传感器应用实例作业2016(完).
- 格式:doc
- 大小:847.50 KB
- 文档页数:9
传感器设计与应用实例一、引言随着科技的进步和社会的发展,传感器在各个领域的应用也变得越来越广泛。
传感器作为一种用于检测和测量物理量的设备,可以感知环境中的各种参数并将其转换为可用的电信号。
本文将就传感器的设计与应用实例进行全面、详细、完整且深入地探讨,旨在了解传感器的设计原理和各个领域的典型应用案例。
二、传感器的分类传感器可以按照测量参数的类型进行分类。
常见的传感器分类包括温度传感器、湿度传感器、压力传感器、光学传感器等。
不同类型的传感器具有不同的工作原理和应用场景。
2.1 温度传感器温度传感器可将环境温度转换为电信号。
常见的温度传感器有热电偶、热敏电阻和温度芯片等。
它们在智能家居、工业自动化和气象监测等领域有着广泛的应用。
2.2 湿度传感器湿度传感器用于测量环境中的湿度水分含量。
常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器等。
应用场景包括空调系统、农业温室和食品保鲜等。
2.3 压力传感器压力传感器可感知环境中的压力变化。
常见的压力传感器有压电传感器、扩散硅传感器和谐振式压力传感器等。
它们广泛应用于工业制造、汽车安全和医疗领域。
2.4 光学传感器光学传感器是一种能够感知光的强度、波长和方向的传感器。
常见的光学传感器有光电传感器、光耦合器和光纤传感器等。
它们被广泛用于光通信、图像识别和光学测量领域。
三、传感器的设计原理传感器的设计需要对各种物理量进行准确测量,并将其转换为可用的电信号输出。
设计传感器的关键在于选择合适的感知元件、信号处理电路和输出接口。
3.1 感知元件感知元件的选择直接影响传感器的灵敏度和测量范围。
常见的感知元件包括电容器、电磁线圈和光敏二极管等。
例如,温度传感器可以使用热敏电阻来感知温度变化。
3.2 信号处理电路传感器的信号处理电路用于将感知元件输出的模拟信号转换为数字信号或放大处理。
信号处理电路的设计需要考虑噪声抑制、放大增益和滤波等因素。
数字信号处理可以更好地适应现代化的数据处理要求。
传感器在生活中的应用传感器是一种能够检测和测量各种物理量的装置。
它们在生活中广泛应用,可以帮助我们收集信息、控制环境、监测健康状况等。
下面是一些关于传感器在生活中的应用的例子:1.汽车:汽车中使用了大量的传感器,包括氧传感器、压力传感器、温度传感器、雨刮器传感器等。
这些传感器可以监测发动机运行状态、控制排放、帮助驾驶员安全行驶等。
2.家庭自动化:传感器在智能家居中也广泛应用。
例如,可以使用红外传感器来监测人体移动,并自动打开或关闭灯光。
还可以使用温度传感器、湿度传感器来控制室内温湿度,使居住环境更舒适。
3.医疗:传感器在医疗领域中也有广泛应用。
例如,可以使用心率传感器来监测心跳,帮助医生诊断心脏疾病。
还可以使用血糖传感器来监测血糖水平,帮助糖尿病患者控制疾病。
4.运动:传感器也广泛应用于运动设备中,如手环、智能手表等。
这些这些设备中常常包含加速度传感器、陀螺仪、GPS模块等,可以监测运动量、步数、跑步速度等,帮助人们更好地记录和分析自己的运动数据。
5.环境监测:传感器在环境监测中也有广泛应用。
例如,可以使用气体传感器来监测大气污染物浓度,帮助人们了解环境质量。
还可以使用土壤湿度传感器来监测土壤水分含量,帮助农民科学灌溉。
6.其他应用:传感器在其他领域中也有广泛应用,如工业自动化、军事、航空等。
它们可以帮助我们收集各种信息,提高效率和安全性。
总的来说,传感器是一种非常有用的装置,在生活中有着广泛的应用。
它们可以帮助我们更好地了解周围的环境,并且在很多领域中发挥着重要的作用。
传感器作业一、设计一种传感器应用实例:压电式传感器压电式传感器工作原理:它是以某些电介质的压电效应为基础,在外力的作用下,在电介质的表面上产生电荷,实现力与电荷的转接,从而完成非电量如动态力、加速度等的检测,但不能用于静态参数的测量。
压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷;当外力去掉后,又重新回到不带电的状态;当作用力方向改变时,电荷的极性也随之改变,这种现象称为压电效应。
应用方案:我的方案是应用在鼠标上,现在是冬季来领,玩电脑时手不能取暖,因此我想到运用压电式传感器,在鼠标外面装一个套子,里面放入散热片,在鼠标面上装上压电式传感器连接到散热片,这样当我们在玩电脑时手伸进套子里就不会冷了,当然键盘上也可以诸如此类设置。
电路图:二、查找并写出教材以外的一种传感器的工作原理,应用实例:烟雾传感器烟雾传感器工作原理:烟雾报警器就是通过监测烟雾的浓度来实现火灾防范的,烟感器内部采用离子式烟雾传感,离子式烟雾传感器是一种技术先进,工作稳定可靠的传感器,被广泛运用到各种消防报警系统中,性能远优于气敏电阻类的火灾报警器。
它在内外电离室里面有放射源媚241,电离产生的正、负离子,在电场的作用下各自向正负电极移动。
在正常的情况下,内外电离室的电流、电压都是稳定的。
一旦有烟雾窜逃外电离室。
干扰了带电粒子的正常运动,电流,电压就会有所改变,破坏了内外电离室之间的平衡,于是无线发射器发出无线报警信号,通知远方的接收主机,将报警信息传递出去。
烟雾传感器检测原理:在探测器的电离室内放α放射源Am241,其不断地持续放射出α粒子射线,以高速运动撞击空气中的氮、氧等分子,在α粒子的轰击下引起电离,产生大量的带正负电荷的离子,从而使得原来不导电的空气具有导电性,当在电离室两端加上一定的电压后,使得空气中的正负离子向相反的电极移动,形成电离电流。
具体电流的大小与电离室本身的几何形状、放射度、 粒子能量、电极电压的大小及空气的密度、温度、湿度和气流速度等因素有关烟雾传感器特征:整机电路由稳压、信号检测、信号处理、比较触发、信号输出及声光报警等电路组成用途:烟雾传感器用于煤矿井下有瓦斯和煤尘爆炸危险及火灾危险的场所,能对烟雾进行就地监测、遥测和集中监视,能输出标准的开关信号,并能与国内多种生产安全监测系统及多种火灾监控系统配套使用。
6.4 传感器的应用实例教学目标(一)知识与技能1.了解两个实验的基本原理。
2.通过实验,加深对传感器作用的体会,培养自己的动手能力。
(二)过程与方法通过实验培养动手能力,体会传感器在实际中的应用。
(三)情感、态度与价值观在实验中通过动手组装和调试,增强理论联系实际的意识,激发学习兴趣,培养良好的科学态度。
教学重点、难点重点1.了解斯密特触发器的工作特点,能够分析光控电路的工作原理。
2.温度报警器的电路工作原理。
难点光控电路和温度报警器电路的工作原理。
教学方法实验法、观察法、讨论法。
教学手段实验过程中用到的有关器材、元器件等,由实验室统一准备教学过程(一)引入新课随着人们生活水平的提高,传感器在工农业生产中的应用越来越广泛,如走廊里的声、光控开关、温度报警器、孵小鸡用的恒温箱、路灯的自动控制、银行门口的自动门等,都用到了传感器.传感器的工作离不开电子电路,传感器只是把非电学量转换成电学量,对电学量的放大,处理均是通过电子元件组成的电路来完成的.这节课我们就来动手组装光控开关或温度报警器。
(二)进行新课实验1、光控开关1.实验原理及知识准备(投影)如图所示光控电路,用发光二极管LED模仿路灯,R G为光敏电阻,R1的最大电阻为51 kΩ,R2为330 kΩ,试分析其工作原理.白天,光强度较大,光敏电阻R G电阻值较小,加在斯密特触发器A端的电压较低,则输出端Y输出高电平,发光二极管LED不导通;当天色暗到一定程度时,R G的阻值增大到一定值,斯密特触发器的输入端A 的电压上升到某个值(1.6V),输出端Y突然从高电平跳到低电平,则发光二极管LED导通发光(相当于路灯亮了),这样就达到了使路灯天明熄灭,天暗自动开启的目的.(1)要想在天更暗时路灯才会亮,应该把R1的阻值调大些还是调小些?为什么?应该把R1的阻值调大些,这样要使斯密特触发器的输入端A电压达到某个值(如1.6V,就需要R G的阻值达到更大,即天色更暗。
作业3:3.问答题(1)什么是电阻的应变效应?利用应变效应解释金属应变式电阻传感器的工作原理。
答:金属导体在外力的作用下发生机械变形,其电阻值随着机械变形(伸长或缩短)的变化而发生变化,这种现象称为金属的应变效应。
现有一根长度为l ,截面积为A ,电阻率为ρ的金属丝,如图2-5所示。
图2-5 金属应变效应 未受力时,电阻值为S l R ρ= 当金属丝受到拉力F 作用时,将引起电阻值发生变化,电阻的相对变化量为SS l l R R ΔΔΔΔ-+=ρρ,当材料一定时,ρ不发生变化,电阻值的变化仅与金属丝长度和金属丝截面积的变化有关。
(2)弹性元件在应变式电阻传感器中起什么作用?答:弹性敏感元件是电阻式传感器的敏感元件,能直接感受到被测的量的变化。
(3)简述应变式电阻传感器测量电路的功能。
答:由于弹性敏感元件和应变片的应变量一般都很小,电阻值的变化量也很小,不易被观察、记录和传输,需要通过电桥电路将该电阻值的变化量放大,并转换成电压或电流信号。
(4)应变式电阻称重传感器的工作原理是什么?(5)电阻应变传感器测量加速度的原理是什么?答:当被测物体以加速度a 运动时,质量块受到一个与加速度方向相反的惯性力作用,悬臂梁在惯性力作用下产生弯曲变形,该变形被粘贴在悬臂梁上的应变片感受到并随之产生应变,从而使应变片的电阻值发生变化。
悬臂梁的应变在一定的频率范围内与质量块的加速度成正比,通过测量质量块悬臂梁的应变,便可知加速度的大小。
(6)试比较金属应变式传感器和半导体压电式传感器的异同点。
答:相同点:两者都是将应变力转换为电阻的变化。
不同点:金属应变式传感器是由于导体的长度和半径发生改变而引起电阻值的变化,而半导体应变式传感器是由于其载流子的迁移率发生变化而引起电阻值的变化。
作业4:3.问答题(1)简述电容式传感器的工作原理。
答:两平行极板组成的电容器,如果不考虑边缘效应,其电容量为 式中,ε为极板间介质的介电常数,A 为两电极互相覆盖的有效面积,d 为两电极之间的距离。
传感器工作原理及应用实例
磁敏度传感器是一种常用传感器,它采用磁敏变压器原理,通过磁感
应效应来检测磁场。
它是在磁芯内施加一定外力使磁铁的磁性发生改变,
从而通过一定的转换装置,把磁场的变化信号转换成可识别的电压或电流
输出。
磁敏度传感器通常用来测量磁场的强度、磁力矩,从而测量物体的
位置,速度,运动状态等。
磁敏度传感器的应用实例很多,首先,它可以用来检测外部应变或力,从而实现自动控制,如机器人、计算机自动控制系统等;另外,磁敏度传
感器也可用于实时监控机械设备,可以实时检测其运行状态,从而提高设
备运行效率;此外,磁敏度传感器还可以用来检测地震波等地质运动,这
对地质勘探、地质探测等有很大的帮助。
传感器应用案例传感器是一种能够感知环境并将感知结果转化为可用信号的设备。
随着科技的不断发展,传感器的应用范围也越来越广泛。
下面列举了一些传感器应用案例。
1. 温度传感器:温度传感器广泛应用于各种工业和家用设备中,如空调、冰箱、烤箱等。
它们可以感知环境温度并将其转化为电信号,从而控制设备的温度。
2. 湿度传感器:湿度传感器可以感知环境中的湿度,并将其转化为电信号。
它们广泛应用于气象、农业、建筑等领域中,如测量土壤湿度、控制室内湿度等。
3. 光敏传感器:光敏传感器可以感知环境中的光线强度,并将其转化为电信号。
它们广泛应用于照明、安防、摄影等领域中,如自动调节灯光亮度、控制摄像机曝光等。
4. 压力传感器:压力传感器可以感知环境中的压力,并将其转化为电信号。
它们广泛应用于汽车、航空、医疗等领域中,如测量轮胎压力、控制飞机气压等。
5. 加速度传感器:加速度传感器可以感知物体的加速度,并将其转化为电信号。
它们广泛应用于汽车、手机、游戏等领域中,如控制汽车稳定性、检测手机摇晃等。
6. 磁力传感器:磁力传感器可以感知环境中的磁场强度,并将其转化为电信号。
它们广泛应用于导航、安防、医疗等领域中,如检测地磁场、控制门禁系统等。
7. 气体传感器:气体传感器可以感知环境中的气体浓度,并将其转化为电信号。
它们广泛应用于环保、工业、医疗等领域中,如检测空气质量、控制化工生产等。
8. 水质传感器:水质传感器可以感知水中的各种物质浓度,并将其转化为电信号。
它们广泛应用于水处理、环保、农业等领域中,如检测水质、控制灌溉系统等。
9. 声音传感器:声音传感器可以感知环境中的声音强度,并将其转化为电信号。
它们广泛应用于通信、安防、医疗等领域中,如检测噪音、控制语音识别系统等。
10. 生物传感器:生物传感器可以感知生物体内的各种物质浓度,并将其转化为电信号。
它们广泛应用于医疗、生物工程等领域中,如检测血糖、控制生物反应器等。
传感器的应用范围非常广泛,它们可以帮助我们更好地感知环境、控制设备、保护健康等。
传感器的应用案例
传感器是一种用于感知、监测与测量环境中特定物理量的装置,广泛应用于各个领域。
下面列举了10个传感器的应用案例:
1. 温度传感器:用于测量环境温度,常见于空调、冰箱、热水器等家电设备中,以控制温度在合适的范围内。
2. 光敏传感器:用于感知光线强度的变化,常见于自动照明系统、摄像机中,以实现自动调节光线亮度和拍摄质量。
3. 湿度传感器:用于测量环境湿度,常见于气象仪器、温室、空气净化器中,以监控和控制湿度水平。
4. 压力传感器:用于测量压力变化,广泛应用于汽车、工业设备、医疗器械等领域,以实现压力监测和控制。
5. 加速度传感器:用于测量物体的加速度,常见于汽车、智能手机、运动设备中,以实现运动检测和姿态跟踪。
6. 位移传感器:用于测量物体的位移变化,常见于机械设备、机器人、汽车制动系统中,以实现位置控制和安全监测。
7. 气体传感器:用于检测环境中的气体浓度,常见于煤气报警器、空气质量监测仪器中,以实现气体泄漏和污染监测。
8. 声音传感器:用于感知环境中的声音变化,常见于安防系统、智
能家居中,以实现声音检测和警报。
9. 触摸传感器:用于感知物体的触摸或接近,常见于智能手机、电子设备中,以实现触摸操作和接近检测。
10. 水位传感器:用于测量液体的水平高度,常见于水箱、洗衣机、污水处理设备中,以实现水位监测和控制。
这些传感器应用案例涵盖了生活、工业、安全、医疗等多个领域,展示了传感器在实际应用中的重要性和广泛性。
通过传感器的监测与测量,我们能够更好地了解和控制环境中的物理量,提高生活质量和工作效率。
传感器技术的发展不仅为我们带来了便利,也为各行各业提供了更多的创新机会。
使用温度传感器的几个实例辛国秦1.摩擦生热(1)用少许餐巾纸包裹温度传感器探头,记录初始温度值。
(2)迅速用餐巾纸反复摩擦探头1min,记录摩擦后的温度值。
(3)比较温差,得出结论。
起始温度摩擦后温度上升2.压缩气体产热(1)将温度传感器探头紧密插入30mL注射器内,记录初始温度值。
(2)插入注射器推柄活塞,用力压缩注射器内的空气,记录压缩后的温度值。
(3)比较温度差,得出结论。
起始温度压缩气体温度3.水蒸发与散热(1)用少许餐巾纸包裹温度传感器探头,记录初始温度值。
(2)在餐巾纸上滴加清水(浸透餐巾纸即可),每5s 记录1次温度值,记录200s 。
(3)比较温度变化数据,分析并得出结论。
室温水蒸发200s后的温度4.比较几种有机溶剂的挥发性目的一般来说,有机溶剂都有一定的挥发性。
不同的有机溶剂挥发性不同。
其挥发性气体常常易燃、易爆,甚至具有致癌性。
了解这些溶剂的性质,有利于防止在实验中的安全隐患,避免事故的发生。
原理溶剂挥发的过程是一个吸热的过程,因而温度会随着溶剂挥发而逐渐降低。
挥发性越强,温度下降越快。
方法(1)选取分析纯的酒精、丙酮、苯、二甲苯、乙醚等有机溶剂备用。
(2)用少许餐巾纸包裹温度传感器探头,记录初始温度值。
(3)在餐巾纸上滴加一种有机溶剂(浸透餐巾纸即可),每5s记录1次温度值,记录100s并保存。
之后再选一种溶剂重复测得100s内温度变化的数值。
(4)比较不同溶剂温度变化数据,分析并得出结论。
5.比较不同材料的导热性目的建设节能保温型墙体建筑及旧楼墙体改造,对于打造低碳城市、推进节能减排有着重大意义。
通过对不同建筑材料的导热性的测定,可以使学生理解如何优选环保、高效的保温材料的理论依据。
原理不同的材料其导热性不同。
导热性越强,散热性也越强,保温性就越差。
方法(1)选取规格约为10cm×10cm×1cm的玻璃砖、瓷砖、木板、红砖、纤维板、加气块、苯板等材料备用。
《传感器应用实例》考试方式:考查院系:自动控制系专业:测控技术与仪器班级: 13030344 姓名:李楠学号: 13030344022016年6月 10 日一、查阅传感器(电阻式、电容式、磁电式、热电式、光电式,以及其他类型的新型传感器)应用的相关资料,选择一类传感器,综述这类传感器的应用实例,并分析1至2个应用实例(从传感原理、结构、被测量传感及测试实现过程)(不能将网上原文复制粘贴,需要阅读文献并理解,以自己的思路进行总结分析,控制在4至6页) 50分(一)电容式传感器1.基本工作原理[1]电容式传感器是一个具有可变参数的电容器。
多数场合下,电容是由两个金属平行极板组成,并且以空气为介质,如图1所示。
两个平行板组成的电容器的电容量为AC d ε=图1平板电容ε-电容极板间介质的介电常数,0r εεε=;0ε-真空介电常数;r ε-介质材料的相对介电常数;A -两平行极板覆盖的面积;d -两平行极板之间的距离;C –电容量;当被测参数变化使得式中的A,ε或d 发生变化时, 电容量C 也随之变化。
如果保持其中两个参数不变, 而仅改变其中一个参数, 就可把该参数的变化转换为电容量的变化, 通过测量电路就可转换为电量输出。
因此, 电容式传感器可分为变极距型、变面积型和变介质型三种类型。
改变平行极板间距d 的传感器可以测量微米数量级的位移,而变化面积A 的传感器则适用于测量厘米数量级的位移,变介电常数式电容式传感器适用于液面、厚度的测量。
2.应用实例(一)——电容式转速传感器(1) 变面积式电容传感器工作原理[1]如图2所示是常见的变面积式电容传感器的结构示意图。
变面积式电容传感器可分为:线位移式电容传感器如图2(a )、角位移式电容传感器如图2(b )、圆柱式线位移电容传感器如图2(c )(d )。
测量范围比变间隙式大,可以测量较大范围的现位于和角位移。
图2 (c )、(d )中所示1、3为固定电容板,2为可动电容板。
而该应用实例的工作原理就是线位移式电容传感器的工作原理。
图2表面积式电容传感器结构示意图线位移式电容传感器的工作原理(如图3为线位移式电容传感器工作原理图):图3线位移式电容传感器工作原理图极板起始覆盖面积为 A = a ³b ,沿活动极板长度方向移动Δa ,则改变了两极板间覆盖的面积,忽略边缘效应,改变后的电容量为'0()b a a bC C a d d εε-∆==-∆式中a ——极板的长度;b ——极板的宽度。
电容的变化量为'0ba C C C a C d aε∆∆=-=∆= 灵敏度为01c C C K a a∆==∆ 灵敏度系数c K 为常数,可见减小极板长度a 可提高灵敏度,而极板的起始覆盖宽度b 与灵敏度系数c K 无关。
但b 不能太小,必须保证b >>d ,否则边缘处不均匀电场的影响将增大。
(2)电容式转速传感器结构及测量原理电容式转速传感器是一种电参数型数字式转速传感器。
工作时,齿盘随被测轴转动,周期性的改变电容器电极板之间的相对面积,电容量发生周期变化,即传感器利用电容变换原理将被测轴机械转速变换成电容参数量,传感器输出的电容参数信号的频率与被测转速成正比。
图4电容式转速床干起结构原理图3.应用实例(二)——电容式加速度传感器在发动机上的应用(1)电容式加速度传感器工作原理[1]电容式加速度传感器的优点是频率响应范围大,量程范围大,仅受弹性系统设计限制。
其设计的一个困难是如何获得对温度不敏感的阻尼。
由于气体粘度的温度系数比液体要小得多,因此采用空气或其它气体作阻尼是合适的。
如图5所示是空气阻尼的电容加速度计。
图5电容式加速度计1.绝缘体;2.固定电极;3.振动质量(动电极);4.弹簧片电容式加速度传感器的结构形式一般采用弹簧质量系统。
当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。
电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。
在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。
(2)电容式加速度传感器在发动机上的应用原理及构造[2]在发动机EOBD失火诊断模块中,需要借助垂直方向的加速度来判断目前车辆所处的路况。
如果所处路面的竖直方向加速度超过某一幅值,那么在一定概率下,发动机曲轴的转速波动会和失火时候的情况近似,这时候就需要暂时关掉失火诊断功能,以免发动机故障指示灯误报警。
加速度传感器在发动机失火诊断中的应用当车辆在极度不平的路面行驶时,车辆的振动可能会通过传动系传到发动机曲轴,造成曲轴转速信号的变化,引起误判失火。
目前,在国内外中高端车辆中,主要采用ABS的信号来判断坏路面。
而在低端车中(未安装ABS),加速度传感器由于具有判断灵敏等优点而被广泛地应用。
图6差动式电容加速度传感器结构原理图如图6所示为差动式电容加速度传感器结构原理图。
它有2个固定极板Y、Z(与壳体绝缘),中间有一用弹簧片支撑的质量块X,此质量块的2个端面经过磨平抛光后作为可动极板(与壳体电连接)。
当传感器壳体随被测对象在垂直方向上作直线加速运动时,质量块在惯性空间中相对静止,而2个固定电极将相对质量块在垂直方向上产生大小正比于被测加速度的位移。
此位移使两电容的间隙发生变化,一个增加,一个减小,从而使C1、C2产生大小相等,符号相反的增量,此增量正比于被测加速度。
(二)参考文献[1] 孟立凡,蓝金辉.传感器原理与应用(第三版)[M].北京:电子工业出版社,2015:57-71.[2] 邓裕.电容式加速度传感器在发动机上的应用[J].《汽车电器》,2009(5):11-13.二、查阅物联网的相关资料,举例说明传感器在物联网领域的重要性及作用。
30分物联网的概念是在1999年提出的。
物联网的英文名称叫“The Internet of things”,顾名思义,物联网就是“物物相连的互联网”。
这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。
严格而言,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的关键环节可以归纳为“感知、传输、处理”。
而传感器是感知环节的重要组成部分,传感器作为感知层信息获取的基础,处于物联网产业链上游,处在物联网金字塔的塔座,是整个物联网产业中需求量最大、最基础的环节。
目前只要谈到传感器,指的几乎都是以电为输出的传感器。
除电信号以外,人们在不断探索和利用新的信号媒介。
可以预料,当人类跨入光子时代,光信号能够更为快速、高效传输与处理时,一大批以光信号为输出的器件和装置将加入到传感器的家族里来。
传感器是生物体感官的工程模拟物;反过来,生物体的感官则可以看作是天然的传感器。
传感器广泛应用于各个学科领域:在基础学科和尖端技术的研究中;在工业自动化与国防领域;在生物工程、医疗卫生、环境保护、安全防范、家用电器等与人们的生活密切相关的方面,传感器的应用层出不穷。
可以肯定地说,未来的社会将是充满传感器的世界。
人们既可以把它看作传统互联网的自然延伸,因为物联网的信息传输基础仍然是互联网;也可以把它看作是一种新型网络,因为其用户端延伸和扩展到了物品与物品之间,这与互联网那种“电脑相连的网络”大不一样。
相比互联网,物联网具有以下诸多特点:首先,终端的多样化。
以前的互联网主要是电脑互连的网络,当然现在能上网的设备越来越多了,除电脑之外,还有手机、PDA(掌上电脑)以及诸如机顶盒之类的东西,但在物联网这里,这些还不够。
人们坐在家里环顾四周,就会发现身边还有很多东西是游离于互联网之外的,像电冰箱、洗衣机、空调等。
人们开发物联网技术,就是希望借助它将我们身边的所有东西都连接起来,小到手表、钥匙以及刚才所说的各种家电,大到汽车、房屋、桥梁、道路,甚至那些有生命的东西(包括人和动植物)都连接进网络。
这种网络的规模和终端的多样性,显然要远大于现在的互联网。
其次,感知的自动化。
物联网在各种物体上植入微型感应芯片,这样,任何物品都可以变得“有感受、有知觉”。
例如,洗衣机可以通过物联网感应器“知晓”衣服对水温和洗涤方式的要求;人们出门时物联网会提示是否忘记带公文包;借助物联网,人们可以了解到自己的小孩一天中去过什么地方、接触过什么人、吃过什么东西等。
物联网的这些神奇能力是互联网所不具备的,它主要是依靠一种名为RFID(射频识别)的技术来实现的。
对许多人来说,RFID可能是一个陌生的词汇,但它并不神秘。
我们坐公交时所用的公交卡刷卡系统、高速公路上的不停车收费系统都采用了RFID技术。
在物联网中,RFID发挥着类似人类社会中语言的作用,借助这种特殊的语言,人和物体、物体和物体之间可以相互感知对方的存在、特点和变化,从而进行“对话”与“交流”。
物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、大坝、供水系统、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制,在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然间的关系。
毫无疑问,如果“物联网”时代来临,人们的日常生活将发生翻天覆地的变化。
然而,不谈什么隐私权和辐射问题,单把所有物品都植入识别芯片这一点现在看来还不太现实。
人们正走向“物联网”时代,但这个过程可能需要很长很长的时间。
在老师讲解传感器在物联网领域的应用这一内容里,使我印象最深的是智能家居这一部分,它让我们的生活更加方便快捷。
之后我在2015版《物联网及传感器产业发展白皮书》中了解到了一些传感器在智能家居中的应用:智能家居作为重要的物联网数据入口,硬件厂商和平台厂商正加速布局。
以谷歌Nest 平台应用为例,当传感器应用在自动调温器、门锁、灯具、电视/娱乐系统及安全系统中后,传感器将能识别出人为活动,可实现当我们快到家时自动开门、开灯,并根据我们的喜好对娱乐系统进行好设置。