当前位置:文档之家› 基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计
基于单片机的超声波测距仪设计

本科毕业设计(论文) 题目基于单片机的超声波测距仪设计

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

注意事项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5.装订顺序

1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

教研室(或答辩小组)及教学系意见

目录

摘要 (1)

第1章绪论 (3)

1.1课题研究的背景 (3)

1.2课题研究的意义 (3)

1.3论文结构 (3)

第2章超声波测距原理 (4)

2.1超声波简介 (4)

2.2超声波测距原理 (4)

第3章方案论证及主要元件介绍 (5)

3.1设计思路 (5)

3.2系统结构设计 (6)

3.3单片机AT89C52 (7)

3.4超声波传感器 (9)

第4章硬件电路设计 (10)

4.1超声波发射电路 (10)

4.2超声波接收电路 (10)

4.3显示电路 (11)

4.4电源电路 (11)

第5章软件设计及系统仿真 (12)

5.1主程序流程 (12)

5.2子程序设计 (14)

5.2.1超声波发送及接收中断子程序原理 (14)

5.2.2距离计算子程序 (14)

5.3软件编译调试环境——Keil (14)

5.4系统仿真环境——Proteus (15)

5.5系统仿真 (16)

5.6 误差及特性分析 (16)

结论 (18)

参考文献 (19)

附录 (20)

致谢 (33)

摘要

本文介绍了基于单片机控制的超声测距仪的原理:由AT89C52控制定时器产生超声波脉冲并启动内部的计数器开始计时,将电信号转化为超声波信号。超声波在空气介质中进行传播,当遇到障碍物时超声波返回,单片机接收返回的超声波,将超声波信号转化为电信号。通过计算超声波自发射至接收的往返时间差,从而通过计算得到实测距离。并用LM1602液晶显示器显示距离。

整个硬件电路由超声波发射电路、超声波接收电路、电源电路、显示电路等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图,给出了系统构成、电路原理及程序设计。此系统具有易控制、工作可靠、测距准确度高、可读性强和流程清晰等优点。但在准确度方面,测量准确度高,可以精确到厘米,达到了预期的测量准确度。

关键词:AT89C52 超声波测距

ABSTRACT

The design introduces the principle of the ultrasonic distance measurement instrument based on SCMC-controlled: AT89C52controls timers to produce the ultrasonic wave pulse and time.Converts electrical signals into the ultrasonic signal. Ultrasonic wave is spread in the air medium, and ultrasonic returned when faced with obstacles, MCU receives the returned ultrasonic, ultrasonic signal can be converted to electrical signals.Count the time of ultrasonic wave spontaneous emission to receive round-trip,thus obtains the measured distance.And with four LM1602 nixie tubes display distance or temperature by switching.

The entire hardware circuit is composed by ultrasonic transmitter circuit, ultrasonic receiver circuit, the power circuit, display circuit, and other modules. The probe signals are integrated analysised by SCMC to achieve the various functions of ultrasonic distance measurement instrument. Based on this has designed system's overall concept, final adoption of hardware and software to achieve the various functional modules. The relevant parts have the hardware schematics and process flow chart.It has given the system constitution, the circuitry and the programming. The instrument system has features: ease of control, stability of operation, highness of precision and distinctness of programme process ,etc. After the realization of the works can be used for needs of the various parameters measured distance applications. As a laboratory range, high measurement accuracy, can be accurate to cm, to achieve the desired accuracy.

Keywords:AT89C52; Ultrasonic Wave; Measure Distance

第1章绪论

1.1课题研究的背景

人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。

随着科学技术的快速发展,超声波将在传感器中的应用越来越广。但就目前技术水平来说,人们可以具体利用的传感技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题。毋庸置疑,未来的超声波传感器将与自动化智能化接轨,与其他的传感器集成和融合,形成多传感器。随着传感器的技术进步,传感器将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力[1]。

1.2课题研究的意义

在现实生活中,一些传统的距离测量方式在某些特殊场合存在不可克服的缺陷,例如,液面测量就是一个距离测量,传统的电极法是采用差位分布电极,通过给电或脉冲检测液面,电极长期浸泡在水中或其它液体中,极易被腐蚀、电解,从而失去灵敏性。而利用超声波测量距离可以很好地解决这一问题。目前市面上常见的超声波测距系统不仅价格昂贵,体积过大而且精度也不高等种种因素,使得在一些中小规模的应用领域中难以得到广泛的应用。为解决这一系列难题,本文设计了一款基于AT89C51单片机的低成本、高精度、微型化的超声波测距仪[2]。

1.3论文结构

论文首先对课题的背景和意义进行阐述,并概述了论文结构。

第2章先就超声波测距的原理进行介绍。

第3章针对本文采用的设计方案进行了可行性的论证,并介绍了设计中需要用到的主要器件,且因其在本设计的作用不同而详尽程序亦不同。

第4章从整体硬件设计出发,对各部分电路进行了详细说明。

第5章先给出了软件设计的整体流程图,并且给出了程序编译及系统仿真效果图。

第2章 超声波测距原理

2.1超声波简介

我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有明显的作用[3]。

理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大。在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度[4]。这就是超声波加湿器的原理。对于咽喉炎、气管炎等疾病,药品很难血流到打患病的部位。利用加湿器的原理,把药液雾化,让病人吸入,能够疗效。利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎[1]。

2.2超声波测距原理

超声波是利用反射的原理测量距离的,被测距离一端为超声波传感器,另一端必须有能反射超声波的物体。测量距离时,将超声波传感器对准反射物发射超声波,并开始计时,超声波在空气中传播到达障碍物后被反射回来,传感器接收到反射脉冲后立即停止计时,然后根据超声波的传播速度和计时时间就能计算出两端的距离[5]。测量距离D 为

ct D 2

1

(2-1) 式中 c ——超声波的传播速度;

t 2

1——超声波发射到接收所需时间的一半,也就是单程传播时间。 由上式可知,距离的测量精度主要取决于计时精度和传播速度两方面。计时精度由单片机定时器决定,定时时间为机器周期与计数次数的乘积,可选用12MHz 的晶振,使机器周期为精确的1μs,不会产生累积误差,使定时间达到1μs 。超声波的传播速度c

并不是固定不变的,传播速度受空气密度、温度和气体分子成分的影响。

超声波在空气中传播时,受温度影响最大[2],如表2-1所示

温度越高,传播速度越快,而且不同温度下传播速度差别非常大,例如0℃时的速度为332m/s,30℃时的速度为350m/s,相差18m/s。因此,需要较高的测量精度时,进行温度补偿是最有效的措施。对测量精度要求不高时,可认为超声波在空气中的传播速度为340m/s[6]。

表2-1 超声波传播速度与温度关系表

第3章方案论证

3.1设计思路

测量距离方法有很多种,短距离可以用尺,远距离有激光测距等,超声波测距适用于高精度中长距离测量。因为超声波在标准空气中传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统测量精度理论上可以达到毫米级。

目前比较普遍的测距的原理:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接受到特征频率的超声波所用的时间,换算出距离,如超声波液位物位传感器,超声波探头,适合需要非接触测量场合,超声波测厚,超声波汽车测距告警装置等[7]。

由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,我们设计的高精度超声波测距仪能达到毫米级的测量精度[3]。

目前超声波测距已得到广泛应用,国内一般使用专用集成电路根据超声波测距原理设计各种测距仪器,但是专用集成电路的成本较高、功能单一。而以单片机为核心的测距仪器可以实现预置、多端口检测、显示、报警等多种功能,并且成本低、精度高、操作简单、工作稳定、可靠。以8052为内核的单片机系列,其硬件结构具有功能部件齐全、功能强等特点。尤其值得一提的是,出8位CPU外,还具备一个很强的位处理器,它实际上是一个完整的位微计算机,即包含完整的位CPU,位RAM、ROM

(EPROM),位寻址寄存器、I/O口和指令集。所以,8052是双CPU的单片机。位处理在开关决策、逻辑电路仿真、过程测控等方面极为有效;而8位处理则在数据采集和处理等方面具有明显长处[8]。

根据设计要求并综合各方面因素,可以采用AT89C52单片机作为主控制器,它控制发射触发脉冲的开始时间及脉宽,响应回波时刻并测量、计数发射至往返的时间差。利用软件产生超声波信号,通过输出引脚输入至驱动器,经驱动器驱动后推动探头产生超声波;超声波信号的接收采用锁相环LM567对放大后的信号进行频率监视和控制。一旦探头接到回波,若接收到的信号频率等于振荡器的固有频率(此频率主要由RC 值决定),则其输出引脚的电平将从“1”变为“0”(此时锁相环已进入锁定状态),这种电平变化可以作为单片机对接收探头的接收情况进行实时监控。可对测得数据优化处理,并采用温度补偿,使测量误差降到更低限度;AT89C51还控制显示电路,用动态扫描法实现LED数字显示。

3.2系统结构设计

超声波测距仪系统结构如图3-1所示。它主要由单片机、超声波发射及接收电路、超声波传感器、键盘、LED显示电路及电源电路组成。系统主要功能包括:

1)超声波的发射、接收,并根据计时时间计算测量距离;

2)LED显示器显示距离;

3)键盘接收用户命令并处理;

4)当系统运行不正常时,用电平式开关与上电复位电路复位。

图3-1 超声波测距仪系统结构框图

3.3单片机AT89C52

单片机即单片微型计算机SCMC(Single Chip MicroComputer)。它把构成一台计算机的主要功能部、器件,如CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)、中断系统、定时/计数器等集中在一块芯CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)制功能,所以又称为微控制器MCU (Microcontroller Unit)。相对于普通微机,单片机的体积要小得多,一般嵌入到其他仪器设备里,实现自动检测与控制,因此也称为嵌入式微控制器EMCU(Embedded Microcontroller Unit)。

本设计的MCU采用的是DIP(Dual In-line Package塑料双列直插式)封装的AT89C52高性能8位单片机。AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的Flash只读程序存储器和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案[9]。

AT89C52是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash 存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其引脚图如图3-2[4]。

AT89C52的引脚功能有:

1) 主电源引脚

VSS——第20脚,电路接地电平。

VCC——第40脚,正常运行和编程校验+5V电源。

2) 时钟源

XTAL1——第19脚,一般外接晶振的一个引脚,它是片内反相放大器的输入端口。当直接采用外部信号时,此引脚应接地。

XTAL1——第18脚,接外部晶振的另一个引脚,它是片内反相放大器的输出端口。当采用外部振荡信号源泉时,此引脚为外部振荡信号的输入端口,与信号源相连接[10]。

相关主题
文本预览
相关文档 最新文档