JF0801.5-4滚珠丝杆螺母3D模型
- 格式:pptx
- 大小:140.70 KB
- 文档页数:8
文章以定梁龙门加工中心工作台的滚珠丝杠为研究对象,建立了滚珠丝杠运动的动力学模型;运用MATLAB 软件对工作台的进给系统进行动力学仿真分析,得到了反映滚珠丝杠动力学特性的仿真曲线,为提高滚珠丝杠的传动精度和延长使用寿命提供一些理论依据。
1 引言在数控机床中滚珠丝杠作为进给机构的传动部件,具有高效率、高精度、低摩擦和可逆性的特点,滚珠丝杠的运动特性将代表数控机床进给机构的运动特性。
因为滚珠丝杠副具有传动和定位在同一个零件上实现,并且可以把旋转的角位移转化成线位移等特点,所以它的应用十分广泛:如在航空机械、数控机床、精密仪器和仪表,以及各种精密机械设备中,滚珠丝杠转动副是确定线性位移精度的最关键部件之一。
但由于滚珠丝杠在实际中经常是细长且支撑跨度较大,因而传动刚度低,在一定程度上极大的影响了数控机床的性能及工件的加工精度图;加之精密光栅尺、磁尺和感应同步器等先进精密检测元器件的广泛应用以及自动检测技术的发展,滚珠丝杠副的设计制造及其性能也需相应的提高。
目前滚珠丝杠的高速化和高定位精度是其发展的趋势,同时不可避免的又面临新的问题:如滚珠丝杠高速回转温度的升高和热位移的增大、滚珠循环系统的强度问题、噪声与振动、定位精度变化问题和预压力变化等。
为了提高数控机床及精密机械的定位精度和传动精度,除了正确设计、选择进给系统的各个部件,精确计算其强度、稳定性和驱动力矩外,还要,对精密滚珠丝杠副在承受载荷下的刚度进行验算,以确保其安全、可靠、稳定工作。
因此对滚珠丝杠的特性研究,将有利于数控机床精度和加工精度的提高,也可以改善滚珠丝杠的寿命。
2 建立滚珠丝杠的动力学模型2.1 工作台各部件的连接及运动关系如图1所示的工作台传动系统的结构简图,伺服电机8通过电机支座7固定在床身的一端,滚珠丝杠4通过两个丝杠支座固定在床身上,丝杠螺母固定在工作台的低面上。
伺服电机8通过同步带6和齿轮5驱动滚珠丝杠4旋转运动,工作台3通过滚珠丝杠与螺母副4的旋转来直线往复运动,实现工件在x轴方向的直线运动。
滚珠丝杠副作为关键的滚动传动元件,被广泛应用于各种需要定位或传动的机构中,对机构的性能举足轻重。
在实际应用中,滚珠丝杠副的安装方式的选择,同样会影响整个机构的工作效果,根据具体应用情况的不同,滚珠丝杠副的安装可以有多种不同的方式。
不同的安装方式(即支承形式)都有其各自的特点,选取时,既要考虑实际工作要求(定位精度、传动速度、扭矩和推力情况等),又要结合滚珠丝杠副型号规格的选择(涉及内容较多,详情请参阅本站滚珠丝杠副类别的相关内容),只有两者综合考虑合理搭配,才能实现最佳效果,发挥滚珠丝杠副的最大价值。
滚珠丝杠副的安装方式一般叫做滚珠丝杠副的支承形式,通常有两大类(丝杠旋转类和螺母旋转类)共五种典型的支承形式,支承形式不同,所容许的轴向载荷和容许的回转转速也有所不同,应根据工况适当选择。
具体如下,为便于评估,丝杠旋转类每种支承形式后面给出表征其稳定性的“稳定性系数K2”,K2越大表示该形式越稳定,螺母旋转类因受力模型不同,校验体系也不同,不能模型化比较。
一、丝杠旋转类1、“固定—固定”型:K2=4适用于高转速、高精度的场合。
该形式两端分别分别由一对轴承约束轴向和径向自由度,负荷由两组轴承副共同承担。
也可以使两端的轴承副承受反向预拉伸力,从而提高传动刚度。
在定位要求很高的场合,甚至可以根据受力情况和丝杠热变形趋势精确设定目标行程补偿量,进一步提高定位精度。
“固定—固定”型有时也被片面地叫做“双推-双推”,实际上由于径向力的存在几乎很少能用两个推力轴承作为固定端。
由于此形式结构较复杂,调整较难,因此一般仅在定位要求很高时采用。
2、“固定—游动”型:K2=2适用于中转速、高精度的场合。
该形式一端由一对轴承约束轴向和径向自由度,另一端由单个轴承约束径向自由度,负荷由一对轴承副承担,游动的单个轴承能防止悬臂挠度,并消化由热变形产生的应力。
机械设计制造及其自动化毕业论文:自动上下料机械手直臂与夹持部件的三维设计及主要零部件设计中国计量学院现代科技学院毕业设计(论文)自动上下料机械手直臂与夹持部件的三维设计及主要零部件设计学生姓名XXX学号XXXXXX学生专业机械设计制造及其自动化班级机械XX 系机电指导教师XX 副教授自动上下料机械手直臂与夹持部件的三维设计及主要零部件设计摘要:机械手能代替人工操作,起到减轻工人的劳动强度,节约加工时间,提高生产效率,降低生产成本的特点。
在实用的基础上,对自动上下料机械手直臂与夹持部件进行三维设计,其中分为三个部分,手爪、手腕、直臂。
设计手爪为平移型夹持式手爪,传动结构为滑动丝杆。
手腕为回转型,转动角度为0-180°,传动结构为蜗轮蜗杆。
直臂传动结构为滚珠丝杆。
整体机械手为直角坐标型,驱动均为电机驱动,结构简单可靠,精度高。
关键词:机械手;直臂与夹持部件;Pro/e三维设计;CAD二维设计中图分类号:TH24目录摘要.................................................................................... (I)目次.................................................................................... (III)1绪论 (1)1.1前言和意义 (1)1.2 工业机械手的简史 (1)1.3 国内外研究现状和趋势 (3)1.4 本章小结 (3)2机械手直臂部分的总体设计 (4)2.1 执行机构的选择 (4)2.2 驱动机构的选择 (4)2.3传动结构的选择 (5)2.4 机械手的基本形式选择 (7)2.5 机械手直臂部分的主要部件及运动 (7)2.6 机械手的技术参数 (9)2.8 本章小结 (9)3机械手手爪的三维设计 (10)3.1 手部设计基本要求 (10)3.2 典型的手部结构 (10)3.3 机械手手爪的设计计算 (10)3.3.1选择手爪的类型及夹紧装置 (10)3.3.2 手爪夹持范围计算 (11)3.3.3 滑动丝杠设计 (12)3.3.4 直齿轮设计 (15)3.3.5电机选型 (16)3.4 机械手手爪的三维出图及其主要零部件出图 (17)3.5 本章小结 (20)4机械手手腕部分的三维设计 (20)4.1腕部设计的基本要求 (20)4.2 腕部的结构以及选择 (21)4.2.1 典型的腕部结构 (21)4.2.2 腕部结构和驱动机构的选择 (21)4.3 腕部的设计计算 (22)4.3.1 蜗轮轴的设计计算 (22)4.3.2 蜗轮齿轮设计 (24)4.3.3 步进电机选型 (26)4.4 手腕部分出图及主要零部件出图 (27)4.5本章小结 (32)5 直臂部分的三维设计 (34)5.1 手臂的结构的选择及其驱动机构 (34)5.2 滚珠丝杠设计 (34)5.3 锥齿轮设计 (37)5.4 电机选型 (41)5.5 机械手直臂部分三维出图及主要零部件出图 (41)5.6 本章小结 (45)6.总结 (45)学位论文数据集.................................................................................... . (43)1绪论1.1前言和意义机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
非笔试课程考核报告
(以论文或调研报告等形式考核用)
2013 至2014 学年第 2 学期
考核课程:有限元分析
提交日期:2014 年 6 月 3 日
报告题目:滚珠丝杠的参数化建模及有限元分析Array
姓名XXXXXX
学号XXXXX
年级13级
专业机械电子工程
所在学院机电工程
山东建筑大学研究生处制
图2
图4 设计模型、丝杠约束情况及载荷计算
图5丝杠图
丝杠的支承方式分为一端固定,一端自由、一端固定,一端游动、两端支承、两端固定四种,根据实际情况确定支承方式。
选取丝杠支承方式为两端固定,轴向载荷为12.8KN 时分析其应力分布。
首先将
图 6 丝杠网格划分图
图7 螺母运行到丝杠左端时丝杠应力分布
图9 螺母运行到丝杠右端时丝杠应力分布图
可知,当螺母运动到丝杠中间位置时,丝杠的弯曲变形最小,且丝杠各部分所受应力为最小。
当螺母运行到丝杠两端时,丝杠各部分的应力和弯曲变形都增大了数倍。
其中当螺母运行到丝杠右端时丝杠的变形程度和应力值达到最大,丝杠的弯曲变
图10滚珠有效圈数为 3 时丝杠应力分布图
10 可知,虽然增加有效滚珠承载数可降低滚珠上的应力,但却增大
丝杠上的应力。
丝杠应力极值增大了5.84%,同时丝杠中达到应力极值的部分也明显增加,倍,而且丝杠的弯曲变形程度也增大了。
CAXA—2005机械设计实例解析殷宏编著完整全面的功能展示严密精确的工程设计循序渐进的实例分析科学系统的知识体系前言CAXA电子图版是一款优秀的二维设计软件,它易学易用功能强大,存有大量的标准零件和工程标注,新版的CAXA软件与AutoCAD界面相似并完全兼容。
这就使得原AtoCAD用户几乎不用学习,在短时间内就可以迅速掌握其基本操作,充分运用两个软件各自的特点,更好地进行工程设计。
本书即适用于CAXA电子图版的初学者,也适用于有一定计算机操作基础的用户。
通过减速机套图的设计,全面系统地展现了运用电子图板进行机械结构设计的基本过程。
本书由殷宏和编著。
共分两篇10章,第1篇主要介绍了圆柱齿轮减速机各种零件的绘制方法。
第2篇主要介绍机械装配图的设计过程。
通过本书学习,使读者对运用电子图板进行机械产品设计有一个清晰的认识,特别是对于在校大中专学生进行机械设计课程设计和毕业设计有很好的参考价值,对在职的工程技术人员也会有很大的帮助。
由于时间仓促,书中难免有错误和不当之处,恳请读者批评指正,如果读者需要本书的相关资料,欢迎来信联系ytt117@。
目录第一篇通用零件设计第1章CAXA-2005电子图板的界面及基本操作1.1 CAXA—2005电子图板的界面1.1.1概述1.1.2 CAXA—2005电子图板的界面1.2 CAXA—2005电子图板的基本操作1.2.1基本操作1.2.2图形绘制1.2.3图样编辑1.2.4工程标注及图库操作1.2.5图形显示1.2.6 图幅确定1.2.7 图形转换习题第2章轴类零件绘制2.1 轴类零件图形绘制2.1.1 确定图幅和图样比例2.1.2 绘制轴零件的形状2.1.3 绘制轴零件的剖面图、向视图、键槽 2.1.4 轴零件图形的修剪2.2 轴类零件尺寸及公差的标注2.2.1 标注轴零件的直径尺寸及公差2.2.2 标注轴零件的长度尺寸2.2.3标注轴零件的向视图及剖面尺寸2.2.4 标注轴零件的形位公差及剖面符号2.3 轴类零件技术要求填写2.3.1 轴零件的文字标注2.3.2 轴零件的粗糙度、标注基准、倒角标注2.3.3 填写轴零件的技术要求2.3.4 填写轴零件的标题栏2.4 轴类零件图符制作2.4.1 关闭图层2.4.2 制作轴零件的图符习题第3章盘类零件的绘制3.1 盘类零件形状绘制3.1.1 确定图幅和图样比例3.1.2 绘制端盖零件形状3.2 端盖零件尺寸及公差标注3.2.1 标注端盖零件直径尺寸及公差3.2.2标注端盖零件长度尺寸及公差3.2.3 端盖零件形位公差和表面粗糙度标注 3.2.4 端盖零件文字标注3.3 端盖技术要求及标题栏的填写3.3.1 端盖零件技术要求的填写3.3.2 填写端盖零件标题栏3.4 端盖零件图符的制作3.4.1 关闭图层3.4.2 制作端盖零件图符习题第4章齿轮的绘制4.1 齿轮形状的绘制4.1.1 确定图幅及图样比例4.1.2 绘制齿轮形状4.2 齿轮尺寸及公差的标注4.2.1 标注齿轮直径尺寸及公差4.2.2 标注齿轮长度尺寸公差及倒角4.2.3 齿轮表面粗糙度、基准、形位公差标注 4.2.4 齿轮参数及检验项目4.3 齿轮技术要求及标题栏填写4.4 齿轮及参数表图符的制作4.4.1齿轮图符的制作4.4.2 齿轮参数表图符的制作习题第5章减速机箱体绘制5.1 减速机箱盖绘制5.1.1 箱盖主视图绘制5.1.2 箱盖俯视图绘制5.1.3 箱盖左视图绘制5.2 减速机箱盖的尺寸标注5.2.1 箱盖主视图尺寸标注5.2.2 箱盖俯视图尺寸标注5.2.3 箱盖左视图尺寸标注5.2.4 箱盖形位公差、粗糙度标注5.3 减速机箱盖技术要求及标题栏填写5.3.1 箱盖技术要求填写5.3.2 箱盖标题栏填写5.4 减速机箱盖图符制作5.4.1 关闭图层5.4.2 绘制箱盖图符5.4.3 定义箱盖图符5.5减速机箱座绘制5.5.1箱座主视图绘制5.5.2箱座俯视图绘制5.5.3箱座左视图绘制5.6 减速机箱座尺寸标注5.6.1 箱座主视图尺寸标注5.6.2箱座俯视图尺寸标注5.6.3箱座左视图尺寸标注5.6.4 箱座形位公差、粗糙度标注5.7 减速机箱座技术要求及标题栏填写 5.7.1 箱座技术要求填写5.7.2 箱座标题栏填写5.8减速机箱座图符制作5.8.1 关闭图层5.8.2 绘制箱座图符5.8.3 定义箱座图符习题第二篇机械装配图的绘制第6章由零件图绘制减速机装配图6.1 减速机装配图的插装6.1.1 设置图幅6.1.2 调入减速机箱座6.1.3调入减速机箱盖6.1.4 调入齿轮轴6.1.5 调入轴6.1.6 调入齿轮6.1.7 调入轴承6.1.8 调入轴承盖6.1.9 把轴承盖螺钉调入俯视图、联接螺栓调入主视图6.1.10 调入视孔盖6.1.11 调入油标和放油螺塞6.1.12 把轴承盖螺钉调入主视图6.1.13 把联接螺栓、起盖螺钉调入主视图6.1.14 把轴承盖螺钉调入左视图6.1.15 在左视图中绘制两输出轴6.1.16 在左视图中绘制视孔盖6.1.17 把联接螺栓、起盖螺钉、定位销调入左视图6.1.18 编辑图形6.2 减速机装配图尺寸标注6.2.1 轴承与轴的配合尺寸6.2.2减速机装配图的特性尺寸、安装尺寸、外形尺寸6.3 减速机各零件序号明细表6.4减速机技术要求及技术性能的填写6.4.1减速机技术性能填写6.4.2减速机技术要求的填写习题第7章机械装配图的设计7.1 建立新图层7.1.1 设置图幅7.1.2 建立新图层7.2 绘制减速机装配草图7.2.1 由齿轮外径尺寸确定箱体主视图外形7.2.2由齿轮、轴承宽度尺寸及联接螺栓直径确定箱体俯视图结构7.2.3 由俯视图根据投影关系确定主视图结构7.2.4 由俯视图和主视图根据投影关系确定左视图结构7.3 制作各零件图符7.3.1 由减速机装配图制作箱体图符7.3.2 由减速机装配图制作轴图符7.3.3 由减速机装配图制作齿轮图符7.3.4 由减速机装配图制作端盖图符第8章由图符制作零件图8.1 由图符制作轴零件图8.2 由图符制作盘类零件图8.3 由图符制作齿轮零件图8.4 箱体零件绘制8.4.1 由图符制作减速机箱盖零件图8.4.2由图符制作减速机箱座零件图习题第9章图纸管理9.1生成产品树9.1.1自动生成产品树9.1.2手动生成产品树9.2 设置显示内容9.3 查询习题第10章打印排版10.1 打印排版工具10.2 图纸排版操作10.3 图纸的输出习题附录1 CAXA键盘命令附录2 CAXA快捷键第一篇通用零件设计本篇内容包括:CAXA-2005电子图板的功能介绍;用CAXA-2005电子图板绘制轴、盘、齿轮、箱体等零件图形的方法;CAXA-2005电子图板的尺寸标注;图符的制作方法;文字标注的方法;技术要求库的完善和利用。
丝杠螺母机构又称螺旋传动机构。
它主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。
有以传递能量为主的(如螺旋压力机、千斤顶等);也有以传递运动为主的如机床工作台的进给丝杠);还有调整零件之问相对位置的螺旋传动机构等。
丝杠螺母机构有滑动摩擦机构和滚动摩擦机构之分。
滑动丝杠螺母机构结构简单,加工方便,制造成本低,具有自锁功能,但其摩擦阻力矩大、传动效率低(30%~40%)。
滚珠丝杠螺母机构虽然结构复杂、制造成本高,不能自锁,但其最大优点是摩擦阻力矩小、传动效率高(92%~98%),精度高,系统刚度好,运动具有可逆性,使用寿命长,因此在机电一体化系统中得到大量广泛应用。
本节主要介绍滚珠丝杠螺母机构。
1.工作原理如图2—1所示,丝杠4和螺母1的螺纹滚道间置有滚珠2,当丝杠或螺母转动时,滚珠2沿螺纹滚道滚动,则丝杠与螺母之间相对运动时产生滚动摩擦,为防止滚珠从滚道中滚出,在螺母的螺旋槽两端设有回程引导装置3,如图2一la所示的反向器和图2—1b所示的挡珠器,它们与螺纹滚道形成循环回路,使滚珠在螺母滚道内循环。
2.传动形式根据丝杠和螺母相对运动的组合情况,其基本传动形式有如图2—2所示的四种类型。
(1)螺母固定、丝杠转动并移动如图2—2a所示,该传动形式因螺母本身起着支承作用,消除了丝杠轴承可能产生的附加轴向窜动,结构较简单,可获得较高的传动精度。
但其轴向尺寸不宜太长,否则刚性较差。
因此只适用于行程较小的场合。
(2)丝杠转动、螺母移动如图2-2b所示,该传动形式需要限制螺母的转动,故需导向装置。
其特点是结构紧凑,丝杠刚性较好。
适用于工作行程较大的场合。
(3)螺母转动、丝杠移动如图2_2c所示,该传动形式需要限制螺母移动和丝杠的转动,由于结构较复杂且占用轴向空间较大,故应用较少。
(4)丝杠固定、螺母转动并移动如图2—2d所示,该传动方式结构简单、紧凑,但在多数情况下使用极不方便,故很少应用。
此外,还有差动传动方式,其传动原理如图2_3所示。
滚珠丝杠副的三维建模及仿真1 滚珠丝杠副的结构滚珠丝杠副由滚珠、丝杠和螺母组成,其结构如图1所示图1 滚珠丝杠副的结构2 滚珠丝杠的建模在这里我建立模型只是为了更方便看清楚滚珠与丝杠和螺母之间的关系,并不能直接用这个建模后的模型仿真,但这个建模在一定程度上也为后来的仿真做了一些准备工作。
2.1 螺母的建模启动pro/e软件,在文件菜单下设置工作目录,选择方便使用的文件夹作为工作目录。
设置工作目录是为了方便存取文件,以后新建文件系统也会自动指向这个文件夹。
选择【文件】——【新建】,在“类型”里选择“零件”,在“子类型”中选择“实体”,在“名称”里输入“螺母”,不适用缺省模板,选择mmns-part-solid 模板,这种符合国家标准,单击“确定”随后进入pro/e零件建模模块。
选择【拉伸】进入实体操作状态按住右键选择“定义内部草绘”进入草绘状态后,绘制直径110mm、厚度15mm的螺母的凸缘造型,再【拉伸】以相同草绘平面绘制直径71mm、厚度65mm拉伸方向与上一步相同的螺母体的造型。
如图2所示图2 螺母体的造型在此选择【拉伸】命令,按住右键选择“移除材料”,接着定义内部草绘,草绘平面选择“使用先前的”进入草绘后在螺母体的一侧面绘制直径为49.5mm 的同心圆草图,在信息栏中选择改变拉伸方向,然后选择穿透;然后确定应用,完成通孔的造型;最后选择【插入】——【螺旋扫描切口】,完成螺母螺纹孔的造型。
在应用拉伸移除材料绘制螺母凸缘上一个阶梯孔的造型,用阵列命令完成六个空的造型。
为了方便观察用拉伸移除材料将螺母四分之一切掉,形成半刨视图。
螺母的三维建模完成,如图3所示特别指出这里切除四分之一的螺母只是为了后面建模成滚珠丝杠后能清楚的看清里面的结构。
图3 螺母的三维建模2.2 丝杠的建模启动pro/e软件然后按照与螺母建模相同的操作方法进行pro/e零件建模。
首先选择【插入】——【拉伸】,完成直径为49.5mm的丝杠圆柱的造型,再选择【插入】——【螺旋扫描切口】完成丝杠螺纹的造型,如图4所示。