锅炉主、再热汽温调整
- 格式:doc
- 大小:35.50 KB
- 文档页数:4
660MW超超临界直流锅炉汽温调整控制策略摘要:针对660MW超超临界直流锅炉汽温调整控制,分析影响锅炉蒸汽温度的主要因素,采取过热汽温和再热汽温调整控制的策略,为机组安全稳定运行提供技术支持。
关键词:660MW;超超临界直流锅炉;汽温控制;策略;宁德发电公司1、2号机组为660 MW超超临界发电机组,配置DG2060/26.15-II1型超超临界直流锅炉,蒸汽参数为26.03 MPa,605/603℃。
过热汽温的调整主要由水煤比控制中间点温度,并设置两级喷水减温器调节各段及出口蒸汽温度,再热蒸汽温度主要由尾部烟气挡板调节,在高再入口管道装设有事故喷水减温器。
1 660MW超超临界直流锅炉超超临界机组是在常规超临界机组的基础上发展起来的新一代高参数、大容量发电机组,与常规超临界机组相比,超超临界机组的热效率比超临界机组的高4% 左右。
但由于超超临界机组运行参数高,锅炉为直流炉,需适应大范围深度调峰的要求,因此,这给超超临界机组汽温控制提出更高要求。
2汽温调节的重要性维持锅炉蒸汽温度稳定对机组安全稳定运行至关重要,汽温过高或过低,都将严重影响机组安全稳定运行。
蒸汽温度过高,将使锅炉受热面及蒸汽管道金属材料的蠕变速度加快,影响使用寿命,严重超温将会导致金属管道过热爆管。
当蒸汽温度过高超过允许值时,使汽轮机的部件的机械强度降低,导致设备损坏或使用寿命缩短。
蒸汽温度过低,将会降低机组热效率。
汽温过低,使汽轮机末级叶片湿度增加。
蒸汽温度大幅度快速下降会造成汽轮机金属部件过大的热应力、热变形,甚至会发生动静部件摩擦,严重时会发生水冲击,威胁汽轮机安全稳定运行。
因此,机组在运行中,在各种内、外扰动因素影响下,如何通过运行分析进行调整,用最合理的控制措施保持汽温稳定,是汽温调节的首要任务。
3锅炉蒸汽温度的影响因素3.1水煤比的影响:超超临界锅炉中给水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。
电厂锅炉再热汽温偏低的影响因素及改进对策分析了电厂锅炉再热汽温偏低的影响因素,提出了的减少三级过热器受热面积、减少二级过热器受热面积、增加一级再热器受热面积的受热面改进方案,安全性良好,并提高了全厂热效率,降低了发电煤耗率。
标签:电厂锅炉;再热气温偏低;影响因素0 引言如何提高燃煤机组的热效率及控制产物NOx、SOx和CO2的排放量己成为电力行业的重大研究课题,实践证明超(超)临界技术是当前火电应对这一问题最现实、经济和有效的技术。
A电厂锅炉机组自投运以来一直存在再热汽温偏低问题。
本文以之为对象,并结合实际情况分析再热汽温偏低原因,提出合理的改造方案,为电厂锅炉系统改进提供一个参考。
1 电厂锅炉存在问题及原因A电厂2×1000MW超超临界塔式锅炉自移交生产后再热汽温一直较设计值(603℃)偏低,负荷率在75%的情况下再热汽温只有570℃-580℃。
通过对该电厂锅炉运行情况进行了摸底试验,提出可能造成该厂再热汽温偏低的四个因素,分别为煤质偏差、燃烧偏差、汽机侧影响以及炉膛设计。
2 电厂锅炉再热汽温偏低的影响因素2.1 煤质对再热汽温的影响实际运行煤质与设计煤质在碳含量、灰分、水分及发热量等方面存在差异,煤质成分的偏差可能是造成再热汽温偏低的原因;另外由于掺烧的石炭煤灰熔点高,使得实际燃煤的结渣性弱于设计煤种,降低了炉膛等辐射受热面的玷污程度。
也就是说,设计时预计燃煤具有强结渣性,会对炉膛、一级过热器、三级过热器造成较多玷污,但实际情况并非如此,这使得上述受热面的吸热量大于设计工况,从而降低了流经布置在后面的二级再热器的烟气温度,减少了再热器吸热量。
因此,燃煤结渣性的改变也可能影响再热汽温。
2.2 燃烧偏差造成的再热喷水对再热汽温的影响摸底试验中发现,用于消旋的SOFA摆角出现卡死情况,无法对燃烧中产生的旋转动量给予有效消旋,造成燃烧侧内外偏差;另外从试验工况看,始终是右侧二级再热器前需要喷水,燃烧器摆角不同出现的偏差量也不同,因此很可能是燃烧器四角摆动或四角风量不一致导致炉内火焰向右偏斜,造成燃烧侧左右偏差。
影响锅炉汽温的因素及汽温的控制措施锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。
从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。
蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。
一、影响过热汽温变化的因素1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。
当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。
2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。
在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。
3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从而使汽温降低。
反之,给水温度降低汽温将升高。
5、受热面清洁程度的变化:水冷壁和屏过积灰结焦或管内结垢时,受热面的吸热将减少,使炉膛出口温度升高,当过热器本身结焦或积灰时,由于传热不好,将使汽温降低。
6、锅炉负荷的变化:炉膛热负荷增加时,炉膛出口烟温升高,使对流受热面吸热量增大,辐射受热面吸热量降低。
7、饱和蒸汽温度和减温水量的变化:从汽包出来的饱和蒸汽含有少量水分,在正常工况下饱和温度变化很小,但由于某些原因造成饱和蒸汽温度较大变化时,如汽包水位突增,蒸汽带水量增大,在燃烧工况不变的情况下,这些水分在过热器中要吸热,将使汽温降低。
电厂燃煤锅炉汽温、受热面壁温控制措施前言我公司锅炉型号为DG1025/18.2-Ⅱ16型,是东方锅炉厂制造的引进嫁接型亚临界自然循环汽包炉。
单炉膛、一次中间再热、平衡通风、钢构架、燃煤、固态排渣,均与上海汽轮机厂生产的N300-16.7/538/538型单轴,双缸双排汽(高中压合缸,低压缸双流程)凝汽式汽轮机和及上海电机厂生产的QFS2-300-2型双水内冷发电机配套组成发电机组。
受煤质及锅炉自身结构的影响,我厂锅炉主、再热蒸汽温度、受热面壁温经常出现超温。
特别是在煤质较差或磨煤机断煤处理过程中,稍不留神就将导致受热面超温或汽温超限。
而受热面超温或汽温超限将带来很大的危害,特别是长时间频繁的超温更是很容易造成安全事故。
受热面超温或汽温超限的危害:1.容易造成受热面老化或应力损坏2.而汽温过低则降低锅炉效率和机组热经济性。
采取措施我公司组织部分运行管理、设备管理等相关技术人员对如何控制汽温、壁温,从运行调整、燃煤调度、设备改造等方面做了大量工作,对运行操作方法和思路进行了很多探索和总结,采取了一些切实可行的调整措施,使超温的势头得到了有效控制,在2011年虽然煤质较去年下滑非常严重的情况下,保证了超温次数较去年逐月下降。
为更好的对运行操作调整进行规范,运行部组织相关人员对汽温、壁温的调整方法和经验进行了讨论,集思广益,提炼总结了一些调整经验,作为各值班员操作调整的一般原则和方法,请各值认真执行。
一、超温原因:1、煤质较差,掺假严重,发热量较低,使我厂五台磨煤机最大煤量时,机组负荷在190MW—230MW之间波动,负荷率只有60%--75%,蒸汽流量与流速都较低,蒸汽与烟气换热效果下降,导致前屏壁温偏高,发生断煤或煤质波动情况下,前屏壁温易发生短时超温现象。
2、四角切圆逆时针旋转的锅炉,由于旋转气流偏斜,导致炉膛出口温度场的热偏差,使B侧的汽温、壁温明显高于A侧汽温、壁温,前屏两侧壁温偏差大,一级减温水全开的情况下,B侧前屏壁温比A侧高40-60℃,B侧壁温运行安全余量较小,发生断煤情况时易发生超温现象;3、由于机组负荷低,汽包压力低导致给水泵转速低出力受限,减温水量不足,发生受热面壁温、主蒸汽汽温同时升高情况的情况下,过热器一减、二减、三减相互分流,在调整过程中使壁温、汽温不能互相兼顾,导致超温现象发生。
660MW超超临界机组锅炉受热面壁温、汽温偏差大原因及应对措施华电六安电厂有限公司#3机组运行中存在受热面左右侧壁温偏差、再热器出口汽温偏差大的问题,导致机组在额定主、再热汽温运行的时候左侧受热面易超温和再热器左侧存在事故喷水的现象,影响了机组的安全、经济运行。
为了解决这个问题,从影响偏差的各个因素入手,综合考虑,提出切实可行的运行方式,寻找锅炉燃烧的最优工况,为机组安全、稳定、经济运行提供相关参考依据。
标签:660MW机组;受热面壁温;汽温;事故喷水;经济性;安全性;控制困难;解决方法0 前言华电六安电厂有限公司扩建2×660MW 机组锅炉为:超超临界参数、变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、Π 型半露天布置、除灰渣系统为干式(风冷)机械式除渣系统、全钢架悬吊结构。
炉后尾部布置两台转子直径为Φ14236mm 的三分仓容克式空气预热器。
锅炉采用中速磨煤机正压直吹式制粉系统,每台锅炉配6 台磨煤机(5运1备)。
24 只直流式燃烧器分6 层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。
最上排燃烧器喷口中心标高为35488mm,距分隔屏底部距离为21962mm。
最下排燃烧器喷口中心标高为26078mm,至冷灰斗转角距离为5188mm。
在主燃烧器和炉膛出口之间标高42178mm 处布置有1 组下层燃烬风(LOFA)燃烧器喷嘴,距上排燃烧器喷口中心6090mm。
在主燃烧器和炉膛出口之间标高46237mm 处布置有1 组上层燃烬风(HOFA)燃烧器喷嘴,距上排燃烧器喷口中心10749mm。
1 问题简述#3机组燃用煤种为混煤。
其中,A、B、C磨煤机为黄陵煤,全水分为9.4%,挥发分为34.31%,灰分为15.77%,低位发热量为24.31MJ/Kg;D、E、F为潘集西煤,全水分为8%,揮发分为42%,灰分为28%,低位发热量为20.9MJ/Kg。
锅炉运行调整1.锅炉运行调整的主要任务和目的是什么?1) 保持锅炉燃烧良好,提高锅炉效率。
2) 保持正常的汽温、汽压和汽包水位。
3) 保持蒸汽的品质合格。
4) 保持锅炉蒸发量,满足汽机及热用户的需要。
5) 保持锅炉机组的安全、经济运行。
锅炉运行调整的目的就是通过调节燃料量、给水量、减温水量、送风量和引风量来保持汽温、汽压、汽包水位、过量空气系数、炉膛负压等稳定在额定值或允许值范围内。
2.机组协调控制系统运行方式单元机组有五种控制方式:基本模式(BM)、炉跟机方式(BF)、机跟炉方式(TF)、机炉协调方式(CCS)、自动发电控制(AGC)。
3.基本模式(BM)1) 基本模式是一种比较低级的控制模式,其适用范围:机组启动及低负荷阶段;机组给水控制手动或异常状态。
2) 控制策略:汽机主控和锅炉主控都在手动运行方式。
在该方式下,单元机组的运行由操作员手动操作,机组的目标负荷指令跟踪机组的实发功率,为投入更高级的控制模式做准备。
机组功率变化通过手动调整汽机调阀控制;主汽压力设定值接受机组滑压曲线设定,实际主汽压力和设定值的偏差做为被调量,由燃料、给水以及旁路系统共同调节。
在任何控制模式下,只要给水主控从自动切换为手动,则机组的控制模式都将强制切换为基本模式控制。
4.炉跟机方式(BF)1) 控制策略:锅炉主控自动,调节主汽压力;汽机主控调节机组功率,可以自动也可以手动。
主汽压力设定值接受滑压曲线设定,锅炉主控根据实际主汽压力和主汽压力设定值的偏差进行调节。
2) 当汽机主控在手动时,机组功率通过操作员手动调节或由DEH自动调节;可称之为BF1方式。
适用范围:锅炉运行正常,汽机部分设备工作异常或机组负荷受到限制。
3) 当汽机主控在自动时,可称之为协调的炉跟机方式BF2。
此时锅炉主控和汽机主控同时接受目标负荷的前馈信号,机组功率由汽机调节,目标负荷由操作员手动给定。
适用范围:锅炉汽机都运行正常,需要机组参与调峰运行。
锅炉运行调整基本原则贵州黔西中水发电有限公司:宋福昌前言:随着结能降耗工作的不断深入,对锅炉运行人员的理论要求及实际控制水平要求越来越高。
一个火电厂生产指标的好坏,往往决定在锅炉运行人员对指标控制的理解及操作技术水平上。
本文将锅炉运行调整过程中对各项指标的调整控制进行分析说明,以便更好的指导锅炉人员进行运行调整。
一、过热汽压控制1、过热汽压是决定电厂运行经济性的最主要的参数之一。
过热汽压的高低,直接影响汽轮机热耗。
过热汽压升高,汽轮机热耗降低,机组煤耗减少(过热汽压升高1MP,热耗降低7%,汽轮机热耗每升高100kJ/kWh,机组煤耗升高4g/ kWh)。
另外,过热汽压提高后,产生蒸汽所需的焓值增加,也就是说高压蒸汽冷却烟气的效果变好,将会降低各段烟气温度,最终体现出来就是降低排烟温度。
同时在不影响主、再热汽温的基础上还可使减温水用量减少。
但过热汽压的升高超过允许值,将会造成锅炉受热面,汽轮机主蒸汽管道,汽缸法兰,主汽门等部件应力增加,对管道和汽阀的安全不利。
还有由于汽轮机主汽调节门特性及各个负荷段压力、热耗对比,在主汽门关闭3个半后节流损失增加,汽机热耗率增加,且第三个调门会出现频繁波动,造成主汽压力不稳定。
因此过热汽压力的控制在高负荷时应以汽轮机主汽门前的蒸汽压力达设计的额定值为准。
即250MW以上负荷时,保证主汽门前的蒸汽压力达16.7MPa(炉侧17.1MPa),200MW~250MW 负荷段运行时,保证汽轮机高压调门关闭3个,150MW~200MW负荷段运行时,汽轮机高压调门关闭3个半。
有条件的电厂还应通过试验,做出负荷、压力、热耗对应曲线,更好指导锅炉运行人员进行压力控制。
2、在压力控制中,除升降负荷外,保证压力的稳定是锅炉燃烧调整的任务之一,只有在压力稳定的基础上,才能保证主、再热汽温稳定,才能进一步提高锅炉的经济性。
这就要求运行人员在运行调整过程中做到精心调整,提前判断,提前操作,熟悉所辖锅炉的特性。
锅炉过热、再热汽温的控制与调整 l、影响过热汽温变化的因素 (1)燃料性质的变化 锅炉运行中,经常会碰到燃料品质发生变化的情况,当燃烧品质发生改变时,燃烧的发热量、挥发分、灰分、水分和灰渣特性等都会发生变动,因而对锅炉工况的影响比较复杂。当燃料中的灰分或水分增大时,其可燃物质含量必然减少,因此燃料的发热量及燃烧所需要的空气量和燃烧生成的烟气量等均将降低。这一变化,可以从燃料量及风量未变时炉膛出口氧量增大这一现象上反映出来。在燃料量不变的情况下当灰分或水分增大时,由于燃料的发热量降低,将使燃料在炉内总放热量下降,其后果相当于总燃料量减少,在其它参数不变的情况下,必将造成过热汽温的下降。如需保持过热汽温和锅炉出力不变,必须增加燃料量保持炉膛出口氧量不变方能达到。 当燃煤的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射式过热器的吸热量降低,对流式过热量增加。必须指出,燃料中的水分增大时,如通过增加燃料量保持炉膛出口氧量不变,则炉膛温度、辐射受热面的吸热量可保持不变,但由于烟气的容积和重度是随水分相应增加的,所以烟气的对流放热将增大。 当煤粉变粗时,燃料在炉内燃烬时间延长,火焰中心上移、汽温将升高。 (2)风量及其配比的变化 锅炉在正常运行中,为了保证燃料在炉膛内完全燃烧,必须保持一定的过剩空气系数,即保持一定的氧量。对于燃煤锅炉,炉膛出口过剩空气系数一般控制在1.25左右。 风量变化对过热汽温变化的影响速度既快且幅度又较大。在炉内燃烧工况良好的情况下如增大风量,由于低温冷风吸热,炉膛温度将降低,使炉膛出口烟温升高。对于汽包锅炉,由于炉膛温度降低,水冷壁辐射吸热量减少,使产汽量下降;另一方面由于风量增大造成烟气量增多,烟气流速加快使过热器对流吸热量增加。由于流经过热器的蒸汽量减少了,但过热器的总吸热量增加,造成过热汽温的升高。 如果在炉内燃烧工况不良的情况下适当增加风量,由于克服了缺氧燃烧,使化学不完全燃烧及机械不完全燃烧损失大大降低,增强了炉内辐射传热和对流传热,使汽包锅炉的蒸发量和过热器总吸热量均增加,最终过热汽温的升高与否将视两者的比例情况而定。 在总风量不变的情况下,配风工况的变化也会引起汽温的变化,如果配风使火焰中心降低,炉膛出口烟温相应下降。反之,炉膛出口烟温将升高。 (3)燃烧器运行方式的变化 在锅炉运行中,炉膛火焰中心位置的变化将直接影响到各受热面吸热份额的变化。当火焰中心上移时,将造成辐射受热面吸热减少、对流受热面吸热增加,其影响结果与风量增大相似,也就是说,将使汽包锅炉过热汽温上升。 影响炉膛火焰中心位置变化的因素很多,如:运行燃烧器的位置、上下燃烧器负荷的分配、上下二次风门开度的变化、炉膛负压的高低、炉底漏风的大小、煤粉细度、一次风管内风粉混合物的温度、燃料的品质、炉膛热负荷的高低、燃烧情况的好坏等。因此,锅炉燃烧是一个相当复杂的物理化学过程,要搞好燃烧调整,必须经过各方面的综合分析和考虑。应当指出,火焰中心过于偏上,将严重威胁前屏的安全运行,并对锅炉运行的经济性带来不利的影响。因此,运行中应确保屏式过热器处无明火冲刷。 锅炉运行中,若由于受到某种扰动因素的影响使炉内燃烧工况变差时,将使锅炉的化学不完全燃烧损失q3及机械不完全燃烧损失q4增加,而使炉内热负荷及锅炉效率降低。此时,若给水流量、减温水流量和主蒸汽压力等参数不变,则主蒸汽温度及各段汽温必然下降。 (4)给水温度的变化 给水温度的变化对锅炉过热汽温将产生较大的影响。在汽包锅炉中,给水温度升高,过热汽温将下降。这是因为当其它参数不变而给水温度升高时,将使汽包锅炉的蒸发量增加,过热器内工质流量上升。 (5)受热面清洁程度的变化 受热面积灰或结渣是燃煤锅炉最为常见的现象,由于灰;渣的导热性差,造成积灰或结渣部位工质吸热量的减少和各段烟温的变化,使锅炉各受热面的吸热份额发生变化。汽包锅炉发生水冷壁结渣时,锅炉蒸发量将下降,并因炉膛出口烟温上升,造成过热汽温的升高。汽包锅炉过热器部分发生结渣时,由于锅炉蒸发量未变但过热器吸热量减少而导致过热汽温下降。因此,对于汽包锅炉而言,过热汽温的变化,应视积灰或结渣的部位而定。 一般来说,锅炉受热面的积灰或结渣是一个比较缓慢的过程,因此对过热汽温的控制和调整不会带来复杂性。但运行中如发生大块焦渣塌落,则有可能构成汽温突升或两侧偏差剧增等突发性事件。此外,进行受热面吹灰工作时,也应作好汽温突变的事故预想。 (6)锅炉负荷的变化 炉膛热负荷增加时出口烟温升高,对流过热器吸热量增大,辐射过热器吸热量降低。 (7)饱和蒸汽温度及减温水量的变化 从汽包出来的饱和蒸汽含有少量的水份,在正常工况下饱和蒸汽的温度变化很小。但由于某些原因造成饱和蒸汽温度的较大变化时,则将对汽温的变化产生较大的影响。例如汽包水位突增时,蒸汽带水量将大大增加,由于这些水份在过热器中需吸热,因此在燃烧工况不变的情况下,过热汽温将降低。 在用减温水调节汽温时,当减温水温度或流量发生变化时将引起蒸汽侧总热量的变化,当烟气侧工况未变时,汽温便将发生相应的变化。 2、自然循环汽包锅炉过热汽温的控制与调整 (1)锅炉正常运行工况下如出现汽温变高时,应开大减温水,并注意观察减温后蒸汽温度的变化,减温水操作应缓慢切不可猛增猛减,以免造成汽温的大幅度波动。 (2)当工况发生变化,减温水已不能满足汽温调节的需要时,则可通过降低或升高炉膛火焰中心来达到调节汽温的目的。对于本锅炉,可采用改变燃烧器的组合方式或运行燃烧器位置,增加或减少上、下层燃烧器的二次风量等方法。 (3)发现汽温降低时,应及时加强对过热器的吹灰;发现汽温升高时,则应加强对炉膛水冷壁及省煤器的吹灰,并在确保燃烧完全的前提下尽量减少锅炉的总风量。 总之,在汽温调节中,首先应通过燃烧调整,力求做到火焰不偏斜、避免出现局部结焦的现象,然后对过热汽温进行细调。当减温水量在确保各级管壁温度不超限的情况下,已无法使汽温平稳调节时,则应从燃烧调整(即烟气侧)的角度来考虑调温的措施与方法。 二、再热汽温的控制与调整 1、再热汽温的特性 由于再热器在结构和布置上的特点,决定了其汽温具有以下特性: (1)由于再热器具有较大的容积,工质在其中的流速较慢,且它又布置在烟气低温区使烟气侧的传热温差小,因而工况变化时再热汽温变化的迟滞时间较长。 (2)再热蒸汽压力低、比热小,因而单位工质在相同的吸热量变化时再热汽温将比过热汽温变化大。再热器对流部分布置在较低烟温区域,由于对流受热面的传热特性及再热蒸汽比热小的特点,使再热汽温的影响则较小。 (3)再热汽温对热偏差比较敏感。因为它压力低、比热小,在同样热偏差条件下,再热汽温的偏差将比过热汽温要大。 (4)再热器的运行工况不但受锅炉运行工况的影响,而且还受汽轮机运行工况的影响。再热蒸汽的流量不但随机组负荷而变化,还将受汽轮机一、二级抽汽量的大小及锅炉安全门、排汽阀启闭状态的影响。机组在定压方式下运行时,汽轮机高压缸排汽温度,即低温再热器进口温度,将随机组的负荷变化有较大幅度的变化。再热器进口温度及工质流量的变化均将造成再热汽温的变化。 2、影响再热汽温变化的因素 再热器由于结构和布置上的特点,决定了影响再热汽温度变化的因素很多。归纳起来,主要有以下方面: (1)高压缸排汽温度变化的影响。 在其它工况不变的情况下,高压缸排汽温度越高,则再热器出口温度将越高,机组在定压方式下运行时,汽机高压缸排汽温度将随着机组负荷的增加而升高,过热汽温的升高,也将造成高压缸排汽温度的升高。另外,主蒸汽压力越高,蒸汽在汽轮机中作功的能力就越大,绝热焓降亦越大,高压缸排汽温度则相应降低。此外,汽轮机高压缸的效率,一、二级抽汽量的大小等,均将对高压缸的排汽温度产生影响。 (2)再热器吸热量变化的影响 锅炉运行时,再热器吸热量越多,工质焓增越大,再热汽温将越高。影响再热器吸热量变化的因素较多,通常为: A、锅炉燃料量或燃料低位发热量的变化。燃料量越多或燃料的低位发热量越高,炉内热负荷及烟气温度越高,则再热器的吸热量就越多。 B、流经再热器的烟气量的变化。对于再热器呈对流特性的部分,当流经再热器的烟气量越大时,再热器处烟气流速越高,则再热器的吸热量就越大。 C、锅炉负荷变化时再热器吸热份额的影响。锅炉负荷降低时,辐射受热面的吸热比例增加,作为对流受热面布置的再热器,吸热份额将减少;反之,锅炉负荷升高时,对流式再热器的吸热份额将增加。 D、燃烧工况变化的影响。在锅炉运行中,如炉膛火焰中心上移,将造成后部烟道烟温升高,对流式再热器的吸热量将增加。 E、锅炉受热面积灰或结渣的影响。当再热器前受热面积灰或结渣时,将造成再热器处烟温升高,使再热器吸热量增加。当再热器受热面本身积灰或结渣时,吸热量减少。 (3)再热蒸汽流量变化的影响 在其它工况不变时,再热蒸汽流量越大,则再热器出口温度将越低。机组正常运行时,再热蒸汽流量将随着机组负荷、汽轮机一级抽汽或二级抽汽量的大小、吹灰器的投停、安全门、汽机旁路或向空排汽阀状态等情况的变化而变化。 (4)再热减温水流量变化的影响 在其它工况不变时,再热减温水流量越大则再热汽温越低。 3、再热汽温的调节方法 本锅炉再热汽温的调节,采用烟气挡板调节、改变炉膛火焰中心的高度、减温水调节等方法。 (1)烟气调温档板的调节 烟气调温挡板布置在尾部对流烟道的省煤器之后的竖井中,通过对烟气调温档板的调节,可改变流经再热器的烟气量,从而达到调节再热汽温的目的。为了保证足够的烟气通流截面和较好的调温效果,正常运行中,同-侧低再和低过烟气档板作反向调节,即低再烟气档板关小或开大时,同一侧的低过烟气档板应同时开大或关小相等的开度,使两者开度之和始终保持>120%。 (2)改变炉膛火焰中心高度,可以改变辐射和对流受热面的吸热比例,从而达到调节再热汽温的目的。影响炉膛火焰中心高度变化的因素很多,如需降低炉膛火焰中心高度时,可降低上层燃烧器的负荷和增加下层燃烧器的负荷、适当降低炉膛负压、增大上面的二次风并减少下面的二次风等,对于呈对流特性的再热器,炉膛火焰中心降低时再热汽温将降低;反之,炉膛火焰中心抬高时则使再热汽温升高。 (3)再热减温水调节 喷水减温结构简单、调节方便,调温幅度大,惰性小,但它的使用将使机组的热力循环效率降低。这是因为,便用喷水减温,将使中、低缸工质流量增加,这些蒸汽仅在中、低缸作功,就整个回热系统而言,当机组负荷不变时,限制了高压缸的出力。因此,虽然它在调温方面有很多优点,但一般都不将其作为主要调温手段,而是采用与其它调温方式相配合,作为辅助微量细调之用和在事故情况下的应急之用。