影像重采样
- 格式:docx
- 大小:1.34 MB
- 文档页数:10
、名词解释1、像片比例尺:把摄影像片当做水平像片,地面取平均高程,这时相片上线段l 与地面上相应线段水平距离 L 之比。
2、绝对航高 :相对于平均海平面的航高,是指摄影物镜在摄影瞬间的真实海拔高度。
3、相对航高:摄影机物镜相对于某一基准面的高度。
4、像点位移:在实际航空摄影时,在中心投影的情况下,当航摄的飞行姿态出现较大倾斜,地面有起伏 时,便会导致地面点在航摄相片上构象相对于在理想情况下的构象,产生位置的差异,这一差异称为像 点位移。
5、摄影基线 :航线方向相邻两个摄影站点间的空间距离。
6、航向重叠:同一条航线内相邻像片之间的影像重叠7、旁向重叠:两相邻航带像片之间也需要有一定的影像重叠,这种重叠影像部分称为旁向重叠度。
8、像片倾角:摄影瞬间摄影机主光轴偏离铅垂线的夹角称为相片倾角。
9、像片的方位元素:确定摄影瞬间摄影物镜(摄影中心)与像片在地面设定的空间坐标系中的位置与姿 态参数,即确定这三者之间相关位置的参数。
10、像片的内方位元素:表示摄影中心与像片之间相互位置的参数。
11、像片的外方位元素:表示摄影中心与像片在地面坐标系中的位置和姿态的参数。
12、相对定向元素:确定一个立体像对两像片的相对位置的元素 。
13、绝对定向元素:描述立体像对在摄影瞬间的绝对位置和姿态的参数。
14、单像空间后方交会:利用影像覆盖范围内一定数量的控制点的空间坐标与影像坐标,根据共线条件 方程,反求该影像的外方位元素,这种方法称单幅影像的空间后方交会。
15、空间前方交会:由立体像对左右两影像的内、外方位元素和同名像点影像坐标量测值来确定相应模 型点坐标(或地面点的地面坐标) ,称立体像对的空间前方交会。
16、双像解析摄影测量:17、空中三角测量:根据航摄像片上所测量的像点坐标以及极少量的地面控制点求出地面加密点的物方 空间坐标。
18、POS :(机载定位定向系统)是基于全球定位系统(GPS )和惯性测量装置(IMU )的直接测定影像外方位元素的现代航空摄影导航系统,可用于在无地面控制或仅有少量地面控制点情况下的航空遥感对 地定位和影像获取。
名词解释1。
摄影测量学:利用光学摄影机摄影的像片,研究和确定被摄物体的形状、大小、位置、性质和相互关系的一门科学技术2。
像点位移:当地面起伏、像片倾斜时,地面点在像片上的构像相对理想情况时产生的位置差异。
3.摄影比例尺:摄影像片当作水像片,地面取平均高程时,这时像片上的一段的水平距L 之比为摄影比例尺.4。
数字影像相关:利用计算机对数字影像进行数字计算的方式完成影像的相关,识别出两幅(或多幅)影像的同名像点。
5.解析空中三角测量:以像点坐标为依据,采用一定的数学模型,用少量控制点作为平差条件,解求加密点物方坐标的理论方法或作业过程。
6.摄影基线:相邻两摄站点之间的连线7.航线弯曲度:偏离航线两端像片主点间的直线最远的像主点到该直线的距离与该直线距离之比。
8.立体像对:在航空摄影时,同一条航线相邻摄站拍摄的两张像片具有60%左右的重叠度,这两张像片成为立体像对。
9.相对定向:确定一个立体像对中两张像片相对位置的参数10。
绝对定向:确定相对定向所建立的几何模型的比例尺和模型空间方位。
11。
中心投影:投影光线相互平行的投影12.影像内定向:将仪器坐标系中的像点坐标转换为像平面坐标系中坐标的过程13.摄影基线:航线方向相邻两个摄影站点间的空间距离14。
航向重叠:同一条航线上相邻两张像片的重叠度15。
像片的外方位元素:确定摄影瞬间像片在空间坐标系中位置和姿态的参数。
或称为表示摄影中心和像片在地面坐标系中的位置和姿态的参数.16。
内方位元素:确定投影中心(物镜后节点)相对于像平面位置关系的参数17。
核线相关:沿核线寻找同名像点18.DEM:数字地形模型中地形属性为高程时称为数字高程模型19。
影像数字化:将透明正片或负片放在影像数字化器上,把像片上像点的灰度值用数字形式记录下来,此过程为影像数字化20。
模型绝对定向:用已知的地面控制点求解相对定向所建立的几何模型的比例尺和模型空间方位元素21。
同名核线:同一核面与左右影像相交形成的两条核线,其中核面指物方点与摄影基线所确定的平面22.同名像点:同一地面点发出的两条光线经左右摄影中心在左右像片上构成的像点称为同名像点。
1.像片的内方位元素:确定摄影物镜后节点相对于像片平面关系的数据。
2.摄影基线:两相邻摄站之间的距离为摄影基线。
3.核面:摄影基线与地面任一点组成的平面称为该平面的核面。
4.数字影像重采样:由于数字影响是个规则的灰度格序列,当对数字影像进行处理时,所求得的点位恰好落在原始像片上像素中心,要获得该点灰度值,就要在原采样基础上再一次采样。
5.像片主距:像片主点到物镜后节点的距离。
6.相对航高:摄影物镜相对于某一基准的高度7.像片比例尺:航摄像片上一线段为l的影像与地面上相应线段的水平距离L之比。
8.绝对航高:是相对干平均海平面的航高,是指摄影物镜在摄影瞬间的真实海拔高度。
9.中心投影:投影光线会聚于一点的投影称为中心投影。
10.平行投影:投影光线相互平行的投影为平行投影11.航向重叠:同一条航线上相邻两张像片的重叠度12.旁向重叠:相邻航线相邻两像片的重叠度13.像片倾角:摄影瞬间摄影机的主光轴近似与地面垂直,偏离铅垂线的夹角小于2度~3度,夹角为像片倾角。
14.像片的内方位元素:表示摄影中心与像片之间相互位置的参数,f,x0,y015.像片的外方位元素:表示摄影中心和像片在地面坐标系中的位置和姿态的参数。
16.核线相关:沿核线寻找同名像点,即核线相关。
17.相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。
即确定一个立体像对两像片的相对位置。
18.绝对定向元素:描述立体像对在摄影瞬间的绝对位置和姿态的参数称绝对定向元素19.单像空间后方交会:利用至少三个已知地面控制点的坐标,与其影像上对应三个像点的影像坐标,根据共线条件方程,反求该像片的外方位元素。
20.空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。
21.双像解析摄影测量:按照立体像对与被摄物体的几何关系,以数学计算方式,通过计算机解求被摄物体的三维空间坐标的方法,称为双像解析摄影测量。
遥感影像重采样方法实现与应用研究1. 引言1.1 研究背景遥感影像重采样是指利用一定的数学方法和模型,对原始遥感影像进行重新采样,以达到改善影像质量和增加影像细节的目的。
重采样方法的研究和应用对于提高遥感影像的空间分辨率和准确性具有重要意义。
目前,关于遥感影像重采样方法的研究已经取得了一定的进展,但在实际应用中还存在着一些问题亟待解决。
本文将对遥感影像重采样方法进行进一步深入的研究和探讨,旨在提高遥感影像的分辨率和质量,为遥感技术的发展提供更多的支持和帮助。
1.2 研究意义遥感影像重采样方法在遥感影像处理中具有重要的意义。
随着遥感技术的不断发展和遥感数据的不断增加,遥感影像的分辨率和精度要求也越来越高。
而遥感影像重采样方法可以有效地提高遥感影像的空间分辨率和准确性,进而提升遥感影像的应用价值和实用性。
具体来说,遥感影像重采样方法可以帮助提高遥感影像的视觉效果和解译精度,为遥感数据的地形分析、土地利用监测、资源调查等应用提供更可靠的支持。
遥感影像重采样方法还可以帮助缓解遥感数据间的空间不匹配问题,提高不同遥感数据集之间的一致性和比较性,为遥感数据融合和综合分析提供更好的基础。
通过对遥感影像重采样方法进行研究与应用,可以更好地利用遥感数据资源,提高遥感数据的利用效率和价值,进而推动遥感技术在地球科学、环境监测、城市规划等领域的广泛应用和发展。
1.3 研究目的本文旨在探讨遥感影像重采样方法的实现与应用研究,通过对现有重采样方法的概述和分类,分析其实现过程和应用案例,评价其效果,并对其优势、局限性进行总结。
具体而言,本文旨在达到以下研究目的:1. 系统总结不同类型的遥感影像重采样方法,包括传统的插值方法、深度学习方法和卷积神经网络方法等,分析各种方法的优缺点和适用范围,为选择合适的重采样方法提供参考。
2. 探讨遥感影像重采样方法的实现过程,包括数据预处理、算法设计和参数优化等方面,深入分析每个环节的关键问题和解决方法,为实际应用提供技术支持。
SAR影像几何校正中重采样和插值方法探析摘要:几何精校正中重采样内插方法是为了使校正后的输出图像像元与输入的未校正图像相对应,根据确定的校正公式,对输入图像的数据重新排列。
常用的重采样方法有最近邻点法、双线性插值和三次卷积法。
考虑到上面3种方法的优缺点,提出一种快速重采样方法。
关键词:几何精校正插值方法重采样0 引言几何校正按照重采样方式分为直接法和间接法。
以间接法校正为例,加入输出图像阵列中的任一像素在原始图像中的投影点位坐标值为整数时,便可简单地将整数点位上的原始图像的已有亮度值间接取出填入输出图像。
但若该投影点位的坐标计算值不为整数时,原始图像阵列中该非整数点位上并无现成的亮度存在,于是就必须采用适当的方法把该点位周围邻近整数点位上亮度值对该点的亮度贡献累积起来,构成该点位的新亮度值。
这个过程即称为数字图像亮度值的重采样。
1 精校正方法几何精校正中重采样内插方法是为了使校正后的输出图像像元与输入的未校正图像相对应,根据确定的校正公式,对输入图像的数据重新排列。
常用的重采样方法有最近邻点法、双线性插值和三次卷积法。
最近邻点法的优点是算法简单且能保持原始图像的亮度值不变,但常使采样后的遥感图像在亮度上不连续,原来光滑的边界出现锯齿状。
这种情况在图像的边缘表现得尤为突出。
双线性插值法的优点是计算较为简单,校正后的图像亮度连续,但因其具有低通滤波的性质,造成高频信息的损失,常使采样后的遥感图像变得模糊。
三次卷积法对前述两种方法的缺点都能克服,但计算量极大。
2 重采样方法2.1 双线性插值法该法的重采样函数是对辛克函数的更粗略近似,表达方式如下:3 结语该采样算法与双线性插值法很相似,不同的是该算法只考虑待采样点周围的两个点,而不是双线性插值法的四个点,因此从算法上来说较后者简单,与最近邻近插值法相比,该算法考虑了待采样点周围的像素亮度值对待采样点的亮度值的贡献,能够保持原图像的光谱信息,使得重采样图像具有较好的采样效果和质量。
数字影像重采样名词解释
数字影像重采样是一种数字图像处理技术,用于在改变图像的大小或分辨率时对像素进行重新分配。
在数字影像处理中,当需要对图像进行缩放、旋转或变换时,由于像素的数量和位置发生了变化,需要通过重采样来生成新的像素值。
重采样的目的是在保持图像整体外观和细节的同时,根据新的像素网格重新计算像素值。
常见的重采样方法包括最近邻插值、双线性插值和三次立方插值等。
这些方法根据周围像素的值来计算新像素的值,以填充新的像素网格。
通过数字影像重采样,可以实现对图像的大小调整、变形、旋转等操作,同时保持图像的质量和清晰度。
它是数字图像处理中常用的技术之一,广泛应用于图像编辑、计算机图形学、图像压缩等领域。
遥感影像重采样⼀、简介 图像重采样就是从⾼分辨率遥感影像中提取出低分辨率影像,或者从低分辨率影像中提取⾼分辨率影像的过程。
常⽤的⽅法有最邻近内插法、双线性内插法、三次卷积法等⼆、重采样⽅法1 使⽤ReadAsArray函数def ReadAsArray(self, xoff=0, yoff=0, win_xsize=None, win_ysize=None, buf_obj=None,buf_xsize = None, buf_ysize = None, buf_type = None,resample_alg = GRIORA_NearestNeighbour,callback = None,callback_data = None)•xoff=0, yoff=0,指定从原图像波段数据中的哪个位置开始读取。
•win_xsize=None, win_ysize=None,指定从原图像波段中读取的⾏数和列数。
•buf_xsize=None, buf_ysize=None,指定暂存在内存中的新图像的⾏数和列数。
•buf_type=None,指定新图像的像素值的类型。
•buf_obj=None,指定新图像像素值数组的变量,因为整个⽅法也会返回⼀个新图像像素值的数组,⽤这两种⽅式获取重采样后的数组都可以。
•resample_alg=GRIORA_NearestNeighbour,重采样⽅法,默认为最近邻⽅法。
•callback=None,callback_data=None,回调函数和数据。
该函数的作⽤在于将⼀部分数据读取到已定义的⼀个数组中。
从其参数 resample_alg来看,该函数可以完成重采样功能。
但是需要对重采样后的地理变换进⾏重新设置。
地理变换中包含像素⼤⼩等信息,重采样后,像素⼤⼩发⽣变化,地理变换也要随之更新低分辨率重采样成⾼分辨率# _*_ coding: utf-8 _*_import osfrom osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('p047r027_7t20000730_z10_nn10.tif')in_band = in_ds.GetRasterBand(1)out_rows = in_band.YSize * 2out_columns = in_band.XSize * 2gtiff_driver = gdal.GetDriverByName('GTiff')out_ds = gtiff_driver.Create('band1_resampled.tif',out_columns, out_rows)out_ds.SetProjection(in_ds.GetProjection())geotransform = list(in_ds.GetGeoTransform())geotransform[1] /= 2geotransform[5] /= 2out_ds.SetGeoTransform(geotransform)data = in_band.ReadAsArray(buf_xsize=out_columns, buf_ysize=out_rows)out_band = out_ds.GetRasterBand(1)out_band.WriteArray(data)out_band.FlushCache()out_puteStatistics(False)out_ds.BuildOverviews('average', [2, 4, 8, 16, 32, 64])del out_ds⾼分辨率重采样成低分辨率# _*_ coding: utf-8 _*_import osimport numpy as npfrom osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('nat_color.tif')out_rows = int(in_ds.RasterYSize / 2)out_columns = int(in_ds.RasterXSize / 2)num_bands = in_ds.RasterCountgtiff_driver = gdal.GetDriverByName('GTiff')out_ds = gtiff_driver.Create('nat_color_resampled.tif',out_columns, out_rows, num_bands)out_ds.SetProjection(in_ds.GetProjection())geotransform = list(in_ds.GetGeoTransform())geotransform[1] *= 2geotransform[5] *= 2out_ds.SetGeoTransform(geotransform)data = in_ds.ReadRaster(buf_xsize=out_columns, buf_ysize=out_rows)out_ds.WriteRaster(0, 0, out_columns, out_rows, data)out_ds.FlushCache()for i in range(num_bands):out_ds.GetRasterBand(i + 1).ComputeStatistics(False)out_ds.BuildOverviews('average', [2, 4, 8, 16])del out_ds 注意,在这种情况下,要确保⾏数和列数是整数,因为除法的结果可能是浮点数,如果不是整型数据,程序很可能报错。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。