(整理)pkpm筏板基础设计方法及构造要求.
- 格式:doc
- 大小:119.00 KB
- 文档页数:10
PKPM软件JCCAD筏板基础设计步骤举例一、地质资料输入PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。
对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。
输入土的力学指标包括:压缩模量、重度。
对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。
输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。
在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示:1、土层布置给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示:弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:2、输入孔点单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对位置。
孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。
如下图所示:程序要求孔点形成的三角形网格互不交叉,互不重叠。
如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。
点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。
对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、孔口标高、探孔水头标高等。
孔口位置一般不采用绝对坐标,不必修改孔口坐标。
如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。
“复制”用于复制参数相同的孔点,“删除孔位”用于删除多余或输入错误的孔点。
3、程序除完成地质资料输入外,还可以在此基础上生成孔点土层柱状图、孔点剖面图、土层剖面图、土层和水头的等高线图及孔点平面图等,还可以进行承载力和沉降计算。
二、基础参数设置在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。
1.打开PKPK—JCCAD —基础人机交互输入进入,选择重新输入基础数据点击确定2.点击参数输入—基本参数----参照规范把各个参数填好—确定3.网格节点—网格延伸—根据地基承载力确定筏板外挑多少确定轴线延伸距离4.网格延伸后—荷载输入—读取荷载—左边框中选择荷载来源—SATwe荷载5.进入筏板—单击围区生成—新建—输入筏板厚度和板底标高(标高要根据±0按实际填写这样筏板上的覆土重量才能计算准确—单击确定—选择你所新建的筏板—单击布置—挑出宽度暂且不变(200)以后看地基反力,如果反力比地基承载力大的话,把挑出宽度改大,反之改小—把下面的布置子筏板勾掉,这个子筏板只有在有筏板面标高不一致的情况下才能用到,比如讲电梯基坑—然后把筏板布置好6.筏板—筏板荷载—单击你所布置的筏板,把单位面积覆土中,筏板以上荷载写上(单位面积覆土中就是土的厚度X20(土的容重),土的厚度要计算好,是室内地面到筏板顶得距离,不是筏板的底标高(差个筏板厚度),荷载恒载标准值就是室内地面的建筑做法你填写1.5足够了,活载按照室内的功能按荷载规范取值,住宅取2.0,商铺取3.5以此内推。
7.如果是柱下筏板的话就要用柱下筏板来验算筏板厚度能不能满足冲切要求,如果是剪力墙的话就要用内筒冲切来验算了,冲切不满足的话要加大筏板厚度,或者是柱的话就做上柱墩或板下柱墩都可以。
一般加大筏板厚度。
8.主菜单—重心校核—选荷载组—这里要选择两次—一次选择标准组合查看荷载的反力和地基承载力那个大,反力比地基承载力小就满足要求了。
在一次就是用荷载的永久组合—这次看荷载重心和筏板的形心是否偏小距离不大于1.0,小于就满足要求,大于就要调整,直到满足为止。
图形上有二者的偏心图形,你看看就明白了,还有偏心的确定坐标,就是重心坐标和筏板的形心都有坐标,你一减就知道了他们之间确切偏心距离了。
9.点击退出—桩筏、筏板有限元计算—单击进入—第一次网格划分—模型参数—把筏板的混凝土强度等级和筏板主筋和箍筋级别填对,别的把地基承载力确认一下,这里如果不要考虑上部结构刚度的话就不用修改别的参数了。
筏板基础设计分析20091.筏板基础设计及构造当地基承载力很低,建筑物荷载又很大时,宜采用筏基。
沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。
即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。
筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。
构造要求筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。
设置肋梁时宜取200-400mm。
筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。
悬臂部分宜沿建筑物宽度方向设置。
当梁肋不外伸时板挑出长度不宜大于2m。
砼不低于c20,垫层100mm厚。
钢筋保护层不小于35mm。
地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。
当板厚小于300mm时单层配置,大于300mm时双层布置。
受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。
筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。
双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。
平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。
当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
筏板按单列和多列连续板共可分为五中情况:1.三边简支,一边固定2.两对边简支,两对边固定3.两邻边简支,两邻边固定4.三边固定,一边简支5.四边固定连续板的中间支座共有2种:支座a为边跨中间支座,支座b为中间跨中间支座可查表得到Mx,My,Ma,Mb。
注意:底板跨中配筋可直接按跨中弯矩确定,支座弯矩应减去一个修正量M0。
pkpm平板筏基建模方法目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。
具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列:1、首先要按地勘报告输入地质数据,用于沉降计算。
非常重要。
2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。
3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。
也可以不布置板带,直接定义地基梁形成梁元模型。
4、进入菜单3,按梁有限元法计算筏板。
首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。
程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。
一般软土取低值0~0.2,硬土取高值0.2~0.4。
其它参数不难理解,不赘述。
梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。
柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。
计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。
沉降计算是筏板计算的核心步骤。
4、基床系数k的合理性判断。
沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。
这个系数一般要比建议值小很多。
基床系数的合理性,关键看沉降计算结果。
可用规范分层总和法手算地基中心点处的沉降值作比较。
如出入大,应调整基床系数使其接近手算值。
因此,用软件算连续基础,实际上就是对基床系数的校核。
PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例一、地质资料输入1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。
对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。
输入土的力学指标包括:压缩模量、重度。
对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。
输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。
2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示:、土层布置3.,如下图所示:土层布置”给地质资料命名之后,开始进行土层布置,点击右侧菜单“弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对插值程序自动用互不重叠的三角形网格将各个孔点连接起来,孔点输入结束后,并用位置。
法将孔点之间和孔点外部的场地土情况计算出来。
如下图所示:程序自动形成如孔点位置十分复杂,角形网格互不交叉,程序要求孔点形成的三互不重叠。
”命令由人工修改完成。
的网格不能满足上述要求,可以通过“网格修改,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。
对话框中点击“修改参数”土层参土层低标高、,应按各勘测孔的情况修改表中的数据,如标准孔点的土参数显示的是标,不必修改孔口坐标。
如某数、空口标高、探孔水头标高等。
空口位置一般不采用绝对坐一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。
用于删除多余或输“删除孔位”“复制”用于复制参数相同的孔点,入错误的孔点。
生成孔点土层柱状程序除完成地质资料输入外,还可以在此基础上等,还可以进行承载力孔点平面图和水头的等高线图及土层图、孔点剖面图、土层剖面图、和沉降计算。
PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例一、地质资料输入1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。
对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。
输入土的力学指标包括:压缩模量、重度。
对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。
输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。
2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示:3、土层布置给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示:弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对位置。
孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。
如下图所示:程序要求孔点形成的三角形网格互不交叉,互不重叠。
如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。
点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。
对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。
空口位置一般不采用绝对坐标,不必修改孔口坐标。
如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。
“复制”用于复制参数相同的孔点,“删除孔位”用于删除多余或输入错误的孔点。
程序除完成地质资料输入外,还可以在此基础上生成孔点土层柱状图、孔点剖面图、土层剖面图、土层和水头的等高线图及孔点平面图等,还可以进行承载力和沉降计算。
知识堂问答—基础设计问:JC软件中弹性地基梁板菜单与桩筏筏板有限元计算有差别是何原因?日期:2011/6/14 答:采用梁元法分析梁筏基础,先用等效交叉梁系替代带肋筏板,然后对等效交叉梁系按弹性地基梁方法求解内力,肋梁的内力取交叉梁系的内力,肋间板的内力按四边固支板通过查表法、边界元法、或有限元法计算。
这种方法是一种设计中常用的梁板结构力学模型简化方法,这种处理对于梁板结构中梁的刚度相对比较大(板厚与肋高比小于0.5时)是合适的,但当板厚与肋高比大于0.5时,特别是板厚与肋高接近时,按四边固支的板计算模式会造成板的配筋过多。
一般来说这种方法计算简单,得到的梁、板的配筋偏于安全。
采用板元法分析梁筏基础,未对结构模型做任何简化,用8节点等参元或三角形6节点中厚板单元(可考虑板的剪切变形)模拟筏板,肋梁采用与筏板相同的形函数以保证边界的协调。
一般来说单元划分的越细,计算结果越逼近精确解。
由于两种计算方法的差别,它们的计算结果不会完全相同,但内力变化趋势会是一致的。
如果计算结果有很大的差异,则可以通过检查以下几方面因素来调整,基本参数设置是否一致,基床反力系数是否相同,混凝土弹性模量折减系数是否相同(梁元默认取0.7,而板元默认不折减)等。
一般来说对于梁筏结构两种计算方法都可使用,当板厚与肋梁高度比大于0.5或柱网不规则时,优先采用板元法。
问:当平板式筏基的顶板作为上部结构的嵌固端时,程序如何考虑底层框架柱下端内力地震作用组合及相应的增大系数。
日期:2011/6/14答:《地基规范》(送审稿)第8.4.17 条规定:对抗震设防要求的结构,当平板式筏基的顶板作为上部结构的嵌固端、计算柱下板带截面组合弯矩设计值时,底层框架柱下端内力应考虑地震作用组合及相应的增大系数。
当平板式筏基的顶板作为上部结构的嵌固端时,一定要注意规范此条的执行,否则基础设计会存在不安全因素。
JCCAD程序读取SATWE、PMSAP计算的内力标准值,关于规范此条需要用户根据工程的抗震等级自己在【荷载参数】中自己选取,如图1。
基础参数设置在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。
屏幕显示上部结构与基础相连的各层轴网及其柱墙支撑布置,并弹出右图所示的“存在基础模型数据文件”的对话框。
选择“读取旧数据文件”项,则程序将原有的基础数据和上部结构数据都读出。
如下图所示:本菜单运行的前提条件:1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度;2.有完整准确地地质报告输入,并成功读入到合适位置;3.如果要读取上部结构分析传来的荷载还应该运行相应的程序的内力计算部分;4.如果要自动生成基础插筋数据还应运行画柱施工图程序。
“地质资料”→“打开资料”→“平移对位”,如下图所示:“参数输入”→“基本参数”,第一页:地基承载力计算参数,本页对话框的参数是用于确定地基承载力的。
第二页:基础设计参数,本页对话框用于基础设计的公共参数。
如下图所示:个别参数,此菜单功能用于对“基本参数”统一设置的基础参数个别修改,这样不同的区域可以用不同的参数进行基础设计。
如下图所示:参数输出点击菜单,弹出如下图所示的“基础基本参数.txt”文件,用户可查看相关参数,并可将此文本文件打印输出。
文件所列的参数为总体参数,当个别节点的参数与总体参数不一致时应以相应计算结果文件中所列参数为准。
网格节点本菜单功能用于增加、编辑PMCAD传下的平面网格、轴线和节点,以满足基础布置的需要。
如设置弹性地基梁的挑梁设置筏板加厚区域等。
需注意该菜单调用应在“荷载输入”和“基础布置”之前,否则荷载或基础构件可能会错位。
荷载输入1、荷载参数本菜单用于输入荷载分项系数、组合系数等参数。
点击后,弹出下图所示的“输入荷载组合参数”对话框,内含其隐含值。
这些参数的隐含值按规范的相应内容确定。
白色输入框的值是用户必须根据工程的用途进行修改的参数,灰色的数值是规范指定值。
其中:当“分配无柱间节点荷载”选择项打“√”后,程序可将墙间无柱间节点或无基础柱上的荷载分配到节点周围的墙上,从而使墙下基础不会产生丢荷载情况。
PKPM软件JCCAD筏板基础设计步骤举例一、地质资料输入1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。
对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。
输入土的力学指标包括:压缩模量、重度。
对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。
输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。
2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示:3、土层布置给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示:弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对位置。
孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。
如下图所示:程序要求孔点形成的三角形网格互不交叉,互不重叠。
如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。
点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。
对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。
空口位置一般不采用绝对坐标,不必修改孔口坐标。
如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。
“复制”用于复制参数相同的孔点,“删除孔位”用于删除多余或输入错误的孔点。
程序除完成地质资料输入外,还可以在此基础上生成孔点土层柱状图、孔点剖面图、土层剖面图、土层和水头的等高线图及孔点平面图等,还可以进行承载力和沉降计算。
二、基础参数设置在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。
2 梁板式筏形基础设计2.1工程概况和设计依据本工程为长沙市信德商场的梁式筏板基础。
筏板基础的工程地质条件详见中表1.1。
本筏板设计主要依据《建筑地基基础设计规范》GB50007-2002,《混凝土结构设计规范》GB50010-2002,《高层建筑箱形与筏形基础技术规范》JGJ 6-99进行设计。
2.2 基础形式的选择本工程中上部柱荷载平均在4599kN,较大,且粘土层的承载力较低,故使用独立基础,条形基础和桩基础无法满足地基承载力的要求。
经综合考虑,选择筏板基础,既充分发挥了地基承载力,又能很好地调整地基的不均匀沉降。
本工程上部荷载平均在4599kN,较大且不均匀,柱距为9m,较大,将产生较大的弯曲应力,肋梁式筏基具有刚度更大的特点,可以很好的抵抗弯曲变形,能够减小筏板厚度,更适合本工程。
2.3基础底面积的确定地基承载力验算采用标准组合,地下室柱下荷载标注组合由PKPM导出的,即表2.2 竖向导荷柱号荷载(KN)柱号荷载(KN)柱号荷载(KN)柱号荷载(KN)柱号荷载(KN)合力A1 2219 B1 3261 C1 3056 D1 3578 E1 2654 14768 A2 3357 B2 4512 C2 4113 D2 4813 E2 3549 20344 A3 3133 B3 4216 C3 4357 D3 4526 E3 3179 24176 A4 3142 B4 4230 C4 4354 D4 4496 E3 3203 19431 A5 3193 B5 4255 C5 4096 D5 5419 E5 4545 21508 A6 2553 B6 3513 C6 3045 D6 3672 E6 2716 15499合力1759723987230212650419846110955基底面积: ㎡144032450=⨯=A110955255331933142313333572219271645453203317935492654=++++++⋯⋯++++++=∑iNkpa A NP i1.771440110955===∑修正后的地基承载力特征值(持力层):查表得:)5.0()3(-+-+=d b f f m d b ak a γηγηηb=0.3 ηd=1.5 γ=20.3KN/ m ³m3/55.9104.104.23.205.13.205.61.19KN m =-⨯+⨯+⨯=γkpaP kpa f a 8.956.1039)5.000.2(55.95.1)36(3.203.01000=≥=-⨯⨯+-⨯⨯+= 符合条件,满足要求。
前提条件:1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置。
基本参数基础埋置深度:一般应自室外地面标高算起。
对于地下室,采用筏板基础也应自室外地面标高算起,其他情况如独基、条基、梁式基础从室内地面标高算起。
自动计算覆土重:该项用于独基、条基部分。
点取该项后程序自动按20kN/m2的混合容重计算基础的覆土重。
如不选该项,则对话框中出现“单位面积覆土重”参数需要用户填写。
一般来说如条基、独基、有地下室时应采用人工填写“单位面积覆土重”,且覆土高度应计算到地下室室内地坪处,以保证地基承载力计算正确。
一层上部结构荷载作用点标高:即承台或基础顶标高,先进行估算,计算完成后进行修改。
该参数主要是用于求出基底剪力对基础底面产生的附加弯矩作用。
在填写该参数时,应输入PMCAD中确定的柱底标高,即柱根部的位置。
注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。
地梁筏板该菜单定义了按弹性地基梁元法计算需要的有关参数总信息:结构种类:基础基床反力系数:按默认按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。
在此处要与“基础梁板弹性地基梁法计算”中的“沉降计算参数输入”中参数相对应。
弹性基础考虑抗扭:√人防等级:不计算双筋配筋计算压区配筋百分率:0.2%地下水距天然地坪深度:按实际梁钢筋归并系数:0.3梁支座钢筋放大系数:1.0梁跨中钢筋放大系数:1.0梁箍筋放大系数:1.0梁主筋级别:二级或三级梁箍筋级别:一级或二级梁立面图比例、梁剖面图比例:按默认梁箍筋间距:200翼缘(纵向)分布钢筋直径、间距:8mm、200mm梁式基础的覆土标高:当不是带地下室的梁式基础时,此值为0;否则应填写地下室室内地坪标高。
该值用于判断梁式基础是否有地下室和计算地下室内覆土高度的数据梁设弯起钢筋: x梁板混凝土等级:C30梁翼缘、板钢筋级别:一级或二级板钢筋归并系数:按默认板支座钢筋连通系数:按默认板支座钢筋放大系数:1.0板跨中钢筋放大系数:1.0柱下平板配筋模式:按默认梁施工图参数:梁肋方向:向上梁图要钢筋表:√网格节点本菜单工程为补充增加PMCAD传下来的平面网格轴线。
如设置弹性地基梁的挑梁设置筏板加厚区域等。
需注意该菜单调用应在“荷载输入”和“基础布置”之前,否则荷载或基础构件可能会错位。
荷载输入该菜单的功能是输入用户自己定义的荷载和读取上部结构计算传下来的荷载,并可对各类各族荷载删除修改。
程序还自动将用户输入的荷载与读取的荷载相叠加。
荷载参数该子菜单作用是修改隐含定义的荷载分项系数、组合系数等参数。
分配无柱节点荷载:√。
选择该项后,可将墙间无柱节点上的荷载转移到墙上,这样原来弹性地基梁的一些无交叉梁、无柱、有荷载的节点就会自动删除,将梁合并。
并且对墙下基础不会产生丢荷载的情况。
其他参数按默认。
无基础柱附加荷载该菜单作用是布置、删除用户自己定义的节点荷载与线荷载。
附加荷载可作为一组独立的荷载工况进行基础计算或验算。
如还输入了上部结构荷载,附加荷载先要与上部结构各组荷载叠加,然后进行基础计算。
一般来说框架结构的填充墙或设备重应按附加荷载输入。
对于独立基础(独立桩基承台)来说,如果在独基上架设连梁,连梁上有填充墙,则应将填充墙的荷载在此菜单中作为节点荷载输入,而不要作为均布荷载输入。
否则将会形成墙下条形基础,或丢失荷载。
选择PK文件、读取荷载、荷载编辑、当前组合、目标组合墙下条形基础可采用PM荷载或砖混荷载;柱下独基和桩承台采用尽量多的荷载组合;筏板和基础梁选相同工况荷载组合。
PMCAD荷载可用于砖混结构及初设计,其特点是模拟人工倒荷,没有弯矩;TAT,SATWE,PMSAP荷载是上部结构计算结果,可用于所有情况;PK荷载只能用于独基。
pm荷载没有弯矩最好不用在独立基础的计算中。
独立基础底面积的计算类似于压弯正截面计算,由轴力和弯矩两个因素决定。
所以不能按最大轴力计算。
程序能自动区分是否地震组合,并进行承载力放大。
在JCCAD的“输入荷载”中选“荷载参数”在弹出窗口把恒、活荷载分项系数改为1;在EF“信息输入”弹出窗口中把恒、活荷载分项系数改为1;ZJ的“上部荷载”中的组合信息窗口,把恒、活荷载分项系数改为1;BOX“荷载输入”菜单中的“荷载分项,组合,组合值系数”将恒、活分项系数改为1,即可在基础软件中获得上部结构传给基础荷载的标准值。
屏幕上当前所显示的组合值就叫当前组合。
当前组合仅表示当前屏幕上所显示的值。
并不是说基础的最终控制组合就一定是它。
某一最大内力所对应的组合值,比如最大轴力或最大弯矩下所对应的组合值。
目标组合并不一定是最不利组合,比如最大轴力下所对应的组合值其弯矩值有可能很小,不一定是控制工况,所以目标组合不能作为基础设计依据。
筏板布置1.该菜单功能是布置各种有桩、无桩筏板,带肋筏板,墙下筏板,平板等所有筏板,一次最多可输入10块筏板。
2.布置方法是先定义筏板类型,其中包括板厚、标高、有无地下室,然后用围区布置方式沿着所包围的外网格线布置筏板,布置时应输入一个挑出轴线距离,这样程序可形成一个闭合的多边筏板,如板边挑出轴线距离各不相同,可用“修改板边”菜单的多种方式修改板边挑出距离。
3.对于每一块筏板,程序允许在其内设置加厚区,设置方法仍采用筏板输入,只是要求加厚区在已有的板内,加厚区最多可以设置9个,可放在一块筏板中,也可以放置在多块筏板中。
按普通弹性地基梁计算按考虑等代上部结构刚度影响的弹性地基梁计算按上部结构为刚性的弹性地基梁计算按satwe和tat的上部刚度进行弹性地基梁计算√按普通梁单元刚度矩阵倒楼盖方式计算按普通弹性地基梁计算这种计算方法不考虑上部刚度的影响,绝大多数工程都可以采用此种方法,只有当该方法时基础设计不下来时才考虑其他方法。
按考虑等代上部结构刚度影响的弹性地基梁计算该方法实际上是要求设计人员人为规定上部结构刚度是地基梁刚度的几倍。
该值的大小直接关系到基础发生整体弯曲的程度。
而上部结构刚度到底是地基梁刚度的几倍并不好确定。
因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。
按上部结构为刚性的弹性地基梁计算模式3与模式2的计算原理实际上是一样的,只不过模式3自动取上部结构刚度为地基梁刚度的200倍。
采用这种模式计算出来的基础几乎没有整体弯矩,只有局部弯矩。
其计算结果类似传统的倒楼盖法。
该模式主要用于上部结构刚度很大的结构,比如高层框支转换结构、纯剪力墙结构等。
按SATWE或TAT的上部刚度进行弹性地基梁计算从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。
对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。
所以此种计算模式不适用带剪力墙的结构。
筏板基础计算方法和构造要求当地基承载力很低,建筑物荷载又很大时,宜采用筏基。
沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。
即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。
筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。
构造要求筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。
设置肋梁时宜取200-400mm。
筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。
悬臂部分宜沿建筑物宽度方向设置。
当梁肋不外伸时板挑出长度不宜大于2m。
砼不低于c20,垫层100mm厚。
钢筋保护层不小于35mm。
地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。
当板厚小于300mm时单层配置,大于300mm时双层布置。
受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。
筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。
双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。
平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。
当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
计算方法:1.简化方法倒梁法和到楼盖法(相对刚度较大);上部结构较柔时可用静力分析法。
2.考虑地基基础共同作用的方法2.考虑上部结构地基基础共同作用的方法常用简化方法——刚性板方法当柱荷载相对比较均匀(相邻柱荷载变化不超过20%),柱距相对比较一致(相邻柱距变化不大于20%),若果满足公式:或者筏基支撑着刚性的上部结构时,筏基可认为是刚性的,基底反力呈直线分布,反力的形心与作用在板上全部荷载的合力作用线相吻合。
将xoy坐标系原点置于板底形心处,则板底反力p(x,y)为:按求出的基底净反力(不考虑整体弯曲,但在端部1-2开间内将基底反力增加10-20%)。
1.条带法把筏板划分为相互垂直的条带,条带的分界线就是相邻柱列间的中线。
假定各条带为互不影响的独立基础梁,可用倒梁法计算内力。
把宽度为b的纵向条带分为柱中心附近宽度为b/2的中心条带和其两侧各b/4宽的两条边缘条带,则可近似的将横截面上总弯矩的67%分配给中心条,其余33%分配给边缘条。
对于宽度为a的横向条带亦同样处理。
2.双向板法如果筏基上柱网在两个方向上的尺寸lx和ly的比值小于2.0,且在柱网单元内不再布置小肋梁,则可将筏基视为承受地基静反力分布荷载作用的双向多跨连续板。
基础梁上的荷载按照沿板角45度角分线划分范围,分别由纵梁和横梁承担荷载分布形式或为三角形,或为梯形。
当基础梁的跨度相差不大于10%时,可将峰值为p1的三角形荷载化为0.625p1的均布荷载;将峰值为p2的梯形荷载化为如上图所示的均布荷载。
a为lx和ly的较小值。
中间梁荷载加倍。
基础梁分析方法同条基部分。
筏板按单列和多列连续板,如上图。
共可分为五中情况:1.三边简支,一边固定2.两对边简支,两对边固定3.两邻边简支,两邻边固定4.三边固定,一边简支5.四边固定连续板的中间支座共有2种:支座a为边跨中间支座,支座b为中间跨中间支座可查表得到Mx,My,Ma,Mb。