第20讲 面积计算(三)
- 格式:docx
- 大小:87.24 KB
- 文档页数:6
面积总结归纳在日常生活中,面积是一种用来描述物体表面大小的计量单位。
它在各个领域都有着广泛的应用,无论是在建筑设计、农业生产还是科学研究中,都需要准确地计算和比较不同物体的面积。
本文将对面积的概念进行简要介绍,并总结归纳面积的计算方法和应用场景。
一、什么是面积面积是平面几何中一种用来描述物体表面大小的量度。
它通常以平方单位(如平方米、平方厘米)表示。
在二维平面中,一个物体的面积等于其所占据的平面区域的大小。
二、常见物体的面积计算方法1. 矩形的面积计算:对于一个矩形,其面积可以通过将其宽度与长度相乘得到。
公式为:面积 = 宽度 ×长度。
2. 正方形的面积计算:对于一个正方形,其面积可以通过将其边长的平方得到。
公式为:面积 = 边长 ×边长。
3. 圆的面积计算:对于一个圆,其面积可以通过将其半径的平方乘以π(圆周率)得到。
公式为:面积 = 半径 ×半径× π。
4. 三角形的面积计算:对于一个三角形,其面积可以通过将其底边长度与高的乘积再除以2得到。
公式为:面积= (底边长度×高)/ 2。
三、面积的应用场景1. 建筑设计中的面积计算:在建筑设计过程中,需要计算各个房间、楼层、建筑物的面积,以便进行合理的空间规划和材料使用。
面积计算还有助于评估建筑的使用效率和设计质量。
2. 农业生产中的面积计算:在农业生产中,面积计算是农田规划、种植布局和农作物产量评估的重要依据。
通过计算田地面积,农民可以准确地安排种植区域,合理使用肥料和水资源,提高农作物的产量和质量。
3. 科学研究中的面积计算:在科学研究中,面积计算在各个学科领域都有广泛的应用。
例如,在地理学中,需要计算陆地和海洋的面积以研究地球表面的特征和分布;在生物学中,需要计算生物群落的面积以评估生态系统的健康状况。
4. 商业活动中的面积计算:在商业活动中,面积计算是商场、仓库和办公室管理的重要环节。
通过准确计算商业场所的面积,可以合理配置商品陈列、库存管理和工作空间,提高经营效率和顾客体验。
第20讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用。
典型问题兴趣篇1.如图20-1,在三角形ABC 中,AD 的长度是AB 的34,AE 的长度是AC 的23。
请问:三角形AED 的面积是三角形ABC 面积的几分之几?2.如图20-2,AC 的长度是AD 的45,且三角形AED 的面积是三角形ABC 面积的一半。
请问:AE 是AB 的几分之几?3.如图20-3,深20厘米的长方形水箱装满水放在平台上。
(1)当水箱像图20-4这样倾斜,水箱中水流出15,这时AB 长多少厘米?(2)如图20-5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这时水箱中水的深度是多少厘米?图20-1BD CE A图20-2BEDCABA B A~~~~~~~~~~~~~~~~~~~~图20-6图20-5图20-4图20-34.如图20-7,某公园的外轮廓是四边形ABCD ,被对角线AC BD 、分成4个部分。
三角形AOB 的面积是2平方千米,三角形BOC 的面积是3平方千米,三角形COD 的面积是1平方千米。
如果公园由大小为6.9万平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?5.如图20-8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。
请问:梯形ABCD 的面积是多少平方厘米?6.如图20-9,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近B 点的三等分点,求图中阴影部分的面积。
图20-7ODABC图20-8CDBAO图20-97.图20-10中的两个正方形的边长分别为6分米和8分米,求阴影部分的面积。
8.如图20-11,梯形ABCD 的对角线相互垂直。
三角形AOB 的面积是12,OD 的长是4,求OC 的长。
9.在图20-12中,正方形ABCD 的边长为5厘米,且三角形CEF 的面积比三角形ADF 的面积大5平方厘米,求CE 的长。
第二十周面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r 用小学知识无法求出时,可以把“r 2”整体地代入面积公式求面积。
例题1。
如图20-1所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米 【3.14×102×错误!-10×(10÷2)】×2=107(平方厘米) 答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差.(20÷2)2×错误!-(20÷2)2×错误!=107(平方厘米) 答:阴影部分的面积是107平方厘米。
练习11、 如图20-4所示,求阴影部分的面积(单位:厘米)2、 如图20-5所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角20-120-26 BA20-549292949例题2。
如图20-6所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。
如图20-7所示。
3.14×62×错误!-(6×4-3.14×42×错误!)=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。
把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。
例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。
2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。
2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。
3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。
同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。
如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。
它的周围铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖的面积。
面积的计算考点图解技法透析面积法是一种重要方法,计算图形面积是平面几何中最常见的基本问题之一,与面积相关的知识有:(1)常见图形的面积计算公式:正方形面积=边长×边长;矩形的面积=长×宽;平行四边形面积=底×高;三角形面积=底×高÷2;梯形面积=(上底+下底)×高÷2;圆的面积=×半径的平方;扇形面积=2360n r(n为圆心角,r为半径)(2)计算面积常常用到以下结论:①等底等高的两个三角形的面积相等;②等底的两个三角形的面积比等于对应高的比;③等高的两个三角形的面积比等于对应底的比;④三角形一边上的中线平分这个三角形的面积.(3)面积计算常用到以下方法:①和差法:把所求图形的面积转化为常见图形面积的和、差表示,运用常见图形的面积公式;②等积法:找出与所求图形面积相等的或者关联的特殊图形,通过代换转化来求出图形的面积;③运动法:通过平移、旋转、割补等方式,将图形中的部分图形运动起来,把图形转化为容易观察或解决的形状;④代数法:通过寻求图形面积之间的关系列方程(组);把几何问题转化为代数问题.(4)非常规图形的面积计算往往采用“等积变换”,所谓“等积变换”就是不改变几何图形的面积,而是把它的形状改变成能够直接求出面积的图形,等积变换的主要目的,是把复杂的图形变成简单的图形,把不规则的图形变成规则的图形.(5)“等积变换”的方法①公式法,即运用某些图形的面积公式及其有关推论.②分割法,即把一个图形分割成熟知的若干部分图形.③割补法,即把一个图形的某一部分分割出来,然后用与其等积图形填补到某一位置.名题精讲考点1 用面积公式计算常规图形面积例1 如图,将直角三角形BC 沿着斜边AC 的方向平移到 △DEF 的位置(A 、D 、C 、F 四点在同一条直线上).直角边DE 交BC 于点G .如果BG =4,EF =12,△BEG 的面积等于4,那 么梯形ABGD 的面积是 ( )A .16B .20C .24D .28【切题技巧】【规范解答】 B【借题发挥】 把不能直接求出面积的图形通过转化或找出与它面积相等的特殊图形,从而能够求解.【同类拓展】 1.如图所示,A 是斜边长为m 的等腰直角三角形,B ,C ,D 都是正方形,则A ,B ,C ,D 的面积的和等于 ( )A .94m 2B .52m 2C .114m 2D .3m 2考点2 用面积的和、差计算非常规图形有面积例2 如图,P 是平行四边形ABCD 内一点,且S △PAB =5, S △PAD =2,请你求出S △PAC (即阴影部分的面积).【切题技巧】 △APC 的底与高显然无法求,则应用已知三角 形的面积的和或差来计算△APC 的面积.【规范解答】【借题发挥】 对于不能直接求的图形可以把图形进行分解和组合,通过图形的面积和或差进行计算.【同类拓展】 2.如图,长方形ABCD 中,△ABP 的面积为a , △CDG 的面积为b ,则阴影四边形的面积等于 ( )A .a +bB .a -bC .2a bD .无法确定考点3 列方程(组)求面积例3 如图所示,△ABC 的面积是1cm 2.AD =DE =EC , BG =GF =FC ,求阴影四边形的面积.【切题技巧】条件中有两组等分点,易知△BCE,△ACF的面积为13,但仍然不能求阴影部分面积,因此,只要求出△BCE中另两块面积即可,【规范解答】如图,设AG与BE交于N,AF与BE交于P,连接NC,ND,PC,PD.设△NGB的面积为x,△NDE的面积为y,则有△NCG的面积为2x,△NEA的面积为2y.因为△ABC的面积是1cm2,且AD=AE=EC,BG=GF=FC.【借题发挥】求一些关系复杂的图形面积,列方程是一个重要方法,它不但可以使我们熟悉列方程和了解方程在几何中的应用,而且能清晰地表明图形面积之间的关系,从而可以化解或降低解题的难度.【同类拓展】3.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…、S8,试比较S3与S2+S7+S8的大小,并说明理由.考点4 面积比与线段比的转化例4 如图所示,凸四边形ABCD中,对角线AC、BD相交于O点,若△AOD的面积是2,△COD的面积是1,△COB的面积是4,则四边形ABCD的面积是 ( )A.16 B.15 C.14 D.13【切题技巧】分析△AOD,△DOC,△AOB,△COB四个三角形的面积,只有通过线段比联系起来,相邻两个三角形的面积都存在着一种比例关系.【规范解答】【借题发挥】 两三角形的高相等时,面积比等于对应底之比,则可以将面积比与对应线段比相互转化,这是.解答面积问题、线段比等问题的常用技巧.【同类拓展】 4.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则AGCD ABCDS S 四边形矩形等于 ( )A .56B .45C .34D .23考点5例5 如图所示,在四边形ABCD 中,AM =MN =ND , BE =EF =FC ,四边形ABEM 、MEFN 、NFCD 的面积分别记为S 1,S 2和S 3.求213?S S S =+【切题技巧】 把四边形分割成多个三角形,运用三角形等积变换定理即可求出,【规范解答】 连接A .E 、EN 、PC 和AC .【借题发挥】 等积变形的题目中,常将多边形面积转化为三角形面积,再运用等底同高来进行等积代换,因此,在转化时只要抓住题设中的等分点,就可以将多边形面积进行等积变换了.【同类拓展】 5.如图,张大爷家有一块四边形的菜地,在A 处有一口井,张大爷欲想从A 处引一条笔直的水渠,且这条笔直的水 渠将四边形菜地分成面积相等的两部分,请你为张大爷设计一种引水 渠的方案,画出图形并说明理由. 考点6 格点多边形的面积例6 如图,五边形ABCDE 的面积为多少?我们把方格纸上两组互相平行且垂直的直线的交点叫格点. 顶点在格点上的多边形叫格点多边形.可以通过图形的分割,转化为规则图形,再求面积.【规范解答】如图,标上字母F 、G 、H 、I 、J 点,使得△ABF , △BCG ,△CDH ,△DEI ,△EAJ 为直角三角形,【借题发挥】 格点多边形面积有如下计算规律:格点多边形的面积等于其所包含有格点个数,加上由其边界上的格点的个数之半,再减去1.此规律对凹多边形也适用.即:若格点多边形的面积为S ,格点多边形内部有且只有n 个格点,它各边上格点的个数和为x .则S =12x +n -1. 【同类拓展】 6.如图,在一个由4×4个小正方形组成的正方形 格中,阴影部分面积与正方形ABCD 面积的比是 ( ) A . 3:4 B .5:8 C .9:16 D .1:2 参考答案1.A 2.A 3.S 3=S 2+S 7+S 8. 4.D 5.S △ABF =S 四边形AFCD . 6.B2019-2020学年数学中考模拟试卷一、选择题1.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.ASA D.AAS2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个3.点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B.C. D.4.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,AB长为半径画弧,交边AD于点F;②再分别以B,F为圆心画弧,两弧交于平行四边形ABCD内部的点G处;③连接AG并延长交BC于点E,连接BF,若3BF=, 2.5AB=,则AE的长为( )A.2B.4C.8D.55.如图,点是边长为1的菱形对角线上的一个动点,点,分别是边,的中点,则的最小值是( )A. B.1 C. D.26.方程组的解是( )A.B. C. D.7.多项式4x-x 3分解因式的结果是( ) A .()2x 4x-B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)-8.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱9.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是( )A.B. C.D.10.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是A.12B.1C.23D.1311.分解因式3a2b﹣6ab+3b的结果是()A.3b(a2﹣2a)B.b(3a2﹣6a+1)C.3(a2b﹣2ab)D.3b(a﹣1)212.在整数范围内,有被除数=除数×商+余数,即a=bq+r(a≥b,且b≠0,0≤r<b),若被除数a和除数b确定,则商q和余数r也唯一确定,如:a=11,b=2,则11=2×5+1此时q=5,r=1.在实数范围中,也有a=bq+r(a≥b且b≠0,商q为整数,余数r满足:0≤r<b),若被除数是,除数是2,则q与r的和( )A.﹣4 B.﹣6 C.-4 D.-2二、填空题13.如图,矩形ABCD中,AB=6,AD=,点E是BC的中点,点F在AB上,FB=2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为_____.14.计算:(﹣12)2=_____.15.如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则BC的长为_____厘米.(结果保留π)16.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________.17.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.18.计算:(a+b )(2a ﹣2b )=_____. 三、解答题19.已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2﹣(2k+2)x+k 2+2k =0的两个实数根,第三边长为10.问当k 为何值时,△ABC 是等腰三角形?20.如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,过A 作AE ∥BC 交CD 延长线于E.(1)求证:EA 是⊙O 的切线;(2)若BD 经过圆心O ,其它条件不变,则△ADE 与圆重合部分的面积为_____.(在备用图中画图后,用阴影标出所求面积)21.小张在网上销售一种成本为20元/件的T 恤衫,销售过程中的其他各种费用(不再含T 恤衫成本)总计40(百元),若销售价格为x(元/件),销售量为y(百件),当30≤x≤50时,y 与x 之间满足一次函数关系,且当x =30时,y =5,有关销售量y(百件)与销售价格x(元/件)的相关信息如下:(1)请在表格中直接写出当30≤x≤50时,y与x的函数关系式;(2)求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;(3)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?22.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD留π).23.为考察甲、乙两种农作物的长势,研究人员分别抽取了6株苗,测得它们的高度(单位:cm)如下:甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.(1)你认为哪种农作物长得高一些?说明理由;(2)你认为哪种农作物长得更整齐一些?说明理由.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.25.已知,抛物线C1:y=- 12x2+mx+m+12(1)①当m=1时,抛物线与x轴的交点坐标为_______;②当m=2时,抛物线与x轴的交点坐标为________;(2)①无论m取何值,抛物线经过定点P________;②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,记为函数C2,则函数C2的关系式为:________ ;(3)如图,若抛物线C1与x轴仅有一个公共点时,①直接写出此时抛物线C1的函数关系式;②请在图中画出顶点M满足的函数C2的大致图象,在x轴上任取一点C,过点C作平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,求点C的坐标;(4)二次函数的图象C2与y轴交于点N,连接PN,若二次函数的图象C1与线段PN有两个交点,直接写出m的取值范围.【参考答案】***一、选择题二、填空题14.415.20π16.417.4218.2a 2﹣2b 2三、解答题19.k =8或10【解析】【分析】因为方程有两个实根,所以△>0,从而用k 的式子表示方程的解,根据△ABC 是等腰三角形,分AB =AC ,BC =AC ,两种情况讨论,得出k 的值.【详解】∵△=[﹣(2k+2)]2﹣4(k 2+2k)=4k 2+8k+4﹣4k 2﹣8k=4>0,∴x =()222k --+⎡⎤⎣⎦,∴x 1=k+2,x 2=k ,设AB =k+2,BC =k ,显然AB≠BC,而△ABC 的第三边长AC 为10,(1)若AB =AC ,则k+2=10,得k =8,即k =8时,△ABC 为等腰三角形;(2)若BC =AC ,则k =10,即k =10时.△ABC 为等腰三角形.【点睛】本题考查了一元二次方程的根,公式法,解本题要充分利用条件,选择适当的方法求解k 的值,从而证得△ABC 为等腰三角形.20.(1)见解析;(2)23π.【解析】【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠O AE=90°,可得:AE 是⊙O 的切线;(2)如备用图,根据等边三角形的性质得到BD ⊥AC ,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,根据平行线的性质得到∠AED=∠BCD=90°,解直角三角形得到AD=2,连接OA ,根据扇形和三角形的面积公式即可得到结论.(1)证明:如图1,连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)如备用图,∵△ABC是等边三角形,BD经过圆心O,∴BD⊥AC,∠ABD=∠CBD=30°,∠BAD=∠BCD=90°,∵EA是⊙O的切线,∴∠EAD=30°,∵AE∥BC,∴∠AED=∠BCD=90°,∵∴AD=2,∵OA=OB ,∴∠OAB=OBA=30°,∴∠AOD=60°,∴△ADE 与圆重合部分的面积=S 扇形AOD -S △AOD=260212236023ππ⋅⨯-⨯=故答案为:23π【点睛】本题考查了作图-复杂作图,切线的判定和性质,扇形的面积计算,正确的作出图形是解题的关键.21.(1)y =﹣110x+8;(2)见解析;(3)销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【解析】【分析】(1)把x =50代入y =150x得y =3,设y 与x 的函数关系式为:y =kx+b ,把x =30,y =5;x =50,y =3,代入解方程组即可得到结论;(2)根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;(3)结合(1)中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.【详解】(1)把x =50代入y =150x得y =3, 设y 与x 的函数关系式为:y =kx+b ,∵当x =30时,y =5,当x =50时,y =3,∴530350k b k b =+⎧⎨=+⎩, 解得:1k 10b 8⎧=-⎪⎨⎪=⎩,∴y 与x 的函数关系式为:y =﹣1x+8;故答案为:y =﹣110x+8; (2)当30≤x≤60时,w =(x ﹣20)(﹣0.1x+8)﹣40=﹣0.1x 2+10x ﹣200;当60<x≤80时,w =(x ﹣20)• 150x ﹣40=﹣3000x+110; (3)当30≤x≤60时,w =﹣0.1x 2+10x ﹣200=﹣0.1(x ﹣50)2+50,∴当x =50时,w 取得最大值50(百元);当60<x≤80时,w =﹣3000x +110, ∵﹣3000<0,∴w 随x 的增大而增大,当x =60时,w 最大=60(百元),答:销售价格定为60元/件时,获得的利润最大,最大利润是60百元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.22.(1)见解析;(2)23π-【解析】【分析】(1)欲证明AC 是⊙O 的切线,只要证明OD ⊥AC 即可.(2)证明△OBE 是等边三角形即可解决问题.【详解】(1)证明:连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3,∴∠2=∠3,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形,∴GC =OD =OB =2,OG =CD ,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为260?2360π⨯﹣12=23π- 【点睛】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.甲组数据的平均数为100cm ;乙组数据的平均数为100cm ;(2)甲种农作物长得比较整齐.【解析】【分析】(1)根据平均数的计算公式分别把这6株农作物的高度加起来,再除以6即可;(2)先算出甲与乙的方差,再进行比较,方差越小的,农作物长势越整齐,即可得出答案.【详解】(1)甲组数据的平均数=16×(98+102+100+100+101+99)=100(cm ); 乙组数据的平均数=16×(100+103+101+97+100+99)=100(cm ); (2)s 2甲=16×[(98﹣100)2+(102﹣100)2+…+(99﹣100)2]=53; s 2乙=16×[(100﹣100)2+(103﹣100)2+…+(100﹣99)2]=103. s 2甲<s 2乙.所以甲种农作物长得比较整齐.【点睛】本题考查了平均数与方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差大,波动性越大,反之也成立.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由“AAS ”可证AED CEF ∆≅∆,可得DE EF =;(2)由直角三角形的性质可得CD AD =,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF 是菱形.【详解】(1)证明:∵CF AB ∥ ,∴DAC ACF ∠∠=,又∵AE EC AED CEF ∠∠=,= ,∴AED CEF AAS ≌(), ∴DE EF =.(2)∵90ACB ∠︒=,D 是AB 的中点,∴CD AD =∵DE EF AE EC =,=∴四边形ADCF 是平行边形又∵AD CD =∴四边形ADCF 是菱形.【点睛】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.25.(1)(﹣1,0)(3,0);(﹣1,0)(5,0);(2)(-1,0); y=12 (x+1);(3)点C 的坐标为(1,0)或(-3,0);(4)-12<m≤0 【解析】【分析】(1)①把m=1,y=0分别代入抛物线C1,得到一个一元二次方程,解方程即可求出交点横坐标。
4分米图34名师导航学校三年级奥数辅导讲义长方形、正方形面积思路点拨:1、对于不规则图形的面积,或所求图形面积的必要条件不充分一般采取 大面积 - 小面积2、对于求几个图形的面积和,可以切割,拼接。
例1、一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪,草坪的面积是多项式少平方米?例2、右图是由6个相等的三角形拼成的图形,求这个图形的面积。
例3、已知图3中大正方形比小正方形的边长多4厘米,大正方形面积比 小正方形多96平方厘米。
大正方形和小正方形的面积各是多少?例4、正方形中套着一个长方形,正方形的边长是15厘米,长方形的四个角的顶点, 恰好分别把正方形四条边都公成两段,其中长的一段是短的2倍。
这个长方形的面积是多少平方米?例4、已知正方形ABCD的边长为6分米,长方形BCEF和长方形AGHD的面积分别为24平方分米和20平方分米,求阴影部分和面积。
例5、一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明。
练习与思考1.用长36厘米长的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2.有一个长方形的市民广场,长100米,宽80米。
广场中间留了宽4米的人行道,把广场平均分成四块(如图6),每一块的面积是多少?3.下图是由12个相等的三角形拼成的,这个图形的面积是多少?4.已知大正方形的面积比小正方形多52平方分米,大正方形比小正方形的边长多2分米。
小正方形的面积是多少?大正方形的面积是多少?5.是由9个小长方形组成的,面积分别是1平方米,2平方米,3平方米,4平方米,5平方米,那么,A 号长方形和面积是多少呢?6.一个正方形中套着一个长方形,已知正方形的边长 是16分米,长方形的四个角的顶点恰好把正方形四条边 都分成两段,其中长的一段是短的3倍。
阴影部分的面积 是多少?7.图中阴影部分的面积是多少?8.把一块长6分米,宽5分米的长方形钢板,截成长3分米,宽2分米的小长方形钢板,最多能截几块?请画图说明。
《梯形面积的计算》说课稿《梯形面积的计算》说课稿6篇《梯形面积的计算》说课稿1一、教材:1、说课内容:五年制小学课本第八册第三章第3节。
[数学网更多小学数学说课稿]2、教材简析:梯形的面积计算是在梯的认识基础上进行教学的是以后学习图形面积计算的基础。
3、教学目标:(1)理解的基础上掌握面积的计算公式,能够正确计算梯形的面积。
(2)通过做图观察比较,发展学生的空间观念,培养学生的分析、综合、抽象、概括能力。
4、教学重难点:重点:梯形面积公式。
难点:熟练正确的进行应用。
5、教具:课件、小黑板学具:两个三角形,两个梯形。
二、教学:在这堂课中设计过程中,我采用目标教学,在本课教学中,我采用以下教学方法。
1、讲解法:在本课教学中,梯形面积的计算对学生来说是陌生的,我通过学习(三角形及*行四边形的面积推导过程)进行梯形面积计算的教学,提高学生的推导能力。
2、引导发现法:运用边讲边提问的方法组织教学,引导学生层层深入,在积极获取新知。
3、讨论法:由梯形面积的计算,公式是本节课的教学重点,熟练掌握是本节课的难点,为了突出重点突破难点,又使学生能将本节课的新学的知识进行消化吸收,我采用了讨论法、操作法,通过讨论互相学习,体现学生的主体作用,调动了学生的学习兴趣。
4、练习法:通过各种形式分角度练习,不仅激发了学生的学习兴趣,而且保证了知识的巩固和技能的形成。
三、学法:1、在教师的引导下,运用知识迁移的规律学习知识,让学生初步理解数学知识之间的内在联系。
2、通过教师的启发讲解,提问教会学生观察区分相似事物之间的规律,通过对问题的分析、培养、总结、归纳、概括能力,通过不同形式的练习培养学生的判断力、应变能力。
四、教学过程:1、复习铺垫,又促迁移:围绕本课的教学目标,我们在教学中安排以下几个过程。
〈一〉、前提测评:师:用两个完全一样的梯形可以拼成一个什么图形?生:*行四边形为了唤起学生的旧知识,促进迁移,上课一开始出示拼一拼和*行四边形面积的计算。
第20讲面积计算
一、知识要点
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练
【例1】如图所示,求图中阴影部分的面积。
【思路】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米
[3.14×102×1
4
-10×(10÷2)]×2=107(cm2)
答:阴影部分的面积是107cm2。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2
×
1
2
-(20÷2)
2
×
1
2
=107(cm2)
答:阴影部分的面积是107cm2。
练习1:
1、如图所示,求阴影部分的面积(单位:厘米)
2、如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。
求红蓝两张三角形纸片面积之和是多少?
【例2】如图所示,求图中阴影部分的面积(单位:cm)。
【思路】解法一:先用长方形的面积减去小扇形的面积,
得空白部分(a)的面积,再用大扇形的面积减去空白部分
(a)的面积。
如图所示。
3.14×62×1
4
-(6×4-3.14×42×
1
4
)=16.82(cm2)
解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。
把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
3.14×42×1
4
+3.14×62×
1
4
-4×6=16.28(cm2)
答:阴影部分的面积是16.82cm2。
练习2:
1、如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:cm)。
2、如图所示,三角形ABC 是直角三角形,AC 长4厘米,BC 长2厘米。
以AC 、BC 为直径画半圆,两个半圆的交点在AB 边上。
求图中阴影部分的面积。
3、如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。
求图中阴影部分的面积。
【例3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。
【思路】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。
空白部分的一半:10×10-(10÷2)2×3.14=21.5(cm 2) 阴影部分的面积:10×10-21.5×2=57(cm 2)
解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。
(10÷2)2×3.14×2-10×10=57(cm 2)
答:阴影部分的面积是57cm 2。
练习3:
1、求下面各图形中阴影部分的面积(单位:厘米)。
2、求下面各图形中阴影部分的面积(单位:厘米)。
3、求下面各图形中阴影部分的面积(单位:厘米)。
【例4】在正方形ABCD中,AC=6厘米。
求阴影部分的面积。
【思路】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。
但我们可以看出,AC是等腰直角
三角形ACD的斜边。
根据等腰直角三角形的
对称性可知,斜边上的高等于斜边的一半
(如图所示),我们可以求出等腰直角三角
形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。
这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。
既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(cm2)阴影部分的面积为:18-18×3.14÷4=3.87(cm2)
答:阴影部分的面积是3.87cm2。
练习4:
1、如图所示,图形中正方形的面积是50cm2,分别求出每个图形中阴影部分的面积。
2、如图所示,图形中正方形的面积是50cm 2,分别求出每个图形中阴影部分的面积。
3、如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。
求图形中阴影部分的面积(试一试,你能想出几种办法)。
【例5】在图的扇形中,正方形的面积是30cm 2。
求阴影部分的面积。
【思路】阴影部分的面积等于扇形的面积减去正方形的面积。
可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。
我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。
这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。
3.14×(30×2)×14-30=17.1(cm 2)
答:阴影部分的面积是17.1cm 2。
练习5:
1、如图所示,平行四边形的面积是100cm 2,求阴影部分的面积。
2、如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45cm2,求阴影部分的面积。
3、如图所示,半圆的面积是62.8cm2,求阴影部分的面积。