模糊控制的理论研究
- 格式:ppt
- 大小:274.00 KB
- 文档页数:16
1.模糊控制的相关理论和概念1.1 模糊控制的发展模糊控制理论是在美国加州伯克利大学的L. A.Zadeh教授于1965年建立的模糊集合论的数学基础上发展起来的。
之后的几年间Zadeh又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了基础。
1975年, Mamdan和Assilian创立了模糊控制器的基本框架,并用于控制蒸汽机。
1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。
20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。
到20世纪90年代初,市场上已经出现了大量的模糊消费产品。
近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。
1.2 模糊控制的一些相关概念用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数,用A(x) 表示,它满足:A(x)用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函数A(x)模糊系统是一种基于知识或基于规则的系统。
它的核心就是由所谓的IF-THEN规则所组成的知识库。
一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。
例如:如果一辆汽车的速度快,则施加给油门的力较小。
这里的“快”和“较小”分别用隶属度函数加以描述。
模糊系统就是通过组合IF-THEN规则构成的。
构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。
不同的模糊系统可采用不用的组合原则。
模糊掌握理论前言“模糊”是人类感知万物,猎取学问,思维推理,决策实施的重要特征。
“模糊” 比“清楚”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
在日常生活中,人们的思维中有很多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。
人们常用的阅历规章都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的阅历:桶里没水或水较少时,应开大水阀;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应快速关掉水阀。
其中,“较少”、“很小”等,这些表示水位和掌握阀门动作的概念都具有模糊性。
即有阅历的操作人员的掌握规章具有相当的模糊性。
模糊掌握就是采用计算机模拟人的思维方式,依据人的操作规章进行掌握,实现人的掌握阅历。
模糊掌握概况模糊掌握是以模糊集合论、模糊语言变量和模糊规律推理为基础的一种计算机数字掌握技术。
1965年,美国的LA. Zadeh创立了模糊集合论;1973年他给出了模糊规律掌握的定义和相关的定理。
1974年,英国的E. H. Mamdani首先用模糊掌握语句组成模糊掌握器,并把它应用于锅炉和蒸汽机的掌握,在试验室获得胜利。
这一开拓性的工作标志着模糊掌握论的诞生。
模糊掌握实质上是一种非线性掌握,属于智能掌握的范畴。
模糊掌握的一大特点是既具有系统化的理论,又有着大量实际应用背景。
模糊掌握的进展最初在西方遇到了较大的阻力。
这是跟西方人的思维特征亲密相关,西方人喜爱理性分析问题,要把全部东西都数字化;然而在东方尤其是在日本,却得到了快速而广泛的推广应用。
近20多年来,模糊掌握不论从理论上还是技术上都有了长足的进步,成为自动掌握领域中一个特别活跃而又硕果累累的分支。
其典型应用的例子涉及生产和生活的很多方面,例如在家用电器设施中有模糊洗衣机、空调、微波炉等;在工业掌握领域中有水净化处理、发酵过程、水泥窑炉等的模糊掌握;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯以及机器人的模糊掌握等。
第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。
把模糊逻辑应用于控制领域则始于1973年”。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。
此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。
由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。
从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。
它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。
模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。
⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。
③以语言变量代替常规的数学变量,易于形成专家的“知识”。
④控制推理采用“不精确推理”(Approximatc Reasoning)。
推理过程模仿人的思维过程。
由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。
2.1.1模糊数学模糊数学是基于模糊集理论。
模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。
模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。
假设ξ是一个普通集合,称为论域。
从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。
µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。
模糊理论总结简介模糊理论(Fuzzy Theory)是一种用于处理不确定性问题的数学方法,其背后的思想是模糊集合论。
模糊理论从模糊集合的角度对问题进行描述和处理,可以克服传统二值逻辑的限制,更符合人类思维的特点。
模糊理论主要应用于控制系统、人工智能、数据挖掘和模式识别等领域。
通过引入模糊概念,模糊理论能够有效处理模糊、不确定或不完全信息的问题,使得决策和系统设计更加灵活和适应实际应用。
模糊概念在模糊理论中,模糊概念是一个介于完全成员和完全非成员之间的概念。
与传统的二值逻辑相比,模糊概念允许元素有一定程度的隶属度。
模糊集合是由一系列隶属度在[0,1]范围内的元素组成的。
模糊概念的隶属函数描述了元素与模糊集合的关系。
常见的隶属函数包括三角函数、高斯函数和sigmoid函数等。
通过对隶属度的计算和操作,可以对元素进行模糊化处理,从而更好地表达和处理不确定性问题。
模糊推理模糊推理是模糊理论的核心。
与传统的逻辑推理相比,模糊推理能够处理模糊或不确定的条件和结论。
模糊推理根据输入的模糊规则和模糊事实,通过模糊逻辑运算得出模糊结论。
模糊推理的过程包括模糊化、模糊规则匹配和模糊合成三个步骤。
模糊化将输入的模糊事实转换为模糊集合,模糊规则匹配对输入的模糊事实和模糊规则进行匹配,模糊合成根据匹配结果和隶属度计算得出最终模糊结论。
模糊推理可以应用于各种决策问题,如模糊控制系统中的规则推理、模糊分类和模糊聚类等。
模糊控制模糊控制是模糊理论的一种重要应用,用于处理带有模糊或不确定性信息的控制问题。
传统的控制方法通常基于精确的模型和确定性的输入,而模糊控制则能够应对系统模型不确定或难以建立的情况。
模糊控制系统由模糊控制器和模糊规则库组成。
模糊控制器负责对输入模糊事实进行模糊推理,得出模糊控制命令。
模糊规则库包含了一系列模糊规则,用于将输入模糊事实映射到输出模糊命令。
模糊控制系统的设计包括确定模糊集合、编写模糊规则和确定隶属函数等步骤。