电动汽车能量回馈的整车控制
- 格式:pdf
- 大小:107.67 KB
- 文档页数:4
1.概述整车控制器VCU(Vehicle control unit)作为新能源车中央控制单元,是整个控制系统的核心。
VCU 采集电机及电池状态、加速踏板信号、制动踏板信号及其它执行器传感器控制器信号,根据驾驶员的驾驶意图综合分析并做出相应判定后,监控下层的各部件控制器的动作,它负责汽车的正常行驶、制动能量回馈、整车发动机及动力电池的能量管理、网络管理、故障诊断及处理、车辆状态监控等,从而保证整车在较好的动力性、较高经济性及可靠性状态下正常稳定的工作。
可以说整车控制器性能的优劣直接决定了新能源汽车整车性能的好坏,起到了中流砥柱的作用。
2.发展过程整车控制器可谓是起源于传统汽车,落地于新能源汽车。
传统汽车包含发动机控制器、变速箱控制器、车身控制器、底盘控制器等,各控制器是由不同的Tier1 提供,为解决各自零部件的功能及性能指标而定制设计。
比如EMS 是解决发动机燃油经济性、排放法规及热处理等。
变速箱是解决操作杆与齿轮动作的相互协调及切换。
各自独立控制车辆某一部分,无法总体考虑整车性能与功能需求。
因此部分OEM 为了实现整车定制功能、个性化设计、摆脱国外Tier1高昂的开发费及开发周期,有了整车控制器最初的概念设想。
由于国内电控技术起步晚,OEM对国外Tier1的控制力不足,直到新能汽车快速发展,混合动力迫切需要解决燃油动力系统与电池动力系统之间的有效协调,纯电动车需要解决整车动力管理,因此明确了整车控制器的概念及功能定义,奠定了VCU 获得的高速发展的基础。
传统汽车E/E 架构传统汽车E/E 架构行业分析新能源起步阶段,大概在2012-2015年诞生了第一代VCU产品。
技术来源于传统汽车电控ECU,以发动机控制器及车身控制器为主要技术来源。
行业典型产品有德尔福的HCU-2、联电的VCU、大陆的H300及普华第一代VCU-1。
VCU-1 是普华软件与国内知名OEM 合作开发,采用主从的硬件解决方案,AUTOSAR3.1.5软件平台,是国内最早自主AUTOSAR 软硬一体化的VCU 解决方案。
电动汽车制动模式与能量回收的约束条件对电动汽车进行制动能量回收是目前条件下提高能量利用率,增加汽车行驶里程的有效手段。
但是从汽车的安全性角度考虑,需要传统的机械摩擦制动作为补充,保证整车的制动性能良好。
也就是说,电动汽车的整车制动是机械制动与电机再生制动协同工作的过程。
(1)制动模式根据电动汽车的行驶特点,将制动或减速可分为以下五种工况:1)紧急制动,此时制动减速度往往大于3m/s2,某些情况下,甚至能达到8m/s2。
为了保证制动安全性,此时以传统的机械摩擦制动为主,再生制动为辅,这种紧急制动过程非常短,能够回收的动能比较少。
2)中度制动,即一般制动,指制动减速度小于3m/s2,且大于滑行减速。
此工况可以分为减速过程与停车过程两部分,再生制动系统负责减速过程,机械制动完成停车过程。
3)汽车下坡时的制动,此时制动力很小,能量回收系统负责全制动过程。
4)滑行减速,是指汽车切断动力后依靠惯性滑行的减速模式,其制动减速度就是滑行减速度,该过程中消耗的能量无法回收利用。
5)缓慢减速过程,是指汽车以小于滑行减速度的减速度缓慢减速的运行情况,此时仍然需要动力装置输出少量的动力,该过程中消耗的能量也无法回收利用。
汽车制动或减速时,只有在2)、3)、4)三种工况下可以较多地回收整车的能量。
因此,为了提高制动过程中电动汽车的能量回收利用率,在制动过程中应尽可能地让电机再生制动力发挥作用,在保证汽车制动安全性的条件下,尽量回收所有除空气阻力和滚动阻力以外的能量。
若采用四轮驱动的形式,与采用单轴驱动的车辆相比,将大大提高能量回收的潜力。
(2)制动能量回收的约束条件在制动过程中,希望能够通过再生制动的形式最大限度地回收制动能量,但是在实际的制动过程中,可回收的制动能量的多少受多个因素的制约。
1)驱动轮限制。
只有驱动轮上由能量回收系统负责的那一部分制动能量可以进行回收。
采用四车轮同时驱动,可以较好地实现制动能量的回收。
2)受电池状态SOC值的限制。
新能源汽车制动能量回收工作原理一、概述新能源汽车制动能量回收工作原理是一种能够将汽车制动时产生的能量回收利用的技术。
传统的汽车在制动过程中,制动器通过摩擦将汽车动能转化为热量散发出去,造成能量的浪费。
而新能源汽车制动能量回收工作原理通过电机控制器将制动过程中的动能转化为电能,并存储在电池中,以供后续使用,实现能量的再利用,提高了能源利用效率。
二、制动能量回收原理制动能量回收主要是通过电动机反向工作的方式将制动过程中的动能转化为电能。
具体实现过程如下:1.踩下制动踏板后,汽车的制动器开始工作,制动器的摩擦将汽车动能转化为热量。
2.同时,电机控制器感知到制动信号,通过控制电动机改变工作模式,使电动机从驱动模式切换为发电模式。
3.在发电模式下,电动机转子的运动将汽车的动能转化为电能,并输出到电池中进行储存。
4.电池将储存的电能进行管理,以供后续使用,如驱动电机运行、提供车载电子设备电力等。
三、制动能量回收系统组成新能源汽车制动能量回收系统主要由以下几个部分组成:1. 制动器制动器是将汽车动能转化为热能的装置,通过摩擦使汽车减速停下。
常见的制动器包括盘式制动器和鼓式制动器。
2. 电动机控制器电动机控制器是实现制动能量回收的核心装置,通过感知制动信号,控制电动机工作模式的切换。
同时,电动机控制器还负责监测电池状态,保证回收电能的安全和有效性。
3. 电池电池是回收电能的储存装置,通常采用高性能的锂离子电池。
电池能够储存回收的电能,并在后续需要时释放出来供电。
4. 电能管理系统电能管理系统对电池进行管理,包括充放电控制、电池状态监测、电池寿命预测等功能。
电能管理系统的合理设计能够提高电池的使用寿命和能效。
四、制动能量回收的优势新能源汽车制动能量回收具有以下几个优势:1.能源利用效率高:通过回收制动能量,实现了能源的再利用,提高了能源利用效率,减少能源的浪费。
2.减少环境污染:制动能量回收减少了汽车制动时产生的热量,降低了排放的废热,减少了对环境的污染。
电机控制系统中的能量回馈技术电机控制系统中的能量回馈技术在现代工业自动化领域中起着至关重要的作用。
能量回馈技术是指通过某种方式将电机系统产生的能量进行回馈利用,以达到能效优化、节能减排的目的。
在电机控制系统中,能量回馈技术可以有效降低系统的能耗,提高系统的运行效率,延长设备的使用寿命,是一种非常重要的技术手段。
一、能量回馈技术的工作原理能量回馈技术主要包括能量回馈装置和能量回馈控制系统两部分。
能量回馈装置通过不同的原理将电机系统产生的能量进行回馈利用,如惯性回馈装置、发电回馈装置、机械回馈装置等。
能量回馈控制系统则通过检测和分析能量回馈装置输出的能量状况,对电机控制系统进行智能调控,实现能量的高效利用。
通过这种方式,能量回馈技术可以将电机系统产生的惯性能量、制动能量等在一定程度上回馈到电网中,减少电机系统的能量损耗,提高系统的整体能效。
二、能量回馈技术的应用领域能量回馈技术广泛应用于各种电机控制系统中,包括电梯系统、风力发电系统、电动汽车系统等。
在电梯系统中,能量回馈技术可以将电梯在下行过程中产生的制动能量回馈到电网中,减少了电梯系统的能耗,提高了系统的整体运行效率。
在风力发电系统中,能量回馈技术可以通过智能控制系统将风力发电机产生的多余电能回馈到电网中,实现风力发电系统的能量储存和再利用。
在电动汽车系统中,能量回馈技术可以将电动汽车制动时产生的能量回馈到电池中,延长了电动汽车的续航里程,提高了电动汽车的能效。
三、能量回馈技术的发展趋势随着节能减排的国家政策日益严格,能量回馈技术在电机控制系统中的应用前景十分广阔。
未来,随着智能控制技术的不断发展和完善,能量回馈技术将会变得越来越智能化、高效化。
同时,随着新能源技术和储能技术的不断创新,能量回馈技术将会在电机控制系统中得到更加广泛的应用,并对整个工业自动化领域产生深远的影响。
总的来说,电机控制系统中的能量回馈技术是一种具有重要意义的技术手段,可以有效提高系统的能效,降低系统的能耗,延长设备的使用寿命。
教案新能源汽车整车控制技术教案一、引言1.1新能源汽车的市场趋势1.1.1全球新能源汽车销量增长1.1.2我国新能源汽车政策支持1.1.3新能源汽车的技术创新1.1.4新能源汽车对环境的影响1.2新能源汽车整车控制技术的重要性1.2.1整车控制技术是新能源汽车的核心1.2.2整车控制技术对性能的影响1.2.3整车控制技术的应用领域1.2.4整车控制技术的发展前景1.3教学目的与意义1.3.1培养学生对新能源汽车的兴趣1.3.2提高学生对整车控制技术的认识1.3.3培养学生的实践操作能力1.3.4为新能源汽车行业培养专业人才二、知识点讲解2.1新能源汽车的定义与分类2.1.1新能源汽车的能源类型2.1.2新能源汽车的驱动方式2.1.3新能源汽车的主要组成部分2.1.4新能源汽车与传统汽车的区别2.2整车控制系统的组成与原理2.2.1整车控制系统的硬件组成2.2.2整车控制系统的软件组成2.2.3整车控制系统的控制策略2.2.4整车控制系统的功能与应用2.3整车控制技术的关键技术2.3.1电池管理系统2.3.2驱动电机控制技术2.3.3能量回馈控制技术2.3.4车辆网络通信技术三、教学内容3.1新能源汽车整车控制技术的基本概念3.1.1整车控制技术的定义3.1.2整车控制技术的应用范围3.1.3整车控制技术的发展历程3.1.4整车控制技术的未来发展方向3.2新能源汽车整车控制系统的组成与原理3.2.1整车控制系统的硬件组成3.2.2整车控制系统的软件组成3.2.3整车控制系统的控制策略3.2.4整车控制系统的功能与应用3.3新能源汽车整车控制技术的应用实例3.3.1电池管理系统的应用实例3.3.2驱动电机控制技术的应用实例3.3.3能量回馈控制技术的应用实例3.3.4车辆网络通信技术的应用实例四、教学目标4.1知识与技能目标4.1.1了解新能源汽车的基本概念4.1.2掌握整车控制系统的组成与原理4.1.3学会分析整车控制技术的应用实例4.1.4培养学生的实践操作能力4.2过程与方法目标4.2.1培养学生的自主学习能力4.2.2提高学生的团队协作能力4.2.3培养学生的创新思维4.2.4提高学生的沟通与表达能力4.3情感态度与价值观目标4.3.1培养学生对新能源汽车行业的热爱4.3.2增强学生的环保意识4.3.3培养学生的社会责任感4.3.4培养学生的职业道德五、教学难点与重点5.1教学难点5.1.1整车控制系统的组成与原理5.1.2整车控制技术的应用实例5.1.3新能源汽车行业的政策与法规5.2教学重点5.2.1新能源汽车的基本概念5.2.2整车控制技术的关键技术5.2.3新能源汽车行业的市场趋势六、教具与学具准备6.1教具准备6.1.1新能源汽车模型6.1.2整车控制系统的实物展示6.1.3多媒体教学设备6.2学具准备6.2.1笔记本电脑或平板电脑6.2.2相关教材与参考资料6.2.3学习用具(如笔记本、笔等)七、教学过程7.1导入新课7.1.1引入新能源汽车的话题7.1.2提问学生对新能源汽车的了解7.1.3引出整车控制技术的概念7.2知识讲解7.2.1介绍新能源汽车的基本概念7.2.2讲解整车控制系统的组成与原理7.2.3分析整车控制技术的关键技术7.3实践操作7.3.1演示整车控制系统的操作7.3.2学生分组进行实践操作7.3.3解答学生实践过程中的疑问八、板书设计8.1新能源汽车整车控制技术概述8.1.1新能源汽车的定义与分类8.1.2整车控制系统的组成与原理8.1.3整车控制技术的关键技术8.2整车控制技术的应用实例8.2.1电池管理系统的应用实例8.2.2驱动电机控制技术的应用实例8.2.3能量回馈控制技术的应用实例8.3教学目标与教学方法8.3.1教学目标8.3.2教学方法8.3.3教学评价九、作业设计9.1课后练习题9.1.1填空题9.1.2选择题9.1.3简答题9.2实践报告9.2.1实践操作记录9.2.2实践操作中的问题与解决方法9.2.3实践操作的心得体会9.3拓展阅读9.3.1新能源汽车行业的相关政策与法规9.3.2新能源汽车行业的发展动态9.3.3新能源汽车行业的未来趋势十、课后反思及拓展延伸10.1教学反思10.1.1教学过程中的优点与不足10.1.2学生的学习反馈与评价10.1.3教学方法的改进与优化10.2拓展延伸10.2.1新能源汽车行业的职业发展10.2.2新能源汽车行业的创新与研发10.2.3新能源汽车行业的国际合作与交流重点和难点解析1.整车控制系统的组成与原理重点补充:详细讲解整车控制系统的硬件和软件组成,包括电池管理系统、驱动电机控制技术、能量回馈控制技术等关键部件的工作原理和相互协作的方式。
纯电动汽车整车控制器的构成、原理、功能说明整车控制器是电动汽车正常行驶的控制中枢,是整车控制系统的核心部件,是纯电动汽车的正常行驶、再生制动能量回收、故障诊断处理和车辆状态监视等功能的主要控制部件。
整车控制器包括硬件和软件两大组成部分,它的核心软件和程序一般由生产厂商研发,而汽车零部件供应商能够提供整车控制器硬件和底层驱动程序。
现阶段国外对纯电动汽车整车控制器的研究主要集中在以轮毂电机驱动的纯电动汽车。
对于只有一个电机的纯电动汽车通常不配备整车控制器,而是利用电机控制器进行整车控制。
国外很多大企业都能够提供成熟的整车控制器方案,如大陆、博世、德尔福等。
1整车控制器组成与原理纯电动汽车整车控制系统主要分为集中式控制和分布式控制两种方案。
集中式控制系统的基本思想是整车控制器独自完成对输入信号的采集,并根据控制策略对数据进行分析和处理,然后直接对各执行机构发出控制指令,驱动纯电动汽车的正常行驶。
集中式控制系统的优点是处理集中、响应快和成本低;缺点是电路复杂,并且不易散热。
分布式控制系统的基本思想是整车控制器采集一些驾驶员信号,同时通过CAN总线与电机控制器和电池管理系统通信,电机控制器和电池管理系统分别将各自采集的整车信号通过CAN总线传递给整车控制器。
整车控制器根据整车信息,并结合控制策略对数据进行分析和处理,电机控制器和电池管理系统收到控制指令后,根据电机和电池当前的状态信息,控制电机运转和电池放电。
分布式控制系统的优点是模块化和复杂度低;缺点是成本相对较高。
典型分布式整车控制系统示意图如下图所示,整车控制系统的顶层是整车控制器,整车控制器通过CAN总线接收电机控制器和电池管理系统的信息,并对电机控制器、电池管理系统和车载信息显示系统发送控制指令。
电机控制器和电池管理系统分别负责驱动电机和动力电池组的监控与管理,车载信息显示系统用于显示车辆当前的状态信息等。
典型分布式整车控制系统示意图下图为某公司开发的纯电动汽车整车控制器组成原理图。
电动汽车能量回收系统简介及标定策略介绍本文以某纯电动轻型商用车为基础,对纯电动汽车的能量回收标定策略进行分析研究。
能量回收系统简介能量回收,又称回馈制动或再生制动,是指在滑行或制动减速过程中,驱动电机工作于发电状态,将车辆部分动能转化为电能储存于动力电池中,同时施加电机回馈转矩于驱动轴,对车辆进行制动。
该技术应用一方面增加了电动车辆一次充电续驶里程,另一方面减少传统制动器磨损,同时还改善了整车动力学控制性能。
在不改动液压制动系统结构的基础上,开发基于制动踏板行程检测的并行制动能量回收系统方案,如图1所示。
图1 制动能量回收系统总体结构方案并行制动能量回收系统主要由驱动电机及控制器、动力电池(含电池管理系统)、ABS系统、制动踏板、整车控制器(VCU)及CAN网络组成,其中,整车控制器(VCU)通过CAN网络与电机控制器、电池管理系统、ABS控制器通讯,实现驾驶员意图识别及制动能量回收控制功能。
并行制动能量回收系统方案的典型特征是:符合驾驶员传统的驾驶习惯,保持整车的制动性能和制动稳定性,电机制动力的变化不会影响驱动轮制动力的大小,电机制动力和驱动轮制动器制动力并行产生,并叠加在一起,共同组成了驱动轮上的总制动力,通过在汽车减速和制动过程中实施电机制动,把汽车减速和制动过程中的部分动能转化成电能回馈给动力电池,从而提高整车经济性,延长续驶里程。
能量回收标定策略整车控制器(VCU)根据踏板信号、车速、蓄电池荷电状态(SOC)、电池电压、温度等信息确定是否进行能量回收,并将其传送到相应的控制模块中执行,模块之间的信息传递通过CAN总线进行。
对进入能量回收模式的车辆状态条件进行标定,如表1所示。
表1 进入能量回收的车辆状态条件VCU检测加速踏板传感器信号和制动踏板传感器信号,判断汽车是否处于滑行或制动减速阶段,若是的话则向,MCU发送扭矩指令,MCU控制驱动电机产生滑行阶段所需的制动力。
对能量回收扭矩进行标定,如表2所示。
电动汽车上的制动能量回收的约束条件电动汽车制动能量再生系统主要包括两个部分:电机再生制动部分和传统液压摩擦制动部分。
再生制动虽然可以回收制动能量并向车轮提供部分制动力,但是电机再生制动效果受电机特性、电池、车速等诸多条件的限制,在紧急制动和高强度制动时不能独立完成制动要求,为了保证整车制动的安全性,在采用再生制动的同时,还要采用传统的液压摩擦制动作为辅助。
从国内外研究现状可看出,汽车制动能量回收系统研究主要集中在回收制动能量方法、回收制动能量的效率、驱动电机与功率转换器的控制技术、再生制动控制策略、机电复合制动的协调等方面。
目前急需解决的制动能量回收系统关键技术问题主要有四个方面:制动稳定性问题、制动能量回收的充分性问题、制动踏板平稳性问题、复合制动协调兼容问题。
可回收制动能量是电动汽车最重要的特性之一,但是电动汽车对制动能量的回收要受诸多因素的制约。
电动汽车制动能量回收的约束条件主要包括以下五个方面。
(1)行驶工况。
行驶工况不同,汽车的制动频率不一样,从而可回收的制动能量多少不同。
(2)蓄电池。
蓄电池的充电效率要受到蓄电池的SOC值、蓄电池温度以及充电电流的限制。
蓄电池SOC值很高或者温度过高时都无法回收制动能量。
充电电流过大会使蓄电池温度快速升高,也不能回收制动能量。
(3)电机因素。
电机提供的制动转矩越大,能够回收的制动能量越多。
电机的再生制动转矩受到发电功率和转速的制约,当制动强度过大时,电机不能满足制动要求。
(4)控制策略。
为了保证在制动安全的条件下实现能量充分回收,需要合理地设计再生制动与机械制动的分配关系。
(5)驱动形式。
再生制动系统只能回收驱动轮上的制动能量。
整车能量管理整车能量管理是一种综合性的技术,它涉及到汽车行业的各个方面。
其主要目的是优化汽车使用的能源,以提高能源利用效率,降低排放和环境污染。
整车能量管理,在汽车电子、电池技术、动力总成及车身结构等方面都有一定的应用。
首先,整车能量管理需要最新的汽车电子技术来实现。
随着电子技术的发展,汽车电子系统已逐渐成为汽车的重要组成部分。
汽车上的许多功能都需要由电子系统来实现,比如车载娱乐系统、自动刹车、自适应巡航等,这就需要大量的电能来支持。
因此,整车能量管理需要对汽车电子系统进行精细的控制,确保其能正常运作。
其次,整车能量管理需要涉及到电池技术。
随着电动汽车的普及,汽车电池已经成为整车能量管理中的一个重要研究方向。
而在电动汽车中,电池的能量管理更是至关重要。
这就需要开发出一种高效的电池管理系统,它能够对电池性能进行监控和控制,以确保其正常运作。
同时,电池管理系统也需要对电池进行均衡充电和放电,以延长电池寿命,提高能源利用效率。
另外,在整车能量管理中,动力总成也需要得到充分的关注。
动力总成是汽车传动系统的核心组件,它主要由发动机、变速器、传动轴和差速器等部件组成。
通过对动力总成的优化,能够提高汽车的能源利用效率,降低油耗和排放。
同时,还需对发动机进行热管理,以降低热损失和提高热效率,从而实现节能减排的目的。
最后,在整车能量管理中,车身结构也是一个重要的考虑因素。
汽车的整体结构和形状设计,对汽车的空气动力性能、车辆重量和行驶阻力等都有很大的影响。
通过进行车身结构的优化设计,能够降低其阻力系数,提高能源利用效率,同时减轻车辆的质量,从而降低油耗和排放。
综上所述,整车能量管理在汽车行业中的应用领域十分广泛,它涉及到汽车设计、生产、销售等的各个环节。
通过整车能量管理的实施,能够提高能源利用效率,降低环境污染,实现可持续发展。
新能源汽车整车控制器系统结构和功能说明书新能源汽车作为一种绿色的运输工具在环保、节能以及驾驶性能等方面具有诸多内燃机汽车无法比拟的优点,其是由多个子系统构成的一个复杂系统,主要包括电池、电机、制动等动力系统以及其它附件(如图1所示)。
各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。
为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。
基于总线的分布式控制网络是使众多子系统实现协同控制的理想途径。
由于CAN总线具有造价低廉、传输速率高、安全性可靠性高、纠错能力强和实时性好等优点,己广泛应用于中、低价位汽车的实时分布式控制网络。
随着越来越多的汽车制造厂家采用CAN协议,CAN逐渐成为通用标准。
采用总线网络可大大减少各设备间的连接信号线束,并提高系统监控水平。
另外,在不减少其可靠性前提下,可以很方便地增加新的控制单元,拓展网络系统功能。
图1 新能源汽车控制系统硬件框架一、整车控制器控制系统结构公司自行设计开发的新能源汽车整车控制器包括微控制器、模拟量输入和输出、开关量调理、继电器驱动、高速CAN总线接口、电源等模块。
整车控制器对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进行分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
该整车控制器还具有综合仪表接口功能,可显示整车状态信息;具备完善的故障诊断和处理功能;具有整车网关及网络管理功能。
其结构原理如图2所示。
图2 整车控制器结构原理图下面对每个模块功能进行简要的说明:1、开关量调理模块开关量调理模块,用于开关输入量的电平转换和整型,其一端与多个开关量传感器相连,另一端与微控制器相接;2、继电器驱动模块继电器驱动模块,用于驱动多个继电器,其一端通过光电隔离器与微控制器相连,另一端与多个继电器相接;3、高速CAN总线接口模块高速CAN总线接口模块,用于提供高速CAN总线接口,其一端通过光电隔离器与微控制器相连,另一端与系统高速CAN总线相接;4、电源模块电源模块,可为微处理器和各输入和输出模块提供隔离电源,并对蓄电池电压进行监控,与微控制器相连;5、模拟量输入和输出模块模拟量输入和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。
新能源汽车整车控制器系统结构和功能介绍新能源汽车作为⼀种绿⾊的运输⼯具在环保、节能以及驾驶性能等⽅⾯具有诸多内燃机汽车⽆法⽐拟的优点,其是由多个⼦系统构成的⼀个复杂系统,主要包括电池、电机、制动等动⼒系统以及其它附件(如图1所⽰)。
各⼦系统⼏乎都通过⾃⼰的控制单元(ECU)来完成各⾃功能和⽬标。
为了满⾜整车动⼒性、经济性、安全性和舒适性的⽬标,⼀⽅⾯必须具有智能化的⼈车交互接⼝,另⼀⽅⾯,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。
基于总线的分布式控制⽹络是使众多⼦系统实现协同控制的理想途径。
由于CAN总线具有造价低廉、传输速率⾼、安全性可靠性⾼、纠错能⼒强和实时性好等优点,⼰⼴泛应⽤于中、低价位汽车的实时分布式控制⽹络。
随着越来越多的汽车制造⼚家采⽤CAN协议,CAN逐渐成为通⽤标准。
采⽤总线⽹络可⼤⼤减少各设备间的连接信号线束,并提⾼系统监控⽔平。
另外,在不减少其可靠性前提下,可以很⽅便地增加新的控制单元,拓展⽹络系统功能。
⼀、整车控制器控制系统结构公司⾃⾏设计开发的新能源汽车整车控制器包括微控制器、模拟量输⼊和输出、开关量调理、继电器驱动、⾼速CAN总线接⼝、电源等模块。
整车控制器对新能源汽车动⼒链的各个环节进⾏管理、协调和监控,以提⾼整车能量利⽤效率,确保安全性和可靠性。
该整车控制器采集司机驾驶信号,通过CAN总线获得电机和电池系统的相关信息,进⾏分析和运算,通过CAN总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。
该整车控制器还具有综合仪表接⼝功能,可显⽰整车状态信息;具备完善的故障诊断和处理功能;具有整车⽹关及⽹络管理功能,其结构原理如图2所⽰。
下⾯对每个模块功能进⾏简要的说明:1、开关量调理模块开关量调理模块,⽤于开关输⼊量的电平转换和整型,其⼀端与多个开关量传感器相连,另⼀端与微控制器相接;2、继电器驱动模块继电器驱动模块,⽤于驱动多个继电器,其⼀端通过光电隔离器与微控制器相连,另⼀端与多个继电器相接;3、⾼速CAN总线接⼝模块⾼速CAN总线接⼝模块,⽤于提供⾼速CAN总线接⼝,其⼀端通过光电隔离器与微控制器相连,另⼀端与系统⾼速CAN总线相接;4、电源模块电源模块,可为微处理器和各输⼊和输出模块提供隔离电源,并对蓄电池电压进⾏监控,与微控制器相连;5、模拟量输⼊和输出模块模拟量输⼊和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。
简述电动汽车整车控制器的组成模块
电动汽车整车控制器主要由以下几个模块组成:
1. 电机驱动模块:负责控制电动汽车的电机,包括启动、停止、加速、制动等操作。
通过控制电机的转速、转向和扭矩输出,实现汽车的前进、倒车和转弯等功能。
2. 电池管理系统:用于监控和管理电动汽车的电池组。
包括电池的充放电控制、温度管理、电量监测、保护等功能,以提高电池的寿命和安全性。
3. 车辆控制单元(VCU):作为电动汽车整车控制的中枢,负责收集和处理车辆各个部件的数据,并根据车辆状态和用户操作提供相应的控制指令。
VCU还负责监控车辆系统的运行状况,并对异常情况进行处理和报警。
4. 故障诊断系统:用于检测和诊断电动汽车整车系统的故障。
通过采集和分析车辆各个部件的数据,判断是否存在故障,并提供相应的故障码和故障信息,以便修复车辆故障。
5. 通信模块:用于与其他车辆系统进行通信,包括车载终端、车载网络和远程监控平台等。
通过与外部系统的通信,实现车辆的远程控制、定位、数据传输等功能。
6. 辅助系统控制模块:包括空调系统、制动系统、转向系统等辅助系统的控制模块。
通过控制这些辅助系统的工作状态,实现对整车性能的调节和优化。
总之,电动汽车整车控制器是一个复杂的系统,由多个模块组成,每个模块都扮演着重要的角色,协同工作,以实现电动汽车的安全、高效和智能控制。
纯电动汽车整车控制器是电动汽车的关键部件之一,负责控制电动汽车的动力传动系统、能量管理系统以及车辆各部分的协调运行。
整车控制器的控制逻辑关乎着电动汽车的性能、能效和安全性。
下面将从控制逻辑的设计原则、各部分功能模块的控制逻辑和控制逻辑的效能优化等方面简述纯电动汽车整车控制器的控制逻辑。
一、控制逻辑的设计原则纯电动汽车整车控制器的控制逻辑设计要满足以下几个原则:1. 安全性原则:控制逻辑设计应确保车辆在各种工况下能够保持稳定、安全的运行。
2. 效能原则:控制逻辑设计应确保车辆在各种工况下能够保持最佳的能效。
3. 灵活性原则:控制逻辑设计应确保车辆在不同工况下能够有良好的响应能力和适应能力。
二、功能模块的控制逻辑整车控制器包括能量管理系统、动力传动系统和车辆管理系统等功能模块。
各功能模块的控制逻辑如下:1. 能量管理系统的控制逻辑:能量管理系统负责管理电池的充放电过程、能量回收过程和能量分配过程。
其控制逻辑主要包括电池状态估计、SOC控制、能量管理策略等。
2. 动力传动系统的控制逻辑:动力传动系统负责驱动电动汽车的电机进行运转。
其控制逻辑主要包括电机转速控制、电机扭矩控制、换挡控制等。
3. 车辆管理系统的控制逻辑:车辆管理系统负责监测车辆各部分的状态,并根据需要进行控制。
其控制逻辑主要包括车载通信、车辆监测、车载诊断等。
三、控制逻辑的效能优化控制逻辑的效能优化是整车控制器设计的重要环节。
控制逻辑的效能优化包括控制算法的优化、参数的优化和系统的协同优化等方面。
1. 控制算法的优化:通过不断改进控制算法,提高整车控制器的响应速度和控制精度,使车辆在各种工况下都能保持最佳的运行状态。
2. 参数的优化:对整车控制器的各种参数进行优化调整,确保整车控制器在各种工况下都能有最佳的性能表现。
3. 系统的协同优化:通过整车控制器各功能模块之间的协同优化,提高车辆的能效和安全性。
纯电动汽车整车控制器的控制逻辑设计是电动汽车技术创新的重要组成部分,对整车性能、能效和安全性起着关键作用。