小麦育种研究进展.ppt
- 格式:ppt
- 大小:2.99 MB
- 文档页数:23
转基因小麦研究进展及前景摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。
简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。
关键词:小麦;转基因;分子育种;进展采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。
但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。
植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。
通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。
小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。
目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。
美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。
近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。
㊀山东农业科学㊀2024ꎬ56(2):176~180ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.02.024收稿日期:2023-03-05基金项目:国家自然科学基金项目(32001545)ꎻ山东省农业良种工程项目(2021LZGC013)ꎻ山东省农业科学院农业科技创新工程项目(CXGC2023A01)ꎻ农业农村部黄淮北片小麦种质资源精准鉴定项目作者简介:崔德周(1987 )ꎬ男ꎬ山东惠民人ꎬ博士ꎬ助理研究员ꎬ主要从事小麦种质资源与遗传育种研究ꎮE-mail:dezhoucui@126.com王丽丽(1989 )ꎬ女ꎬ山东郓城人ꎬ山东大学人居环境研究中心特约研究员ꎬ主要从事植物种质资源研究ꎮE-mail:565993570@qq.com∗同为第一作者ꎮ通信作者:樊庆琦(1978 )ꎬ男ꎬ山东郓城人ꎬ博士ꎬ研究员ꎬ主要从事小麦种质创新研究ꎮE-mail:fanqingqi@163.com小麦ERF亚族转录因子参与逆境胁迫的研究进展崔德周1ꎬ王丽丽2∗ꎬ陈祥龙3ꎬ李永波1ꎬ黄琛1ꎬ隋新霞1ꎬ楚秀生1ꎬ樊庆琦1(1.山东省农业科学院作物研究所/小麦玉米国家工程研究中心/农业农村部黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心/济南市小麦遗传改良重点实验室ꎬ山东济南㊀250100ꎻ2.山东省林草种质资源中心ꎬ山东济南㊀250102ꎻ3.山东鲁研农业良种有限公司ꎬ山东济南㊀250100)㊀㊀摘要:小麦是中国三大粮食作物之一ꎬ其生长发育过程中会受到多种逆境胁迫的影响ꎮAP2/EREBP是植物特有的一个庞大的转录因子超家族ꎬ普遍参与生长发育和逆境胁迫应答等生物学进程ꎮERF类转录因子是AP2/EREBP转录因子超家族的一个亚族ꎮ本研究结合国内外相关研究进展ꎬ简要综述了小麦ERF亚族转录因子的结构特征与分布ꎬ重点阐述近年来小麦ERF亚族转录因子响应高盐㊁干旱㊁低温㊁重金属㊁病原菌侵染等逆境胁迫的功能和机制研究进展ꎬ最后展望了ERF亚族转录因子的研究方向和应用前景ꎮ关键词:小麦ꎻERF亚族ꎻ转录因子ꎻ胁迫响应ꎻ研究进展中图分类号:S512.1㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)02-0176-05AdvancesinResearchonFunctionofWheatERFTranscriptionFactorSubfamilyinStressResponseCuiDezhou1ꎬWangLili2∗ꎬChenXianglong3ꎬLiYongbo1ꎬHuangChen1ꎬSuiXinxia1ꎬChuXiusheng1ꎬFanQingqi1(1.CropResearchInstituteꎬShandongAcademyofAgriculturalSciences/NationalEngineeringResearchCenterofWheatandMaize/KeyLaboratoryofWheatBiologyandGeneticsandBreedinginNorthernHuang ̄HuaiRiverPlainꎬMinistryofAgricultureandRuralAffairs/ShandongTechnologyInnovationCenterofWheat/JinanKeyLaboratoryofWheatGeneticImprovementꎬJinan250100ꎬChinaꎻ2.ShandongProvincialCenterofForestandGrassGermplasmResourcesꎬJinan250102ꎬChinaꎻ3.ShandongLuyanAgriculturalCo.ꎬLtd.ꎬJinan250100ꎬChina)Abstract㊀WheatisoneofthethreemajorgraincropsinChinaꎬbutitsgrowthanddevelopmentmightbeaffectedbymultipleadversestresses.AP2/EREBPisasuperfamilyofplantspecifictranscriptionfactorswhicharewidelyinvolvedinbiologicalprocessesessuchasgrowthꎬdevelopmentandstressresponse.TheERFtranscriptionclassisasubfamilyoftheAP2/EREBPsuperfamily.Hereꎬthestructuralcharacteristicsanddis ̄tributionsofERFsubfamilytranscriptionfactorsinwheatwerebrieflyintroduced.Andtherecentresearchpro ̄gressesofthefunctionsandmechanismsofERFsubfamilytranscriptionfactorsinwheatwasemphasizedinre ̄sponsetostressessuchashighsaltꎬdroughtꎬlowtemperatureꎬheavymetalandpathogeninfection.FinallyꎬtheresearchdirectionandapplicationprospectofERFsubfamilytranscriptionfactorswereprospected.Keywords㊀WheatꎻERFsubfamilyꎻTranscriptionfactorꎻStressresponseꎻResearchprogress㊀㊀小麦(TriticumaestivumL.)是世界上最重要的粮食作物之一ꎬ是全球三分之一以上人口的主食ꎮ中国是世界上最大的小麦生产国和消费国ꎬ小麦的高产稳产对保障国家粮食安全至关重要ꎮ小麦生长发育周期长ꎬ期间干旱㊁盐碱㊁低温㊁高温㊁重金属㊁病虫害等生物㊁非生物胁迫都会不同程度地威胁小麦的高产稳产ꎮ近年来ꎬ得益于小麦基因组学的飞速发展ꎬ小麦响应逆境胁迫的分子调控网络被逐步阐明ꎬ转录因子在功能基因表达调控中的关键作用进一步凸显[1-4]ꎮ根据DNA结合域的特性ꎬ转录因子可分成若干家族ꎬ包括MYB㊁WRKY㊁bZIP㊁NAC㊁AP2/EREBP等[5-7]ꎮAP2/EREBP转录因子是植物特有的一类转录因子ꎬ广泛参与小麦逆境胁迫应答[8-10]ꎮERF转录因子是AP2/EREBP转录因子超家族的一个亚族ꎬ最早从烟草中分离得到[11]ꎮ本研究综述小麦ERF亚族转录因子在逆境胁迫应答中的作用及可能机制ꎬ以期为深入研究小麦ERF亚族的分子功能及其抗逆遗传改良提供参考ꎮ1㊀ERF亚族转录因子的特征AP2/EREBP是一个庞大的基因家族ꎬ因含有60~70个氨基酸组成的AP2/EREBP结构域而得名[12]ꎮ在拟南芥中ꎬSakuma等[13]根据序列相似性和AP2/EREBP结构域的数量ꎬ将其分为5个亚族 ERF亚族㊁DREB亚族㊁RAV亚族㊁AP2亚族和其他ꎮAP2亚族含有2个AP2/EREBP结构域ꎬ主要在细胞生长发育过程中发挥调控作用[14-15]ꎻRAV亚族含有1个AP2/EREBP结构域和1个B3结构域ꎬ在乙烯㊁油菜素内酯和胁迫响应过程中发挥重要作用[14ꎬ16-17]ꎻDREB亚族和ERF亚族均属于EREBP型转录因子ꎬ都仅含1个AP2/EREBP结构域ꎬ在调控植物细胞发育及对病原菌㊁干旱㊁高盐㊁低温㊁激素等胁迫的应答反应中发挥作用[14ꎬ18-22]ꎬ但AP2/EREBP结构域的第14位和第19位氨基酸存在差异ꎬDREB亚族分别是缬氨酸和谷氨酸ꎬ而ERF亚族则分别是丙氨酸和天冬氨酸ꎮERF亚族转录因子还可与乙烯诱导顺式作用元件GCC-box结合ꎬ抵御植物逆境胁迫[23-26]ꎮ2㊀小麦ERF亚族转录因子鉴定分析目前正式命名的小麦ERF亚族转录因子基因只有8个ꎬ而从全基因组水平分析ꎬ符合ERF亚族特征的基因则有上百个之多[27-28]ꎮZhuang等[29]在全基因组水平鉴定到47个小麦ERF亚族转录因子成员ꎬ根据拟南芥和水稻同源基因分类ꎬ将其分为B1㊁B2㊁B3㊁B4和B6五个亚组ꎮ随着二代测序技术及小麦基因组学研究的飞速发展ꎬRiaz等[30]鉴定到138个ERF亚族转录因子成员ꎬ分为6个亚组ꎬ主要定位于细胞核ꎻMagar等[2]鉴定到238个成员ꎬ其中ꎬ174个基因不含内含子㊁3个基因含3个内含子ꎬ鉴定数量有了质的飞跃ꎮ李世姣等[31]利用隐马尔可夫模型文件检索中国春数据库ꎬ筛选到229条小麦ERFsꎬ通过分析A/B/D同源关系ꎬ将其归为96个ERF亚族成员ꎮ此外ꎬFaraji等[32]在硬粒小麦中鉴定到185个ERF亚族成员ꎮ3㊀小麦ERF亚族转录因子参与逆境胁迫的分子机制3.1㊀非生物胁迫越来越多的研究表明ꎬ大部分小麦ERF亚族成员在对高盐㊁干旱㊁低温㊁重金属等非生物胁迫抗性调控中发挥重要作用(表1)ꎮ位于小麦7A染色体上的TaERF1ꎬ通过结合GCC-box和DRE/CRT元件㊁激活启动子区含GGCC-box的PR蛋白(pathogenesisrelatedpro ̄teinꎬ病程相关蛋白)㊁磷酸化TaMAPK1等方式ꎬ参与干旱㊁高盐㊁低温等代谢途径ꎬ过表达TaE ̄RF1可显著提高转基因拟南芥对干旱㊁高盐和低温的耐受能力[33]ꎮTaERF2基因受干旱㊁高盐㊁低温和湿害强烈诱导ꎬ过表达后可提高转基因拟南芥对干旱㊁低温等非生物胁迫的抗性[34-35]ꎮTaERF3通过特异结合GCC-boxꎬ正向调控LEA3㊁GST6等抗逆相关基因表达ꎬ过表达TaERF3可增加叶片脯氨酸㊁叶绿素含量ꎬ降低过氧化氢含量ꎬ增强小麦对高盐㊁干771㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展旱胁迫的耐受能力ꎻ而经病毒诱导基因沉默(VIGS)干扰后的小麦植株则表现为盐和干旱敏感[36]ꎮTaERF4是一个具有EAR基序的转录抑制因子ꎬ过表达TaERF4抑制AtNHX1㊁AtNHX2等钠离子转运相关基因的表达ꎬ通过非ABA依赖的信号通路降低拟南芥耐盐性[37]ꎮTaERF5受高盐㊁渗透胁迫㊁乙烯㊁ABA和茉莉酸甲酯诱导表达ꎬ遗传学证据显示ꎬTaERF5-B过表达增强了转基因水稻的耐盐性[38]ꎮ叶片TaERF7表达受温度和日照调控ꎬ进而影响小麦百农不育系育性[27]ꎮTaE ̄RF8-2D的表达受高盐胁迫诱导持续上调ꎬ其分子机制有待进一步研究[39]ꎮZhu等[40]研究发现ꎬTaPIEP1/TaPIE1通过激活乙烯合成基因ꎬ增强小麦对冷害胁迫的抗性ꎮTaERFL1a受低温㊁高盐㊁干旱㊁ABA等胁迫诱导表达ꎬVIGS干扰该基因降低小麦对干旱胁迫的抗性[41]ꎮDu等[42]研究表明ꎬTaERF87通过与Ta ̄AKS1互作ꎬ协同增强TaP5CS1和TaP5CR1的表达ꎬ提高脯氨酸的生物合成ꎬ进而增强小麦抗旱性ꎮ此外ꎬ在硬粒小麦(TriticumturgidumL.sub ̄sp.durum)中ꎬTdERF1响应高盐和干旱胁迫[43-44]ꎬTdSHN1受高盐㊁干旱㊁低温㊁ABA和重金属胁迫强烈诱导表达ꎬ过表达TdSHN1可显著提高酵母对非生物胁迫的耐受性[45-46]ꎮ㊀㊀表1㊀参与非生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对干旱㊁高盐和低温的耐受能力[33]TaERF2GCC-box/ERE提高拟南芥对干旱㊁低温的耐受能力ꎬ响应小麦湿害胁迫[34-35]TaERF3GCC-box提高小麦对高盐㊁干旱胁迫的耐受能力[36]TaERF4 降低拟南芥对高盐胁迫的耐受能力[37]TaERF5 提高水稻对高盐胁迫的耐受能力[38]TaERF6 与TdERF1高度同源[47]TaERF7GCC-box/DRE/CRT控制百农不育系小麦育性[27]TaERF8-2D 高盐胁迫下持续上调表达[39]TaPIEP1/TaPIE1GCC-box提高小麦对冷害胁迫的耐受能力[40]TaERFL1a 提高小麦对干旱胁迫的耐受能力[41]TaERF87GCC-box/E-box提高小麦对干旱胁迫的耐受能力[42]TdERF1GCC-box/DRE响应高盐和干旱胁迫[43-44]TdSHN1GCC-box/DRE提高酵母对高盐㊁干旱㊁重金属胁迫的耐受能力[45-46]3.2㊀生物胁迫小麦生育期遭遇的生物胁迫主要包括病原菌侵染和植食性害虫啃食ꎬ而小麦响应生物胁迫的转录因子研究主要集中在前者ꎮ研究表明ꎬERF亚族转录因子可以提高小麦对病原菌的抗性(表2)ꎮTaERF1的表达受白粉病菌侵入的诱导ꎬ过表达TaERF1可提高转基因拟南芥对真菌㊁细菌病害的抗性[33]ꎮ病原菌侵染下ꎬTaERF3可激活防御基因表达ꎬ其中ꎬ在白粉病菌侵染早期主要通过水杨酸途径ꎬ而在镰刀菌㊁纹枯病菌侵染晚期主要通过乙烯/茉莉酸途径[48]ꎮ过表达TaPIEP1/TaPIE1可大量激活下游防卫基因的表达ꎬ进而提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]ꎮChen等[50]从中间偃麦草中分离了一个新的ERF基因TiERF1ꎬ该基因主要通过依赖乙烯的信号转导途径激活病程蛋白相关基因的表达ꎬ提高转基因小麦对纹枯病的抗性ꎮ㊀㊀表2㊀参与生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对真菌㊁细菌病害的抗性[33]TaERF3GCC-box参与对小麦白粉病菌㊁镰刀菌㊁纹枯病菌的防卫[48]TaPIEP1/TaPIE1GCC-box提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]TiERF1GCC-box提高小麦对纹枯病的抗性[50]871山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀4㊀展望近年来ꎬ极端天气频发ꎬ低温㊁干旱㊁高盐等非生物胁迫及病原菌侵染等生物胁迫严重制约小麦的安全生产ꎬ给粮食安全带来了严峻挑战ꎮ作为AP2/EREBP转录因子超家族的一个亚族ꎬERF类转录因子连接上游信号和下游功能基因ꎬ在小麦抵御逆境胁迫中具有关键作用ꎮ基因组学分析表明ꎬ小麦ERF亚族基因有200余个ꎬ但目前只克隆鉴定了部分基因ꎬ并且已经投入育种应用的转基因材料也鲜有报道ꎬ后续仍需进一步深入挖掘具有重要抗逆功能的ERF亚族基因ꎮ此外ꎬ目前的研究多集中在转录因子基因的克隆及转录调节功能的鉴定分析上ꎬERF亚族转录因子自我调节的模式及其同其他转录因子间的相互作用关系尚未完全了解ꎮ相信随着基因组学㊁分子生物学技术的发展ꎬ对小麦ERF亚族转录因子的抗逆网络解析会更加深入ꎬ从而为小麦抗逆遗传改良提供更坚实的理论依据和更强有力的基因工具ꎮ参㊀考㊀文㊀献:[1]㊀GahlautVꎬJaiswalVꎬKumarAꎬetal.Transcriptionfactorsinvolvedindroughttoleranceandtheirpossibleroleindevelo ̄pingdroughttolerantcultivarswithemphasisonwheat(Tritic ̄umaestivumL.)[J].Theor.Appl.Genet.ꎬ2016ꎬ129(11):2019-2042.[2]㊀MagarMMꎬLiuHꎬYanGJ.Genome ̄wideanalysisofAP2/ERFsuperfamilygenesincontrastingwheatgenotypesrevealsheatstress ̄relatedcandidategenes[J].Front.PlantSci.ꎬ2022ꎬ13:853086.[3]㊀XiaoJꎬLiuBꎬYaoYYꎬetal.Wheatgenomicstudyforgenet ̄icimprovementoftraitsinChina[J].Sci.ChinaLifeSci.ꎬ2022ꎬ65(9):1718-1775.[4]㊀解亚蒙ꎬ赵晓蕾ꎬ白菁华ꎬ等.小麦NF-Y家族基因TaNF-YA1介导植株耐旱功能研究[J].河北农业大学学报ꎬ2023ꎬ46(1):1-9.[5]㊀丰锦ꎬ陈信波.抗逆相关AP2/EREBP转录因子研究进展[J].生物技术通报ꎬ2011(7):1-6ꎬ11.[6]㊀王淑叶ꎬ伍国强ꎬ魏明.WRKY转录因子调控植物逆境胁迫响应的作用机制[J].生物工程学报ꎬ2024ꎬ40(1):35-52. [7]㊀JavedTꎬShabbirRꎬAliAꎬetal.Transcriptionfactorsinplantstressresponses:challengesandpotentialforsugarcaneim ̄provement[J].Plantsꎬ2020ꎬ9(4):491.[8]㊀YuYꎬYuMꎬZhangSXꎬetal.TranscriptomicidentificationofwheatAP2/ERFtranscriptionfactorsandfunctionalcharac ̄terizationofTaERF ̄6 ̄3Ainresponsetodroughtandsalinitystresses[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(6):3272. [9]㊀KaramiMꎬFatahiNꎬLohrasebiTꎬetal.RAVtranscriptionfactorregulatoryfunctioninresponsetosaltstressintwoIranianwheatlandraces[J].J.PlantRes.ꎬ2022ꎬ135(1):121-136. [10]洪林ꎬ杨蕾ꎬ杨海健ꎬ等.AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J].植物学报ꎬ2020ꎬ55(4):481-496.[11]Ohme ̄TakagiMꎬShinshiH.Ethylene ̄inducibleDNAbindingproteinsthatinteractwithanethylene ̄responsiveelement[J].PlantCellꎬ1995ꎬ7(2):173-182.[12]刘建光ꎬ王永强ꎬ张寒霜ꎬ等.ERF转录因子在植物抗逆境胁迫的研究进展[J].华北农学报ꎬ2013ꎬ28(增刊):214-218.[13]SakumaYꎬLiuQꎬDubouzetJGꎬetal.DNA ̄bindingspecific ̄ityoftheERF/AP2domainofArabidopsisDREBstranscriptionfactorsinvolvedindehydration ̄andcold ̄induciblegeneexpres ̄sion[J].Biochem.Biophys.Res.Commun.ꎬ2002ꎬ290(3):998-1009.[14]张计育ꎬ王庆菊ꎬ郭忠仁.植物AP2/ERF类转录因子研究进展[J].遗传ꎬ2012ꎬ34(7):44-56.[15]WangYYꎬSunLLꎬWangRꎬetal.TheAP2transcriptionfactorsTOE1/TOE2conveyArabidopsisageinformationtoeth ̄ylenesignalinginplantdenovorootregeneration[J].Plantaꎬ2022ꎬ257(1):1.[16]FuMꎬKangHKꎬSonSHꎬetal.AsubsetofArabidopsisRAVtranscriptionfactorsmodulatesdroughtandsaltstressresponsesindependentofABA[J].PlantCellPhysiol.ꎬ2014ꎬ55(11):1892-1904.[17]LuoYXꎬChenSKꎬWangPDꎬetal.Genome ̄wideanalysisoftheRAVgenefamilyinwheatandfunctionalidentificationofTaRAV1insaltstress[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(16):8834.[18]于志晶ꎬ蔡勤安ꎬ刘艳芝ꎬ等.拟南芥抗逆基因DREB2A转化大豆的研究[J].大豆科学ꎬ2013ꎬ32(5):606-608. [19]ZhangXXꎬTangYJꎬMaQBꎬetal.OsDREB2Aꎬaricetran ̄scriptionfactorꎬsignificantlyaffectssalttoleranceintransgenicsoybean[J].PLoSONEꎬ2013ꎬ8(12):e83011.[20]刘坤ꎬ李国婧ꎬ杨杞.参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J].生物技术通报ꎬ2022ꎬ38(5):201-214.[21]ChengCꎬAnLKꎬLiFZꎬetal.Wide ̄rangeportrayalofAP2/ERFtranscriptionfactorfamilyinmaize(ZeamaysL.)developmentandstressresponses[J].Genesꎬ2023ꎬ14(1):194.[22]阮航ꎬ多浩源ꎬ范文艳ꎬ等.AtERF49在拟南芥应答盐碱胁迫中的作用[J].生物技术通报ꎬ2023ꎬ39(1):150-156. [23]MüllerMꎬMunné ̄BoschS.Ethyleneresponsefactors:akeyregulatoryhubinhormoneandstresssignaling[J].PlantPhys ̄iol.ꎬ2015ꎬ169(1):32-41.[24]DebbarmaJꎬSarkiYNꎬSaikiaBꎬetal.Ethyleneresponse971㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展factor(ERF)familyproteinsinabioticstressesandCRISPR ̄Cas9genomeeditingofERFsformultipleabioticstresstoler ̄anceincropplants:areview[J].Mol.Biotechnol.ꎬ2019ꎬ61(2):153-172.[25]赵曾强ꎬ郭文婷ꎬ张析ꎬ等.棉花抗枯萎病相关基因GhERF5 ̄4D的克隆及功能分析[J].生物技术通报ꎬ2022ꎬ38(4):193-201.[26]才晓溪ꎬ胡冰霜ꎬ沈阳ꎬ等.GsERF6基因过表达对水稻耐盐碱性的影响[J].作物学报ꎬ2023ꎬ49(2):561-569. [27]李紫良ꎬ张建朝ꎬ李政ꎬ等.小麦转录因子基因TaERF7的克隆及其表达分析[J].西北植物学报ꎬ2020ꎬ40(2):210-217.[28]ZhangLꎬLiuPꎬWuJꎬetal.IdentificationofanovelERFgeneꎬTaERF8ꎬassociatedwithplantheightandyieldinwheat[J].BMCPlantBiol.ꎬ2020ꎬ20(1):263.[29]ZhuangJꎬChenJMꎬYaoQHꎬetal.Discoveryandexpres ̄sionprofileanalysisofAP2/ERFfamilygenesfromTriticumaestivum[J].Mol.Biol.Rep.ꎬ2011ꎬ38(2):745-753. [30]RiazMWꎬLuJꎬShahLꎬetal.ExpansionandmolecularcharacterizationofAP2/ERFgenefamilyinwheat(TriticumaestivumL.)[J].Front.Genet.ꎬ2021ꎬ12:632155. [31]李世姣ꎬ张晓军ꎬ乔麟轶ꎬ等.小麦盐胁迫响应相关ERF基因的分离和初步验证[J].核农学报ꎬ2021ꎬ35(5):1039-1047.[32]FarajiSꎬFilizEꎬKazemitabarSKꎬetal.TheAP2/ERFgenefamilyinTriticumdurum:genome ̄wideidentificationandex ̄pressionanalysisunderdroughtandsalinitystresses[J].Genesꎬ2020ꎬ11(12):1464.[33]XuZSꎬXiaLQꎬChenMꎬetal.Isolationandmolecularchar ̄acterizationoftheTriticumaestivumL.ethylene ̄responsivefac ̄tor1(TaERF1)thatincreasesmultiplestresstolerance[J].PlantMol.Biol.ꎬ2007ꎬ65(6):719-732.[34]宋桂成ꎬ周淼平ꎬ余桂红ꎬ等.小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析[J].核农学报ꎬ2022ꎬ36(5):876-884.[35]徐兆师.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[D].北京:中国农业科学院ꎬ2005:114-121. [36]RongWꎬQiLꎬWangAYꎬetal.TheERFtranscriptionfactorTaERF3promotestolerancetosaltanddroughtstressesinwheat[J].PlantBiotechnol.J.ꎬ2014ꎬ12(4):468-479. [37]DongWꎬAiXꎬXuFꎬetal.IsolationandcharacterizationofabreadwheatsalinityresponsiveERFtranscriptionfactor[J].Geneꎬ2012ꎬ511(1):38-45.[38]张蕾.小麦盐胁迫应答相关基因TaERF5的功能研究[D].北京:中国农业科学院ꎬ2013:32-34.[39]崔德周ꎬ李永波ꎬ隋新霞ꎬ等.小麦盐胁迫持续上调转录因子基因TaERF8 ̄2D的克隆及其分析[J].山东农业科学ꎬ2021ꎬ53(5):32-37.[40]ZhuXLꎬQiLꎬLiuXꎬetal.Thewheatethyleneresponsefac ̄tortranscriptionfactorpathogen ̄inducedERF1mediateshostresponsestoboththenecrotrophicpathogenRhizoctoniacerealisandfreezingstresses[J].PlantPhysiol.ꎬ2014ꎬ164(3):1499-1514.[41]GaoTꎬLiGZꎬWangCRꎬetal.FunctionoftheERFL1atranscriptionfactorinwheatresponsestowaterdeficiency[J].Int.J.Mol.Sci.ꎬ2018ꎬ19(5):1465.[42]DuLYꎬHuangXLꎬDingLꎬetal.TaERF87andTaAKS1synergisticallyregulateTaP5CS1/TaP5CR1 ̄mediatedprolinebiosynthesistoenhancedroughttoleranceinwheat[J].NewPhytol.ꎬ2023ꎬ237(1):232-250.[43]MakhloufiEꎬYousfiFEꎬMarandeWꎬetal.Isolationandmo ̄lecularcharacterizationofERF1ꎬanethyleneresponsefactorgenefromdurumwheat(TriticumturgidumL.subsp.durum)ꎬpotentiallyinvolvedinsalt ̄stressresponses[J].J.Exp.Bot.ꎬ2014ꎬ65(22):6359-6371.[44]MakhloufiEꎬYousfiFEꎬPirrelloJꎬetal.TdERF1ꎬanethyl ̄eneresponsefactorassociatedwithdehydrationresponsesindu ̄rumwheat(TriticumturgidumL.subsp.durum)[J].PlantSignalandBehav.ꎬ2015ꎬ10(10):e1065366.[45]DjemalRꎬKhoudiH.IsolationandmolecularcharacterizationofanovelWIN1/SHN1ethylene ̄responsivetranscriptionfactorTdSHN1fromdurumwheat(TriticumturgidumL.subsp.du ̄rum)[J].Protoplasmaꎬ2015ꎬ252(6):1461-1473. [46]DjemalRꎬKhoudiH.Theethylene ̄responsivetranscriptionfactorofdurumwheatꎬTdSHN1ꎬconferscadmiumꎬcopperꎬandzinctolerancetoyeastandtransgenictobaccoplants[J].Protoplasmaꎬ2022ꎬ259(1):19-31.[47]HaghirSꎬAlemzadehA.Cloningandmolecularcharacteriza ̄tionofTaERF6ꎬageneencodingabreadwheatethylenere ̄sponsefactor[J].Mol.Biol.Res.Commun.ꎬ2018ꎬ7(4):153-163.[48]ZhangZYꎬYaoWLꎬDongNꎬetal.AnovelERFtranscriptionactivatorinwheatanditsinductionkineticsafterpathogenandhormonetreatments[J].J.Exp.Bot.ꎬ2007ꎬ58(11):2993-3003.[49]DongNꎬLiuXꎬLuYꎬetal.OverexpressionofTaPIEP1ꎬapathogen ̄inducedERFgeneofwheatꎬconfershost ̄enhancedresistancetofungalpathogenBipolarissorokiniana[J].Funct.Integr.Genomic.ꎬ2010ꎬ10(2):215-226.[50]ChenLꎬZhangZYꎬLiangHXꎬetal.OverexpressionofTiERF1enhancesresistancetosharpeyespotintransgenicwheat[J].J.Exp.Bot.ꎬ2008ꎬ59(15):4195-4204.081山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀。
小麦抗白粉病分子育种的研究现状及研究进展刘国圣【摘要】小麦白粉病成为小麦种植过程中主要病害之一,在防治该病时采用抗病品种是最为有效、经济的措施。
近年来,分子标记技术的研究与发展成为了抗白粉病技术中比较科学的技术,这种技术为抗白粉分子育种提供极大的便利。
基于此,从抗白粉病的分子育种研究现状出发,分析小麦抗性的三种类型及小麦抗白粉病的基因克隆,然后从基因定位角度探讨研究发展。
【期刊名称】《生物化工》【年(卷),期】2016(000)004【总页数】3页(P84-86)【关键词】小麦抗白粉病;分子育种;研究发展【作者】刘国圣【作者单位】河南大学生命科学学院【正文语种】中文【中图分类】S435.121.46小麦白粉病属于专性寄生白粉病菌造成的世界性病害[1]。
随着我国改善水肥条件,加大种植密度,种植矮秆品种,以及麦田比较遮蔽,白粉病的危害日渐严重,逐渐成为了危害小麦生产的最大病种。
采用化学控制确实有成效,但是极难应用到大面积中,而且防治成本较高,还会污染环境,对生态环境造成破坏。
所以,采用培育抗病品种是一种最有效、最经济的办法。
在这种形势下,研究小麦抗白粉病分子育种及研究发展具有实用价值。
1.1 抗性三种类型从小麦抗白粉菌表现的抗性,可以将此抗性划分成三种类型,针对这三种类型进行研究。
1.1.1 质量抗性这种质量抗性具体体现在对某个确定白粉菌的生理小种有效,对于其他小种却无效。
也就是符合Flor提出“基因对基因”的假说[2],对于白粉菌表现的质量抗性主要是由单基因控制。
如今已经对小麦7个部分的同源染色体上进行定位,总共为24个位点,总共有35个抗白粉病的基因属于这种类型。
除开已经定位Pm基因之外,其中Mld基因就处于小麦品系的Hallel3471、H8810/47、MarisDove中4B染色体上,主要源于T.durum,而抗德国白粉菌的2号小种Abo、Courtot以及Aristide中都含有Mlar基因。
收稿日期:2012-04-11基金项目:河南省重点科技攻关项目(112102110001作者简介:刘亚飞(1978-,男,河南沁阳人,助教,主要从事小麦遗传育种及作物定量化育种的研究和教学工作。
E -m a i l :l i u ya f e i 780507@126.c o m *通讯作者:郭瑞林(1960-,男,河南林州人,研究员,主要从事小麦遗传育种及作物定量化育种研究。
E -m a i l :gr l 6662002@y a h o o .c o m.c n 小麦全蚀病抗病性研究进展及其育种途径探讨刘亚飞1,刘振东2,郭瑞林1*(1.安阳工学院生物与食品工程学院,河南安阳455000;2.安阳工学院数理学院,河南安阳455000摘要:阐述了小麦全蚀病致病性遗传规律,并从黑麦、燕麦、冰草属、粗山羊草、簇毛麦和华山新麦草等6个近缘种属中抗全蚀病基因的发现,回顾了国内外小麦全蚀病抗性研究取得的成就。
在此基础上,提出了将小麦全蚀病抗性基因导入普通小麦的5条思路或途径。
关键词:小麦全蚀病;抗病性;育种;途径中图分类号:S 435.121.4文献标志码:A 文章编号:1004-3268(201209-0006-04R e s e a r c h P r o gr e s s o f W h e a t T a k e -a l l D i s e a s e R e s i s t a n c e a n d D i s c u s s i o n o n I t s B r e e d i n gA p p r o a c h e s L I U Y a -f e i 1,L I U Z h e n -d o n g 2,G U O R u i -l i n 1*(1.S c h o o l o f B i o l o g i c a l a n d F o o d E n g i n e e r i n g ,A n ya n g I n s t i t u t e o f T e c h n o l o g y ,A n y a n g455000,C h i n a ;2.S c h o o l o f M a t h e m a t i c s a n d P h y s i c s ,A n y a n g I n s t i t u t e o f T e c h n o l o g y ,A n y a n g455000,C h i n a A b s t r a c t :T h e p a p e r e l a b o r a t e s o n t h e ge n e t i c l a w of w h e a t t a k e -a l l d i s e a s e r e s i s t a n c e ,a n d r e v i e w s s o m e a c h i e v e m e n t s t h a t h a v e b e e n m a d e a t h o m e a n d a b r o a d f r o m t h e d i s c o v e r yo f r e s i s t a n c e g e n e s f r o m 6r e l a t i v e s p e c i e s ,s u c h a s r y e ,o a t ,A g r o p y r o n p l a n t s ,A e g i l o p s s q u a r r o s a ,H a yn a l d i a v i l l o s a a n d P s a t h y r o s t a c h y s h u a s h a i c a .B a s e d o n t h i s ,5i d e a s o r a p p r o a c h e s o f t r a n s f e r r i n gt a k e -a l l d i s e a s e r e s i s t a n c e g e n e s i n t o w h e a t a r e p r o po s e d .K e yw o r d s :w h e a t t a k e -a l l d i s e a s e ;d i s e a s e r e s i s t a n c e ;b r e e d i n g ;a p p r o a c h e s 小麦全蚀病是由禾顶囊壳菌(G a e u m a n n n o m y -c e s g r a m i n i s 侵染引起的小麦根基部病害,俗称“黑脚病”,又称小麦立枯病,是目前世界范围内最重要的小麦根部病害之一。
浅析现代农业(玉米,小麦)抗旱及育种研究进展及展望吴红宇发布时间:2021-07-26T16:53:27.197Z 来源:《基层建设》2021年第14期作者:吴红宇[导读] 随着我国科学技术的发展,我国的玉米抗旱育种技术有了一定的发展,但是还有很多的原因使育种的效率得不到提高涿州市禾雨鑫农业技术开发有限责任公司摘要:随着我国科学技术的发展,我国的玉米抗旱育种技术有了一定的发展,但是还有很多的原因使育种的效率得不到提高。
玉米抗旱性是一个复杂的综合特性,对其研究主要是针对抗旱机理研究和抗旱性鉴定与评价,而与此同时,对玉米在干旱胁迫下的生理生化途径研究很多,其成果可以为抗旱育种提供理论指导。
关键词:抗旱性;玉米;育种引言随着全球气候变暖以及人口不断增长,水资源短缺成为目前农业生产上面临的最严峻挑战之一。
干旱作为农业生产上最具破坏力的非生物逆境因子,导致农作物大量减产或绝收。
油菜作为我国最重要的油料作物,整个生长季节需水量较大,耐旱性较差。
因此,筛选抗旱自交系,培育耐旱杂交种已成为我国玉米生产的迫切要求和抗旱育种的重要目标。
1.现代农业育种创新管理模式的重要性农业育种管理模式的创新能够减少传统育种管理模式的弊端,从根本上提高农作物产量与质量,从而创造更高的经济效益,提高农民收入,提高我国农业在国际上的竞争力,让农业现代化能够更好更快地发展。
1.1提高农作物产量随着第二产业与第三产业的逐渐兴起,我国经济重心逐渐转移,不在过多重视现代化农业生产建设,减少了在农业上的人力、物力、财力的投入,但在现阶段我国经济迅猛发展,人口数量不断攀登高峰,社会生活生产活动中又开始出现农作物、农产品需求量增大而无法满足的情况。
与此同时,对于农业现代化发展而言,育种工作是农作物生产、农业发展的基础工作,创新农业育种的管理模式能够解决农作物种子质量差而导致的作物产量与质量低的问题,能够为我国农业发展与经济建设提供数量与质量双重合格的农作物。
麦类作物学报 2000,20(3):82~85Journal of T riticeae Cro ps文章编号:1009-1041(2000)03-0082-04糯小麦(Waxy Wheat)研究进展陈新民(中国农业科学院作物育种栽培研究所,北京 100081)摘 要:糯小麦因不含直链淀粉或直链淀粉含量很低,所以在食品工业和非食品工业上将会有重要的应用价值。
然而,在自然条件下六倍体小麦中则无全糯质小麦存在,需要人工创造。
近几年来,国际上不仅出现了糯小麦研究的热潮,而且进展较快。
六倍体小麦的糯质特性由3个基因位点(W x-A1、W x-B1、W x-D1)控制,分别位于7A、4A、7D染色体上,3个基因组合成8种Wax y类型,用SDS-P A GE电泳分析可加以区别。
当3个位点均为缺失突变时,才是全糯质。
自然界中不同Wax y类型分布频率有很大差异。
单缺失体中,W x-A1、W x-B1缺失体较常见,W x-D1缺失体罕见;双缺失体中,W x-A1和W x-B1双缺失体较常见,其余双缺失体以及三缺失体均未见报道。
糯小麦对淀粉及面团特性均有影响。
本文综述了以上研究进展,以供小麦育种者参考。
关键词:糯小麦;糯蛋白;直链淀粉;小麦品质中图分类号:S331 文献标识码:A淀粉是小麦籽粒的重要组成部分,其构成对于小麦面粉制品品质有着重要影响。
淀粉有直链和支链之分,一般植物贮藏淀粉中含有20%~30%的直链淀粉和70%~80%的支链淀粉[1]。
如果小麦籽粒淀粉中不含直链淀粉或直链淀粉含量很低(<1%),则称为全糯质小麦。
至今,四倍体和六倍体小麦中还未发现有全糯质天然突变体,而在二倍体玉米、水稻、大麦、高粱等禾谷类作物中早已发现有全糯质天然突变体的存在[2]。
由于淀粉广泛应用于食品和非食品工业,因而糯小麦在这两个领域中将会有着重要的应用价值。
为此,近十年来,日本、澳大利亚、加拿大、美国等国对这方面的研究给予了很大的关注,特别是日本和澳大利亚进行了较为深入的研究。
小麦黄花叶病抗性研究及育种应用进展
范德佳;王汝琴;何震天;张容;王建华;韩燕;陈士强
【期刊名称】《核农学报》
【年(卷),期】2024(38)5
【摘要】小麦黄花叶病是一种全球性的土传病毒病,严重时会导致小麦产量大幅下降。
小麦黄花叶病毒(WYMV)是主要的病原体之一,属于马铃薯Y病毒科(Potyviridae)大麦黄花叶病毒属(Bymovirus),以禾谷多黏菌(Polymyxa graminis)为媒介感染小麦。
目前已鉴定出14个抗WYMV的基因位点,图位克隆了1个抗病基因,证实了3个基因具有抗病性调控功能,已育成多个抗病小麦品种(系)。
本文从小麦黄花叶病毒的病原体特性、病害分布、小麦抗性遗传和抗病育种等方面,综述了WYMV及小麦抗病性的研究进展,并对WYMV抗性基因挖掘和小麦抗病育种应用进行了展望。
【总页数】9页(P861-869)
【作者】范德佳;王汝琴;何震天;张容;王建华;韩燕;陈士强
【作者单位】江苏里下河地区农业科学研究所
【正文语种】中文
【中图分类】S51
【相关文献】
1.小麦赤霉病抗性改良研究进展"863"计划——抗小麦赤霉病生物技术育种"十五"回顾
2.小麦梭条花叶病抗性遗传和育种研究进展
3.大麦黄花叶病抗性遗传与育种
研究进展4.小麦黄矮病及其抗性育种研究进展5.大豆花叶病毒病抗性基因发掘及分子育种研究进展及展望
因版权原因,仅展示原文概要,查看原文内容请购买。