大肠杆菌高效表达重组蛋白策略
- 格式:doc
- 大小:411.00 KB
- 文档页数:11
在大肠杆菌中表达重组蛋白的流程
在大肠杆菌中表达重组蛋白的流程通常包括以下步骤:
1. 克隆:首先需要将目标基因克隆到适当的表达载体中。
这可以通过PCR扩增目标基因,然后将其与表达载体连接,形成重组质粒。
2. 转化:将重组质粒转化到大肠杆菌细胞中。
可以使用化学方法(如热冲击法)或电穿孔法将质粒导入细胞。
3. 选择:转化后,将细胞分散在含有适当抗生素的琼脂平板上培养。
只有带有重组质粒的细胞能够存活并形成菌落。
4. 培养:将含有重组细胞的培养液转移到适当的培养基中,并在适当的条件下培养。
这可能包括调节温度、pH值和搅拌速度等。
5. 表达:在培养期间,目标基因会被大肠杆菌细胞转录和翻译为蛋白质。
使用适当的启动子和调控序列,可实现目标蛋白的高效表达。
6. 细胞破碎:一旦细胞达到最佳表达水平,就需要破碎细胞以释放目标蛋白。
这可以通过多种方法实现,如超声波、高压破碎或化学方法。
7. 纯化:通过使用各种分离和纯化技术(如亲和层析、凝胶过滤、离子交换层析等),从细胞裂解液中纯化目标蛋白。
以上是在大肠杆菌中表达重组蛋白的一般流程。
具体的步骤和条件可能因实验设计和目标蛋白的特性而有所不同。
大肠杆菌重组蛋白表达流程大肠杆菌重组蛋白表达流程主要包括以下几个步骤:1. 选择合适的表达载体:通常选择含有启动子、转录终止子、选择标记和适当的表达调控元件的表达载体。
启动子用于驱动基因转录,转录终止子用于确定转录产物的结束位置,选择标记有助于筛选含有目的基因的转化子,而表达调控元件可以调节基因的表达水平。
2. 构建表达载体:将目的基因插入表达载体中,构建成重组表达载体。
在此过程中,需要考虑目的基因的orientation(方向)、阅读框(ORF)以及表达调控元件的活性等因素。
3. 转化大肠杆菌:将构建好的重组表达载体转化到大肠杆菌中。
转化方法有多种,如化学法(如CaCl2法)、电转化、热激转化等。
转化后,大肠杆菌吸收了外源DNA,成为重组菌株。
4. 筛选重组菌株:在含有选择性抗生素的培养基上培养转化后的菌落,筛选出含有目的基因的重组菌株。
此外,可以通过鉴定菌落的形态、颜色等特征进行初步筛选。
5. 诱导表达:将筛选出的重组菌株接种到含有诱导剂(如IPTG)的培养基中,诱导目的基因的表达。
诱导剂IPTG可以与表达载体中的启动子结合,增强基因转录和翻译的效率。
6. 收集和纯化重组蛋白:诱导表达后,菌体中会含有目的蛋白。
可以通过离心、破碎细胞、柱层析等方法分离和纯化重组蛋白。
常用的纯化标签有His标签、GST标签等,这些标签可以帮助分离和纯化目的蛋白。
7. 蛋白活性检测和应用:对纯化的重组蛋白进行活性检测,如酶活测定、蛋白互作实验等。
确认蛋白活性后,可应用于生物学研究、药物研发等领域。
需要注意的是,大肠杆菌重组蛋白表达过程中可能会遇到表达量低、蛋白包涵体等问题。
为了解决这些问题,可以尝试优化表达载体、改变诱导条件、使用融合标签等策略。
研究高效蛋白质表达的技术和方法蛋白质是生物体内功能最为重要的分子之一,控制着细胞的生理过程。
研究蛋白质表达的技术和方法,对于深入了解蛋白质功能以及相关疾病治疗具有重要意义。
本文将介绍几种高效蛋白质表达的常用技术和方法。
一、刺激蛋白质表达的条件在进行蛋白质表达之前,首先需要确定适当的表达条件。
刺激蛋白质表达最常用的方法之一是通过诱导表达来增加蛋白质的合成量。
常用的诱导剂包括 IPTG、甘油和丙酮酸等。
此外,还可以根据表达蛋白的特性来选择合适的表达宿主和培养条件。
二、重组蛋白质表达系统重组蛋白质表达系统是一种常见的高效表达蛋白质的方法。
目前广泛应用的系统包括大肠杆菌表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。
1. 大肠杆菌表达系统大肠杆菌表达系统是最常用的蛋白质表达系统之一。
其优点在于操作简便、蛋白质产量高、成本低等。
大肠杆菌表达系统可以利用原核细胞内丰富的蛋白质合成机器进行表达,常见的载体系统包括pET、pGEX等。
2. 昆虫细胞表达系统昆虫细胞表达系统利用昆虫细胞进行外源蛋白质的表达。
此系统适合表达复杂、大型蛋白质,且具有较高的蛋白质折叠和翻译后修饰能力。
常用的昆虫细胞包括sf9和S2等。
3. 哺乳动物细胞表达系统哺乳动物细胞表达系统是表达重组蛋白质的黄金标准。
相比于其他表达系统,哺乳动物细胞能够正确地翻译和修饰蛋白质。
常见的哺乳动物细胞包括CHO、HEK293等。
三、蛋白质表达的改进方法除了选择适当的表达系统外,还可以通过一些改进方法来提高蛋白质表达的效率和产量。
1. 信号肽优化信号肽是控制蛋白质合成和定位的重要序列。
通过对信号肽序列的优化,可以提高目标蛋白质的合成量和稳定性。
2. 确定适当的宿主菌株不同的大肠杆菌宿主菌株对蛋白质表达效果有差异。
在进行蛋白质表达之前,选择合适的宿主菌株能够提高表达效率。
3. 调节表达体系中其他环境因素除了上述方法外,还可以通过调节表达体系中其他环境因素,如温度、基因拷贝数、培养基组成等来提高蛋白质表达效率和产量。
重组蛋白质的表达与纯化技术蛋白质是生命体活动的重要组成部分,对于生命体的生长、繁殖和免疫功能起着至关重要的作用。
而重组蛋白质则是利用基因工程技术,将人工合成的外源基因导入到特定的宿主细胞中,通过细胞表达和纯化技术得到的转录翻译产物。
这种技术不仅可以生产天然蛋白质,还可以生产人工合成的新型蛋白质,对于疾病的治疗和新药的研发有着重要的意义。
一、蛋白质表达技术蛋白质表达是获得大量重组蛋白质的重要方法。
选择适当的宿主细胞和表达载体是获得高水平表达的关键。
常用的宿主细胞包括大肠杆菌、酵母菌、昆虫细胞、哺乳动物细胞等。
1.大肠杆菌表达系统大肠杆菌表达系统具有生长快、表达量高等优点,广泛应用于重组蛋白质的表达和纯化。
其表达载体主要有pET和pBAD两种,pET系统一般用于产生可以形成包涵体的重组蛋白,pBAD系统用于在分泌表达中产生滞留蛋白。
2.昆虫细胞表达系统昆虫细胞表达系统包括SF9、Sf21、HighFive等细胞系,常用的表达载体为pIB/V5-His、pFastBac等。
昆虫细胞表达系统通常用于表达大分子蛋白质,如糖蛋白、膜蛋白等。
3.哺乳动物细胞表达系统哺乳动物细胞表达系统是目前表达规模最大、表达产物最接近人体蛋白质的一种表达系统。
其表达载体主要有pCDNA3.1、pCI 等,常用于表达与人体有关的蛋白质,如抗体、生长因子等。
二、蛋白质纯化技术蛋白纯化是重组蛋白质生产的重要环节,其目的是得到高质量的、纯度较高的蛋白质样品。
常见的纯化方法包括亲和层析法、离子交换层析法、凝胶过滤层析法、逆流式层析法等。
1.亲和层析法亲和层析法是指因与载体中固定的亲和剂相互结合而纯化目标蛋白质的一种方法。
亲和剂通常是与目标蛋白质有特异性结合作用的化合物,如亲和标签、酶底物、抗体等。
常见的亲和层析方法有亲和柱层析、亲和膜层析等。
2.离子交换层析法离子交换层析法是根据蛋白质带有正或负电荷的差异性进行分离的一种方法。
离子交换层析的柱填充物常为离子交换树脂,其一般分为阴离子交换树脂和阳离子交换树脂两种。
天津药学TianjinPharmacy2009年第21卷第4期综述重组蛋白在大肠杆菌分泌表达的研究进展’郑海洲,刘晓志,宋欣(华北制药集团新药研究开发有限责任公司,石家庄050015)摘要长期以来,大肠杆菌是表达外源蛋白的首选表达系统,重组蛋白分泌表达与胞内表达相比有很大优越性,在细胞周质腔不仅能促进重组蛋白二硫键的形成及正确折叠,还能促进分泌蛋白的N一端加工。
本文综述了近年来在大肠杆菌中表达可溶性外源蛋白的进展,目的是为了提高外源蛋白的生物活性。
关键词大肠杆菌,分泌表达,重组蛋白中图分类号:Q591.2文献标识码:A文章编号:1006-5687(2009)04-0040-03AdvanceinthesecretoryexpressionofrecombinantproteininescherichiacoilZhengHaizhou,“uXiaozhi,S0ngXin(NCPCNewDrugResearchandDevelopmentCo.,Ltd,Shijiazhuang050015)ABSTRACTEscherichiacoliisoneofthemostwidelyusedhostsfortheproductionofrecombinantproteins.Productionof8ecre—toryproteinsinescherichiacoliprovidesseveraladvantagesoverexpressioninthecytoplasm.Periplasmprovidestheoxidativeen—vironmenttofacilitatecorrectdisulfidebondingandproteinfolding.ItalsoallowscorrectprocessingofN—terminalaminoacidduringsecretion.ThisreviewdiscussesrecentadvancesinsecretoryandextracellularproductionofrecombinantproteinsSOastoimprovethebiologicalactivityofthehetemlogousproteins.KEYWORDSescherichiacoli,secretoryexpression,recombinantprotein大肠杆菌具有遗传背景清楚、繁殖快、成本低、表达量高、表达产物容易纯化等优点,是基因表达技术中发展最早和目前应用最广泛的是经典表达系统…。
大肠杆菌中高效表达外源蛋白的策略精编Document number:WTT-LKK-GBB-08921-EIGG-22986在大肠杆菌中高效表达外源蛋白的策略赵军侯云德(病毒基因工程国家重点实验室 100052 北京)本世纪60至70年代对大肠杆菌的研究使之成为自然界中最普遍为人们所认识的生物体。
大肠杆菌具有两个显着特征:操作简单和能在廉价的培养基中高密度培养,它的这些特征加上十多年外源基因表达的经验使其在大多数科研应用中成为高效表达异源蛋白最常用的原核表达系统。
尽管大肠杆菌有众多的优点,但并非每一种基因都能在其中有效表达。
这归因于每种基因都有其独特的结构、mRNA 的稳定性和翻译效率、蛋白质折叠的难易程度、宿主细胞蛋白酶对蛋白质的降解、外源基因和在密码子利用上的主要差别以及蛋白质对宿主的潜在毒性等等。
但知识的大量积累还是有助于为表达方面某些特定的困难提供一般的解决方法。
大肠杆菌作为表达系统的主要障碍包括:不能象真核蛋白那样进行翻译后修饰、缺乏将蛋白质有效释放到培养基中的分泌机制和充分形成二硫键的能力。
另一方面,许多真核蛋白在非糖基化的形式下能保留其生物学活性,因而也就可以用大肠杆菌来表达。
如何实现外源基因在原核细胞中的有效表达,自60年代以来,对影响外源基因在其表达体系中表达效率的各个因素作了大量实验研究,并有多篇归纳性综述发表[1,2,3]。
国内针对外源基因在原核细胞中高效表达的关键因素,构建了高效表达载体[4],并在此基础上成功表达了一系列细胞因子的基因[5,6,7]。
我们在分析了国内外有关在原核系统中表达蛋白的实验资料的基础上,对在大肠杆菌中高效表达外源蛋白的策略所涉及的内容进行全面的总结,以期有助于我国在这方面的研究。
有效表达载体的构型构建表达质粒需要多种元件,需要仔细考虑它们的组合,以保证最高水平的蛋白质合成。
表达载体的基本结构如图1所示[8]。
RBSPR -35 -10 SD codingsequence TT Tet Ori-35 -10Stop codonTTGACA(N)17TATAAT UAAUUGAUAGStart codonmRNA 5' UAAGGAGG(N)8 AUG(91%)16S rRNA 3'HO AUUCCUCC GUG(8%)UUG(1%)启动子(以杂和的tac启动子为例)位于核糖体结合位点(RBS)上游10-100bp处,由调节基因(R)控制,调节基因可以是载体自身携带,也可以整合到宿主染色体上。
蛋白质超表达和纯化的技术和策略蛋白质是生命体内最基本的分子之一,具有多种重要的生物学功能,如催化酶、结构支持和细胞信号传递等。
因此,研究蛋白质的超表达和纯化技术,对于生命科学领域的基础研究和应用研究都具有非常重要的意义。
蛋白质超表达技术是指利用外源基因组序列进行组成的表达载体,在细胞中高效表达目标蛋白质的方法。
目前常用的表达系统包括大肠杆菌、酵母、哺乳动物细胞等。
其中,大肠杆菌是被广泛采用的表达平台,因其生长速度快、易于培养和维护,表达高产量的重组蛋白质的能力极强。
蛋白质超表达的常用策略包括优化启动子、选择表达宿主株和表达载体、优化质粒和诱导条件等。
对于启动子的选择,一般常用的是T7、lac和trc启动子,可以通过在这些启动子中选取合适的序列,提高目标蛋白质的表达量。
表达载体的选择是提高产量的关键之一,一般载体分为表达载体、纯化载体和融合蛋白质表达载体等,选择适合的载体有助于提高表达效率。
此外,质粒特性也是表达效率的关键因素之一,包括质粒的大小、拓扑结构和复制起点等。
在选择宿主菌株时,需要考虑菌株的生长速度、表达能力和纯化难度等因素,同时根据目标蛋白质的特性进行选择。
蛋白质纯化的主要目的是获得高质量、高纯度、高活性的目标蛋白质,以满足各种研究需求。
蛋白质纯化的方法多种多样,可根据蛋白质特性不同,选择适合的纯化方法,如亲和层析、离子交换层析、凝胶过滤层析等。
其中,亲和层析是一种常用的选择性较强的纯化方法,可利用目标蛋白质与亲和分子的特异性结合,实现目标蛋白质的高纯度分离。
离子交换层析则是一种根据蛋白质带电性的分离纯化技术,可做到高效纯化目标蛋白质。
凝胶过滤层析则是一种分子量分离技术,常用于纯化较大分子量的蛋白质。
在进行蛋白质纯化时,需要充分考虑到目标蛋白质可能存在的 probllems,如聚集、不稳定、易降解等,进而采取相应的手段进行解决。
此外,还需考虑到纯化产物的稳定性,一些蛋白质在纯化过程中容易出现变性或损失活性等问题,需要通过添加辅助剂、调整 pH、温度等措施,减少纯化过程中的不良反应,获得高质量的产物。
重组胶原蛋白表达策略胶原蛋白是一种重要的结构蛋白,在人体中占据着重要的地位。
它主要存在于皮肤、骨骼、血管、肌肉等组织中,具有提供支撑、保护和维持组织结构的功能。
由于其重要性,研究人员对胶原蛋白的表达策略进行了深入研究,希望能够通过重组技术来获得大量高质量的胶原蛋白。
重组胶原蛋白的表达策略主要包括基因工程、细胞培养和生物合成三个方面。
首先是基因工程。
基因工程是指通过改变胶原蛋白基因的DNA序列,使其能够在大肠杆菌等表达宿主中高效表达。
在重组胶原蛋白的基因工程中,研究人员通常选择具有高表达能力的质粒载体,将目标胶原蛋白基因插入到载体中,并转化到宿主细胞中,通过蛋白质合成机制使胶原蛋白得以表达。
此外,还可以通过引入其他的调控元件,如启动子、终止子、增强子等,来进一步提高胶原蛋白的表达水平。
其次是细胞培养。
细胞培养是一种常用的表达胶原蛋白的方法。
研究人员通常选择哺乳动物细胞作为表达宿主,如CHO细胞、HEK293细胞等。
在细胞培养过程中,研究人员需要提供适当的培养基、温度和气体环境等条件,以促进细胞的生长和表达胶原蛋白。
此外,还可以通过细胞工程技术,如基因敲除、基因过表达等手段,来改变细胞的代谢途径和蛋白质合成能力,从而进一步提高胶原蛋白的表达水平。
最后是生物合成。
胶原蛋白的生物合成过程是一个复杂的过程,涉及到多个酶和底物的参与。
研究人员可以通过生物合成技术来模拟胶原蛋白的合成过程,从而获得高质量的重组胶原蛋白。
生物合成的关键是选择适当的底物和酶,以及优化反应条件。
此外,还可以通过改变底物浓度、酶的活性等参数,来控制胶原蛋白的生物合成过程,从而获得所需的胶原蛋白产物。
重组胶原蛋白的表达策略主要包括基因工程、细胞培养和生物合成三个方面。
通过这些策略,研究人员能够获得大量高质量的胶原蛋白,为胶原蛋白的研究和应用提供了重要的工具和基础。
在未来的研究中,我们可以进一步改进这些策略,以提高胶原蛋白的表达效率和产量,从而更好地满足人们对胶原蛋白的需求。
ecoli表达体系E. coli表达体系引言:E. coli(大肠杆菌)是一种常见的细菌,广泛应用于基因工程和蛋白质表达领域。
其独特的表达体系为科学家们在基因工程研究中提供了强大的工具。
本文将介绍 E. coli表达体系及其在蛋白质表达中的应用。
一、E. coli表达体系的基本原理E. coli表达体系是利用大肠杆菌作为宿主细胞来表达外源基因的一种方法。
其基本原理是将目标基因插入到表达载体中,然后将载体转化到E. coli细胞中,通过细胞的代谢和转录机制来实现目标基因的表达。
E. coli表达体系具有高效、简便、经济的特点,因此被广泛应用于基因工程领域。
二、E. coli表达体系的关键组成部分1. 表达载体:表达载体是E. coli表达体系的核心部分,通常由启动子、多克隆位点、选择标记和复制起始子等功能元件组成。
启动子用于启动目标基因的转录,多克隆位点用于插入目标基因,选择标记用于筛选转化成功的细菌,复制起始子用于维持载体的复制。
常用的表达载体有pET、pBAD、pGEX等。
2. 宿主细胞:E. coli细胞是E. coli表达体系的宿主细胞,其具有较高的生长速度和简单的培养条件,能够满足大规模表达的需求。
同时,E. coli细胞也具有较高的遗传稳定性和表达效率,使其成为理想的表达宿主。
3. 外源基因:外源基因是指需要表达的目标基因,可以是来自其他物种的基因序列,也可以是人工设计的合成基因。
外源基因的选择应根据研究目的和需求进行合理设计。
三、E. coli表达体系的应用E. coli表达体系在蛋白质表达领域具有广泛的应用前景。
以下是几个常见的应用领域:1. 重组蛋白表达:利用E. coli表达体系可以高效表达各种重组蛋白,如药物、酶、抗体等。
通过对目标基因的合理设计和优化表达条件,可以实现大规模的蛋白质产量,并且具有较高的纯度和活性。
2. 代谢工程:E. coli表达体系在代谢工程中也发挥着重要的作用。
第一天1、配置LB培养基:酵母粉15g、胰蛋白胨30g、氯化钠30g,定容至3000ml。
调节PH至7.4(2M NaOH),高压蒸汽灭菌20分钟,37℃保存。
分装成15瓶(每瓶200ml)。
2、接种(超净台要提前杀菌通风)取4瓶上述培养基,每瓶加200µlAMP(1:1000)、60µl菌液。
37℃过夜。
第二天1、扩大培养(超净台)4瓶扩至16瓶,每瓶培养基加200µlAMP,摇床培养1小时左右。
2、诱导(超净台)加40µlIPTG,加完后去除封口的除牛皮纸,扎口较松。
25℃摇床培养4小时。
3、离心获取菌体4℃,8000rpm离心25分钟。
注意配平。
4、超声波破碎菌体离心后去上清,向沉淀加入(600mlPB裂解液、300µl溶菌酶、3mlPMSF)。
将菌液转入2个烧杯中,冰浴超声波破菌,400W,75次,每次6秒,间隔2秒。
离心收集上清液。
600mlPB裂解液:20mM/L PB,10mM/L EDTA,5%甘油,1mM/L DTT,调节PH至7.4。
超声波破碎:首先用去离子水清洗探头,再将盛有菌液的小烧杯置于有冰水混合物的大烧杯中,冰水界面略高于菌液面即可。
探头浸没于菌液中,不可伸入过长。
注意破菌过程中由于冰的融化导致的液面变化。
5、抽滤(双层滤纸)洗胶(GST)。
将上述上清液抽滤,滤液与GST胶混合,磁力搅拌过夜。
第三天1、抽滤蛋白-胶混合液,滤液取样20µl,留电泳。
2、洗杂蛋白,用1×PBS+PMSF(1000:1)约400ml,洗脱若干次,用移液枪吸去上层泡沫(杂蛋白),至胶上无泡沫为止。
3、洗脱目的蛋白,洗脱液加50ml,分3次进行(15+15+15),每次加入后间歇搅拌,自然静置洗脱15分钟,抽滤,勿使胶干,合并洗脱液,取样20µl,留电泳。
用洗脱液调零,测OD280。
(OD值达到1.5为佳)4、将洗脱液置于透析袋中(透析袋应提前煮好),将透析袋置于2L透析液1中,加入磁珠置于4℃冰箱内磁力搅拌器上,4小时后换为透析液2。
重组蛋白的高效表达及纯化技术研究随着生物技术的发展,蛋白表达与纯化技术在医疗、工业以及科学研究等领域中扮演着越来越重要的角色。
其中,重组蛋白的高效表达及纯化技术是蛋白质学研究的关键环节之一。
本文旨在探讨目前被广泛应用的几种重组蛋白表达及纯化技术,以及它们的新进展与应用前景。
一、背景介绍重组蛋白指的是通过基因重组技术将人工合成的DNA片段引导到细胞中,使其在受到特定刺激后大量表达特定功能蛋白的一种新型蛋白质。
由于其具有高度专一性、易制备性以及更高的效力和安全性,越来越多的药物被开发为基于重组蛋白的生物制剂。
二、重组蛋白表达技术1. 原核表达系统原核表达系统是将DNA片段导入大肠杆菌等细菌中,在其形成菌落的过程中进行表达。
该系统的优点在于表达速度快、操作简便、表达产量高。
但同时,由于原核表达与真核细胞中的表达相比,它对于蛋白翻译辅助因子和蛋白修饰等生物特征的模拟程度较差,不利于蛋白的正确折叠,因此该系统表达的蛋白质通常需要经过重新折叠处理。
2. 原核表达系统与原核表达系统相比,真核表达系统更接近真实情况中的表达方式,对于全长的蛋白大多数时候能够实现正确的折叠。
在真核表达系统中,常用的系统包括昆虫细胞、哺乳动物细胞以及酵母菌表达系统等。
其中,哺乳动物细胞表达系统能够实现高产量、高质量的蛋白质表达,因此被广泛应用于蛋白质制备。
三、重组蛋白纯化技术1. 亲和层析法亲和层析法是一种将目标蛋白质从混合物中分离出来的技术。
该技术的依据是一种特定的与目标蛋白质具有相互作用的配体分离柱。
在该技术中,目标蛋白质与配体分离柱上的特定功能团结合,非特异性的蛋白质能够在洗脱过程中被去除。
2. 总体分离法总体分离法是将目标蛋白从混合物中分离出来,采用离心、可溶性和非可溶性的分离方法。
其中,在采用可溶性分离的方式时,常用的方法有两相法、分配层析等。
四、新兴技术及应用前景近年来,3D打印技术的应用逐渐渗透到生物医疗领域,并开始用于制备组织工程器官和人造蛋白质等领域。
大肠杆菌表达系统与蛋白表达纯化大肠杆菌表达系统遗传背景清楚,目的基因表达水平高,培养周期短,抗污染能力强等特点,是分子生物学研究和生物技术产业化发展进程中的重要工具。
因此熟练掌握并运用大肠杆菌表达系统的基本原理和常规操作是对每一个研究生来说是非常必要的。
本章节介绍了实验室常用的大肠杆菌表达系统的构成特点,归纳了利用大肠杆菌表达系统纯化重组蛋白的基本流程和详细操作步骤,并且结合笔者的操作经验,总结了初学者在操作过程中可能遇到的问题和解决策略。
大肠杆菌表达系统的选择与构建表达载体的选择根据启动子的不同这些载体大致可以分为热诱导启动子,如λPL,cspA等和另外一类就是广泛使用的IPTG 诱导的启动子,如lac,trc,tac,T5/lac operator,T5/lac operator等。
根据表达蛋白质的类型可分为单纯表达载体和融合表达载体。
融合表达是在目标蛋白的N端或C端添加特殊的序列,以提高蛋白的可溶性,促进蛋白的正确折叠,实现目的蛋白的快速亲和纯化,或者实现目标蛋白的表达定位。
常用的用于亲和纯化融合标签包括Poly-Arg,Poly-His,Strep-TagⅡ,S-tag,MBP等。
其中His-Tag和GST-Tag 是目前使用最多的。
His Tag大多数是连续的六个His融合于目标蛋白的N端或C端,通过His与金属离子:Cu2+>Fe2+>Zn2+>Ni2+的螯合作用而实现亲和纯化,其中Ni2+是目前使用最广泛的。
His标签具有较小的分子量,融合于目标蛋白的N端和C端不影响目标蛋白的活性,因此纯化过程中大多不需要去除。
目前常使用的表达载体主要是由Novagen提供的pET系列和Qiagen公司提供的pQE系列。
除了His标签外,还原性谷胱甘肽S-转移酶是另一种实验室常用的融合标签。
它可以通过还原性谷胱甘肽琼脂糖亲和层析而快速纯化。
此外,与His相比,GST很多时候能够促进目标蛋白的正确折叠,提高目标蛋白表达的可溶性,因此,对于那些用his标签表达易形成包涵体的蛋白,可以尝试用GST融合表达来改进。
大肠杆菌高效表达重组蛋白策略前言重组蛋白的制备在蛋白结构分析和医疗应用领域十分重要。
药物蛋白的研究需要高纯度的重组蛋白来进行药物动力学和物理化学的研究[1]。
重组蛋白在检测酶活、连接配体、蛋白相互作用等生物学领域广泛应用。
已经表达出多种重组蛋白被证明有很大的应用潜力[2,3]。
通过基因工程改造的方法已经获得了许多性状优良的宿主菌表达系统,尤其是通过大肠杆菌可以大量表达外源基因编码的重组蛋白[4]。
但是仍然有两个问题制约着大肠杆菌表达系统对重组蛋白的表达:一个是表达量低,还有一个就是表达错误折叠的蛋白包涵体[5]。
蛋白的表达和纯化工艺一直在发展进步,但是超过30%的重组蛋白为不具有生物活性的包涵体,严重影响了重组蛋白的生产应用[6,7]。
在理想条件下,重组蛋白由强启动子进行表达,产生大量的具有生物学活性的可溶性重组蛋白。
但是,强启动子会导致重组蛋白的过表达,从而影响宿主菌体的生长并产生包涵体[8]。
在某些条件下可以通过变性、复性的方法使包涵体恢复活性[9],但是复性后的蛋白是否能够完全恢复活性仍然未可知。
一般来讲,可以通过表达条件的优化来促进蛋白的可溶性表达,比如:诱导温度、培养基组成、宿主菌的种类。
还可以通过多种方案来解决蛋白不溶的问题:蛋白重新折叠[10],构建融合蛋白[11]。
另外想要进一步增加蛋白可溶性可以与分子伴侣共表达[8]或者低温诱导[12]。
本文对目前主要的促进蛋白可溶表达的方法进行了比较全面的总结。
1.大肠杆菌表达系统的构建1.1选择表达宿主菌对于大规模的表达重组蛋白,一般选择胞内表达或者周质空间表达。
与周质空间表达相比,胞内表达的表达量更高,因此应用更为广泛。
在实验研究和实际生产中,已经有很多大肠杆菌表达系统广泛应用于。
在表达体系中较为常用的大肠杆菌为B菌株和K12菌株及它们的衍生菌株(表1[13])。
美国国立研究院已经认证了K12菌株的标准性以及安全的使用方案,因此K12菌株在生产应用中具有极大的优势。
大肠杆菌目的蛋白产率引言大肠杆菌(Escherichia coli)是一种常见的细菌,被广泛应用于生物工程和生物制药领域。
大肠杆菌具有较高的生长速度和易于操作的特点,使其成为目前最常用的表达宿主。
在生物工程中,大肠杆菌常被用来表达重组蛋白,其中目的蛋白产率是一个重要的指标。
本文将深入探讨如何提高大肠杆菌目的蛋白产率的方法和策略。
优化大肠杆菌目的蛋白产率的策略为了提高大肠杆菌目的蛋白的产量,可以从以下几个方面进行优化。
1. 选择合适的表达宿主选择合适的大肠杆菌表达宿主是提高目的蛋白产量的重要因素。
常用的表达宿主包括BL21(DE3)、Rosetta(DE3)等。
这些宿主菌株具有较高的表达效率和较好的可溶性蛋白表达能力,可以最大程度地提高目的蛋白的产量。
2. 优化启动子和调控元件启动子和调控元件对目的蛋白的表达水平起着重要的调控作用。
选择合适的启动子和调控元件可以提高目的蛋白的产量。
常用的启动子包括T7启动子、lac启动子等,而调控元件包括lac重组子、araC等。
通过调整启动子和调控元件的组合和强度,可以实现对目的蛋白的精确调控。
3. 优化培养条件培养条件对大肠杆菌目的蛋白产量也有重要影响。
合理调节培养基成分、温度、pH 值和培养时间等因素,可以提高目的蛋白的产量。
此外,添加适量的诱导剂如IPTG等,可以促进目的蛋白的表达。
4. 优化目的蛋白的结构和稳定性目的蛋白的结构和稳定性对其表达水平也有一定影响。
通过合理设计融合标签、优化蛋白序列、调整培养条件等方法,可以提高目的蛋白的稳定性和溶解性,从而增加其产量。
提高大肠杆菌目的蛋白产量的实例以下是一些提高大肠杆菌目的蛋白产量的实例,供参考。
实例一:选择合适的表达宿主在一项研究中,研究人员比较了不同大肠杆菌表达宿主的目的蛋白产量。
结果显示,BL21(DE3)表达宿主相比其他宿主菌株,具有更高的目的蛋白产量。
因此,在该研究中选择BL21(DE3)作为表达宿主,成功提高了目的蛋白的产量。
大肠杆菌重组蛋白表达存在的问题一、概述大肠杆菌(Escherichia coli)是一种广泛存在于土壤和水中的革兰氏阴性细菌,是重要的生物工程表达系统。
大肠杆菌重组蛋白表达系统因其高效、简便和成本低廉而被广泛应用于生物制药、基因工程和研究领域。
然而,大肠杆菌重组蛋白表达过程中存在一系列问题,限制了其在实际应用中的发展。
二、表达负荷过大在大肠杆菌重组蛋白表达系统中,由于外源基因的表达和蛋白质合成会对细胞的正常代谢和生理过程造成负担,因此表达负荷过大是一个常见问题。
这会导致目的蛋白无法高效表达,或者甚至导致细胞逝去,影响蛋白表达的稳定性和可靠性。
三、蛋白质结构错误大肠杆菌重组蛋白表达系统中,外源基因的表达受到诸多因素的影响,例如启动子的选择、转录水平、翻译后修饰等,这些都可能导致目的蛋白结构错误。
蛋白质结构错误会降低蛋白活性和稳定性,影响其在实际应用中的效果。
四、蛋白质纯度较低在大肠杆菌重组蛋白表达系统中,外源基因的表达会导致大量的杂蛋白和热蛋白的产生,这些都会降低目的蛋白的纯度。
低纯度的蛋白在实际应用中无法满足质量标准,限制了其广泛应用。
五、蛋白聚集和包含体形成在大肠杆菌重组蛋白表达系统中,外源基因的表达会导致蛋白聚集和包含体形成,这些都会影响蛋白的溶解性和稳定性。
蛋白聚集和包含体形成是影响大肠杆菌重组蛋白表达系统应用的重要问题之一。
六、表达宿主毒性外源基因的表达可能会产生毒性蛋白,例如膜蛋白、毒素等,这些都会对大肠杆菌宿主细胞产生毒性作用,甚至导致细胞逝去。
表达宿主毒性的问题不仅影响了目的蛋白的表达效率,还可能对表达宿主细胞的健康造成影响。
七、解决方案及展望针对以上存在的问题,研究人员提出了一系列解决方案。
例如通过优化启动子和调整转录水平,减轻表达宿主的负荷;设计合适的蛋白结构域,提高蛋白质结构的稳定性;采用亲和纯化技术和蛋白纯化缓冲液,提高蛋白质的纯度;利用融合蛋白和分子筛等技术,降低蛋白聚集和包含体的形成;通过调整表达条件和优化表达宿主,减轻表达宿主的毒性等。
(完整版)1-大肠杆菌重组蛋白表达提取及纯化实验第一天1、配置LB培养基:酵母粉15g、胰蛋白胨30g、氯化钠30g,定容至3000ml。
调节PH至7.4(2M NaOH),高压蒸汽灭菌20分钟,37℃保存。
分装成15瓶(每瓶200ml)。
2、接种(超净台要提前杀菌通风)取4瓶上述培养基,每瓶加200μlAMP(1:1000)、60μl菌液。
37℃过夜。
第二天1、扩大培养(超净台)4瓶扩至16瓶,每瓶培养基加200μlAMP,摇床培养1小时左右。
2、诱导(超净台)加40μlIPTG,加完后去除封口的除牛皮纸,扎口较松。
25℃摇床培养4小时。
3、离心获取菌体4℃,8000rpm离心25分钟。
注意配平。
4、超声波破碎菌体离心后去上清,向沉淀加入(600mlPB裂解液、300μl溶菌酶、3mlPMSF)。
将菌液转入2个烧杯中,冰浴超声波破菌,400W,75次,每次6秒,间隔2秒。
离心收集上清液。
600mlPB裂解液:20mM/L PB,10mM/L EDTA,5%甘油,1mM/L DTT,调节PH至7.4。
超声波破碎:首先用去离子水清洗探头,再将盛有菌液的小烧杯置于有冰水混合物的大烧杯中,冰水界面略高于菌液面即可。
探头浸没于菌液中,不可伸入过长。
注意破菌过程中由于冰的融化导致的液面变化。
5、抽滤(双层滤纸)洗胶(GST)。
将上述上清液抽滤,滤液与GST胶混合,磁力搅拌过夜。
第三天1、抽滤蛋白-胶混合液,滤液取样20μl,留电泳。
2、洗杂蛋白,用1×PBS+PMSF(1000:1)约400ml,洗脱若干次,用移液枪吸去上层泡沫(杂蛋白),至胶上无泡沫为止。
3、洗脱目的蛋白,洗脱液加50ml,分3次进行(15+15+15),每次加入后间歇搅拌,自然静置洗脱15分钟,抽滤,勿使胶干,合并洗脱液,取样20μl,留电泳。
用洗脱液调零,测OD280。
(OD值达到1.5为佳)4、将洗脱液置于透析袋中(透析袋应提前煮好),将透析袋置于2L透析液1中,加入磁珠置于4℃冰箱内磁力搅拌器上,4小时后换为透析液2。
基因表达载体的构建--大肠杆菌高效表达重组蛋白策略*SD序列(Shine-Dalgarno sequence):mRNA中用于结合原核生物核糖体的序列。
SD序列在细菌mRNA起始密码子AUG上游7-12个核苷酸处,有一段富含嘌呤的碱基序列,能与细菌16SrRNA的3’端识别,帮助从起始AUG处开始翻译。
将全部SD序列按作用强弱不同分为三类:强、中、弱,发现强弱不同时最偏好模式不同,如GGAGG是弱SD序列的最偏好模式,AAGGA是强SD序列的最偏好模式。
同一模式距起始密码子的距离不同时,所起的调控作用也不同,如GGAG模式中的A在强SD序列中位于-8位点,在弱SD序列中位于-7和-9位点。
平均来说,各SD序列的-9位点上碱基G出现的概率最大。
结果还表明SD序列越强,基因的表达水平越高,SD序列越弱,基因表达水平越低。
SD序列与anti-SD序列的配对程度和相对位置影响起始密码子的识别和翻译效率。
信号肽结构对蛋白分泌的影响周质空间(Periplasmicspace)又称周质或壁膜空间。
在革兰氏阴性菌中,一般指其外膜与细胞膜之间的狭窄空间(宽约12-15nm),呈胶状。
肽聚糖薄层夹在其中。
可认为它是原核生物的一个特殊“细胞器”。
在周质空间中,含有多种周质蛋白,包括:1、水解酶类,如蛋白酶、核酸酶等;2、合成类,如肽聚糖合成酶;3、结合蛋白(具有借促进扩散而运送营养物质的作用);4、受体蛋白(与蛋白的趋化性有关)。
信号肽:引导蛋白分泌到胞外,最后被信号肽酶切除。
前导肽:分子伴侣:将细胞核内能与组蛋白结合并能介导核小体有序组装的核质素(nucleoplasmin )称为分子伴侣。
根据Ellis 的定义,这一概念延伸为“一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装(帮助新生肽的折叠、帮助新生肽成熟为活性蛋白、帮助蛋白质跨膜定位、亚基组装等),而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能的组份”。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。