题的解题过程中,我们可以总结一句“万变不离其宗”,一般地,求“圆上一动点到直线距离”的常见考题,可以通过平面几何的知识得“圆心到直线的距离减半径”即为最短距离,“圆心到直线的距离加半径”即为最大距离,这一结论在解题时可直接应用.另:和切线段有关的问题常利用“连接圆心和切点,构造直销三角形“进行求解.也即将“ 两个动点的问题转化为一个动点的问题”.如下例.例2已知圆C:222430x y x y ++-+=,从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M ,O 为坐标原点,且有PM=PO ,求使得PM 取得最小值的点P 坐标.【分析】本题中,由于点P 和点M 均在动,故直接做很难求解.联系到PM 是切线段,因此可利用222PM PC r =-将条件PM=PO 转化为只含有一个变量P 的式子即可求解.解:由题意,令(,)P x y ,∵222PM PC =-,∴222PC PO -=,即2222(1)(2)2x y x y ++--=+,化简得:2430x y -+=.∵PM=PO ,∴即求直线2430x y -+=到原点O (0,0)的最小距离.d==PMx类型二:利用圆的参数方程转化为三角函数求最值例3若实数x 、y 满足22240x y x y ++-=,求x-2y 的最大值.【分析】本题是典型的用圆的参数方程解决的题型,利用圆的参数方程将所求式转化为三角函数求最值,利用辅助角公式即得最大值.解:22(1)(2)5x y ++-=,令1()2x R y θθθ⎧=-+⎪∈⎨=+⎪⎩,则255cos()5x y θθθϕ-=-+-=+-(其中cos ϕϕ==) ∴当cos()1θϕ+=时,max (2)550x y -=-=,故x —2y 的最大值为0.【解题回顾】和圆有关的一次式的求解,利用圆的参数方程可以比较方便的求到最值.类型三:抓住所求式的几何意义转化为线性规划问题求最值若所求式子具有较明显的几何意义,值.比如例2,除了用圆的参数方程求解,这类题通常转化为直线方程的纵截距求解. 解法二:令2x y z -=,则1122y x z =-,由题意,当直线的纵截距最小时,z 最大,此时直线和圆相切,故圆心到直线的距离d ==故010z =-或,由题意,max 0z =,即x-2y 的最大值为0.除了转化为直线的截距求解,还有一些式子具有明显的几何意义,比如斜率、两点间距离、点到直线的距离等.比如在上例中,改为求12y x --,22(2)(1)x y -+-,1x y --的取值范围,则可以分别用如下方法求解: 对12y x --,转化为圆上任意一点P 到点(2,1)A 连线斜率的最大值,可设过点(2,1)A 的直线为1(2)y k x -=-,直线和圆相切时,即圆心到直线的距离d ==,可得122k =-或,故1[2,)(,2k ∈+∞⋃-∞-.对22(2)(1)x y -+-,转化为圆上任意一点P 到点(2,1)A 距离的平方的取值范围,由例1易得[PA CA CA ∈+,即222(2)(1)[50PA x y =-+-∈-+对1x y --,联想到点到直线的距离公式中有类似的元素.可将问题转化为圆上任意一点P 到直线10x y --=的距离的问题,易得,圆心到直线的距离为P (x ,y)到直线10x y--=,即1[4x y--∈.【解题回顾】当所求式子含有明显的几何意义时,注意联系线性规划,用线性规划的思路求解可将问题简单化和直观化.类型四:向函数问题转化平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想.有些问题,单纯利用圆的几何性质无法求解.此时应考虑如何利用代数思想将问题转化为函数问题.例4(2010年高考全国卷I理科11)已知圆O:221x y+=,P A、PB为该圆的两条切线,A、B为两切点,则PA PB⋅的最小值为【分析】本题中,由于A、B都是动点,故将PA PB⋅转化为坐标形式较难求解.此时考虑到向量数量积的定义,令2APBα∠=,cos2PA PB PA PBα⋅=,而切线段PA=PB也可用α表示,故所求式可转化为关于α的三角函数求解.解:令2((0,))2APBπαα∠=∈,cos2PA PB PA PBα⋅=,1tanPA PBα==,∴222222cos2cos cos2(1sin)(12sin)tan sin sinPA PBαααααααα⋅--⋅===,令2sin(0)t tα=>,则(1)(12)1233t tPA PB tt t--⋅==+-≥(当且仅当2t=2sin2α=时取等号)【解题回顾】本题以向量定义为载体,巧妙地利用了设角为变量,将与圆有关的问题转化为三角函数的问题求解.将几何问题代数化,利用函数思想求解.同时运用了换元思想,基本不等式思想等解题方法,是一道综合题.类型五:向基本不等式问题转化例5已知圆C:22+24x y+=(),过点(1,0)A-做两条互相垂直的直线12l l、,1l交圆C 与E、F两点,2l交圆C与G、H两点,(1)EF+GH的最大值.(2)求四边形EGFH面积的最大值.【分析】由于EF和GH都是圆的弦长,因此可利用222=+半径半弦长弦心距将EF+GH转化,用基本不等式的相关知识点.解:(1)令圆心C 到弦EF 的距离为1d ,到弦GH 的距离为2d ,则EF +GH =,又222121d d CA +==,2≤==(当且仅当122d d ==取等号)故EF +GH ≤=(2)∵EF GH ⊥,∴22128()12722d d S EF GH -+=⋅=≤⋅=四边形EFGH(当且仅当122d d ==取等号)【解题回顾】本题(1)是利用2a b +≤(2)2a b +.基本不等式是求最值的基本方法.在利用基本不等式求最值时应注意如何构造“定量”.由于圆的对称性,在与圆有关的最值问题中,应把握两个“思想":几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.同时,由于最值问题从代数意义上讲和函数的最值联系紧密,因此在解题过程中灵活的应用函数、不等式等代数思想使问题代数化、简单化也是需要注意的.。
圆中常见最值问题解法探索最值问题成为中考的典型考题,也是各章创新考题之一.下面就把圆中常见的最值问题归纳一下,供学习时借鉴.一、直径最大弦型最大值模型1. 最值的源体是圆的弦例1 (2019年东营)如图1,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°,若点M 、N 分别是AC 、BC 的中点,则MN 的最大值是 .解析:因为点M ,N 分别是BC ,AC 的中点,所以MN=21AB ,所以当弦AB 取得最大值时,MN 就取得最大值,因为直径是圆中最大的弦,所以当弦AB 是直径时,AB 最大,如图1,连接 AO 并延长交⊙O 于点B ′,连接CB ′,因为AB ′是⊙O 的直径,所以∠ACB ′=90°.因为∠ABC=45°,AC=5,所以∠AB ′C=45°,所以AB ′=2255 =52,所以MN 的最大值为最大MN =225.所以应该填.点评:当线段是圆的某条弦时,熟记直径是圆中最大的弦是解题的关键.2.动点到定弦的最大值例2(2019•广元)如图2,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上的动点,且∠BPC=60°,⊙O 的半径为6,则点P 到AC 距离的最大值是 .解析:如图2,过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM ,因为OM ⊥AC ,∠A=∠BPC=60°,⊙O 的半径为6,所以OP=OA=6,所以OM=23OA =23×6=33,所以PM=OP+OM=6+33,所以点P 到AC 距离的最大值是6+33,所以答案为6+33.点评:圆上动点到定弦距离的最大值就是垂直平分线弦的直径的两个端点到弦的距离,这是垂径定理的应用,也是直径是圆中最大的弦的应用.此法也是用于在拱形中计算最值. 跟踪专练(2019年杭州)如图3,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA 。
在初中数学中,圆的最值问题可以通过三种不同的解法来求解。
以下是三种常见的解法:
1. 几何解法:
首先,确定问题中圆的相关条件,例如圆的半径或圆心坐标等。
然后,利用几何性质和定理来分析问题。
对于圆的最值问题,常常使用切线和切线长度来解决。
通过找到与切线相关的角度和长度关系,可以求得圆的最大值或最小值。
2. 代数解法:
这种方法使用代数方程和函数来解决圆的最值问题。
首先,将圆的方程转化为合适的形式,例如标准方程或一般方程。
然后,利用代数的方法,对方程进行求导或化简,找到函数的最值点。
最后,将最值点带入原始问题中,求得圆的最大值或最小值。
3. 组合解法:
这种方法结合了几何和代数的思想。
首先,利用几何性质和定理来确定问题中的几何关系。
然后,将几何关系转化为代数方程或函数。
接下来,通过代数的方法求解方程或函数的最值点。
最后,将最值点代入几何关系中,求得圆的最大值或最小值。
圆上有动点的几何最值问题及其解法
几何最值问题是数学中一类常见的问题,它涉及到求解几何图形中的最大值或最小值。
而圆上有动点的几何最值问题又是一类比较特殊的几何最值问题,它涉及到圆内某点的最大值或最小值的求解。
圆上有动点的几何最值问题可以用三种不同的方法来解决:
利用微积分的技术,利用极坐标系来求解。
利用简单几何的方法,求解圆上最大值或最小值的位置。
利用几何图形的性质,求解圆上最大值或最小值的位置。
首先,利用微积分的技术,利用极坐标系来求解圆上有动点的几何最值问题,即求解圆上点的最大值或最小值的位置。
极坐标系的定义是:以原点O为圆心,以极轴为半径的圆绕极轴旋转,经过极轴的曲线形成的极坐标系。
在极坐标系中,点P(x,y)在极轴上的投影为点P’,其坐标为(r,θ),其中r表示点P到原点O的距离,θ表示点P与极轴的夹角。
接着,利用简单几何的方法,求解圆上最大值或最小值的位置。
首先,将圆分成若干个等份,即将圆分成N等份,每等份的弧度为2π/N。
然后,在每个等份的弧段上,取一点,并计算这些点的值,最后取最大值或最小值所在的点,即得到最大值或最小值的位置。
最后,利用几何图形的性质,求解圆上最大值或最小值的位置。
例如,若圆上的动点的值满足某种函数关系,则可以利用函数的导数来求解最大值或最小值的位置;若圆上的动点的值满足某种几何关系,则可以利用几何图形的性质来求解最大值或最小值的位置。
以上就是圆上有动点的几何最值问题及其解法的介绍。
总的来说,圆上有动点的几何最值问题可以利用微积分的技术,简单几何的方法和几何图形的性质来求解,从而得到最大值或最小值的位置。