Matlab蚁群算法
- 格式:ppt
- 大小:713.50 KB
- 文档页数:40
基于蚁群算法的机器人路径规划摘要当前机器人朝着智能化的方向发展着,已经能够解决一些人类自身难以完成的任务。
机器人的研究方向分为好多个分支,其中机器人路径规划就是热点问题之一。
主要用于解决机器人在复杂环境下做出路径选择,完成相应任务的问题。
典型的路径规划问题是指在有障碍物的工作环境中,按照一定的评价标准(行走路线最短、所用时间最少等)为机器人寻找一条从起点到终点的运动路径,让机器人在运动过程中能安全、无碰撞地通过所有的障碍物。
基于蚁群算法的机器人路径规划的研究,利用仿真学的基本思想,根据生物蚂蚁协作和觅食的原理,建立人工蚁群系统。
本文介绍了使用基本蚁群算法和改进蚁群算法在机器人路径规划中的应用,以栅格法作为路径规划的环境模型建立方法。
其中改进蚁群算法依据最大最小蚂蚁系统原理和信息素奖励思想,还增加了其它启发信息来指导路径的搜索。
本文中介绍的基本蚁群算法应用蚁周模型对找到的路径进行信息素的更新,而在改进蚁群算法中,则综合使用了局部信息素更新原则和全局信息素更新原则。
另外在本文中介绍的改进蚁群算法使用了回退策略和落入陷阱时的信息素惩罚机制,帮助处理了蚂蚁在寻找路径过程中,落入陷阱后的问题。
不过改进后的蚁群算法的及时寻找到最优解的特性仍然有待于进一步的提高。
关键词:路径规划,蚁群算法,改进Path Planning for Robot Based on Ant ColonyAlgorithmAbstractNow robots are developing in the direction of intelligent, they have been able to solve some hard task as human beings do. Robot research has divide into the direction of large number of branches, where the robot path planning is one of hot issues. it is mainly used to solve the robot path in a complex environment to make choices, to complete the task. A typical path planning problem is that there are obstacles in the work environment, according to certain evaluation criteria (the shortest walking route, the minimum time spent, etc.) to find a robot's movement from origin to destination path, let the robot in motion of safe, collision-free through all the obstacles.Robot path planning research based on ant colony algorithm, is according to the simulation research, use the biological ant principles of feeding and cooperation and the establishment of artificial ant colony system. This article describes the use of basic ant colony algorithm and improved ant colony algorithm in robot path planning applications with using the grid method to establish the environment model of path planning. Improved ant colony algorithm is based on the maximum and minimum ant system theory and pheromone reward ideas. It has added other enlightening information to guide the path research. The basic ant colony algorithm described in this article uses the ant-cycle model to update the pheromone for the found path, in the improved ant colony algorithm, uses both the local pheromone updating principles and global pheromone updating the principles. Improved ant colony algorithm in this paper uses the fallback strategy, and the pheromone punishment mechanism when falling into trap to help deal with the ants in the process of finding a path falling into the trap. But the improved ant colony algorithm to find the optimal solution remains to be further improved in the optimal properties.Keywords: path planning, ant colony algorithm, improvedII目录第1章引言 (1)1.1问题的提出 (1)1.1.1研究的背景 (1)1.1.2研究的意义 (2)1.2本文研究路线 (3)1.2.1主要工作内容 (3)1.2.2目标 (3)1.3论文的主要内容 (3)第2章蚁群算法与机器人路径规划研究概述 (5)2.1蚁群算法和机器人路径规划的发展历史,现状,前景 (5)2.1.1蚁群算法的发展历史,现状,前景 (5)2.1.2移动机器人路径规划的发展历史,现状,前景 (6)2.2蚁群算法的特点 (7)2.2.1并行性 (7)2.2.2健壮性 (7)2.2.3 正反馈 (8)2.2.4局部收敛 (8)2.3基于蚁群算法的机器人路径规划实现的开发方式 (8)2.3.1开发语言的选择 (8)2.3.2开发工具的选择 (8)2.4蚁群算法介绍 (9)2.4.1 基本蚁群算法 (9)2.4.2 基本蚁群算法改进方案简介 (11)2.5机器人路径规划的环境模型建立 (11)2.5.1 栅格法 (11)2.6使用matlab仿真 (12)2.6.1 matlab仿真介绍 (12)2.7本章小结 (12)第3章基于蚁群算法的机器人路径规划分析与设计 (13)3.1基于蚁群算法的机器人路径规划需求设计 (13)3.2基于蚁群算法的机器人路径规划的要求 (13)3.3 主要的数据结构 (13)3.4基本蚁群算法实现机器人路径规划功能模块 (14)3.4.1程序入口模块 (14)3.4.2 算法运行的主体函数模块 (14)3.4.3 程序运行的清理模块 (15)3.4.4 下一步选择模块 (15)3.4.5 随机性选择模块 (16)3.4.6 路径处理和信息记录模块 (17)3.5 基本蚁群算法实现机器人路径规划整体逻辑设计 (17)3.5.1基本蚁群算法实现机器人路径规划整体结构图 (17)3.5.2基本蚁群算法实现机器人路径规划逻辑结构图 (19)3.6改进蚁群算法实现机器人路径规划功能模块 (20)3.6.1 程序运行环境处理修改部分 (20)3.6.2 下一步选择的修改部分 (20)3.6.3信息素更新和路径处理修改部分 (21)3.7 改进蚁群算法实现机器人路径规划整体逻辑设计 (22)3.7.1改进蚁群算法实现机器人路径规划整体结构图 (22)3.7.2改进蚁群算法实现机器人路径规划逻辑结构图 (23)3.8系统开发环境介绍 (24)3.8.1开发环境 (24)3.8.2调试环境 (24)3.8.3测试环境 (24)第4章基于蚁群算法的机器人路径规划的实现 (25)4.1基于基本蚁群算法的实现 (25)4.1.1算法运行的主体函数模块 (25)4.1.2 下一步选择模块 (26)4.2基于改进蚁群算法的实现 (27)4.2.1下一步选择模块 (28)4.2.2随机性选择模块 (29)4.3本章小结 (31)第5章基于蚁群算法实现机器人路径规划的仿真实验 (32)5.1运行环境 (32)5.2基于基本蚁群算法实现机器人路径规划仿真实验 (32)5.2.1 仿真步骤 (32)5.2.2 使用地图模型为5-1的仿真 (32)5.2.3 使用基本蚁群算法仿真结果 (33)IV5.2.4基于改进蚁群算法的仿真 (35)5.3 多次重复仿真实验记录 (36)5.4 本章小结 (37)第6章结论 (38)致谢 (39)参考文献 (40)基于蚁群算法的机器人路径规划第1章引言1.1问题的提出1.1.1研究的背景蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
蚁群算法原理简介及伪代码实现作者:孙守梅王敬辉来源:《电脑知识与技术》2014年第10期摘要:自1992年Marco Dorigo提出蚁群算法以来,蚁群算法得到了快速发展,并广泛应用于车辆调度问题、车辆路径问题、分配问题、子集问题、网络路由问题蛋白质折叠问题、数据挖掘、图像识别、系统辨识等。
关键词:智能算法;蚁群算法;模式识别中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)10-2353-03蚁群算法是一种近年来快速发展起来的一种智能算法。
这种算法由Marco Dorigo于1992年提出,其灵感源于蚁群在寻找食物的过程中总是能找到一条从食物到蚁穴之间的最短或最优路径这一现象。
蚁群算法具有鲁棒性强、全局搜索、并行分布式计算、易于与其它问题结合等优点。
广泛应用于车辆调度问题、车辆路径问题、分配问题、子集问题、网络路由问题蛋白质折叠问题、数据挖掘、图像识别、系统辨识等。
1 蚂蚁的觅食策略—不等长双桥实验下图表示蚂蚁觅食时选择行走路径的过程,图1 (a)为蚂蚁选择不同的路径觅食;图1 (b)显示绝大多数蚂蚁选择了最短的路径;最终有80%以上的蚂蚁最终选择了最优路径如图1 (c)显示。
该结果的原因是蚂蚁能够分泌并感知一种信息素,以进行信息传递。
蚂蚁会在途经的路径上留下这种信息素,其它蚂蚁和自身都能够感知这种信息素,并以此指导自己的运动方向。
在该实验中,选择最短的路径的蚂蚁先回蚁巢,这样在最短路径会有更多的信息素,从而诱使蚁穴中其它蚂蚁选择短路径,因此蚁群集的体行为便表现出一种信息正反馈现象。
大量蚂蚁的集体行为主要有三点:1)正反馈:这是基于信息素的释放和感知来实现的。
某一路径上走过的蚂蚁越多,信息素就越浓,诱使其它蚂蚁选择短路径,从而能快速发现最优的解。
2)负反馈:负反馈是基于信息素的挥发来实现的。
信息素的浓度随着时间的推移不断下降,从而避免某些路径上信息素过多,使算法早熟,陷入局部最优解。
伪随机比例选择规则蚁群算法的路径选择规则蚁群算法(Ant Colony Optimization Algorithm)是一种被广泛应用于寻优问题求解的启发式算法。
其主要灵感来源于观察蚂蚁在寻找食物时的行为,利用蚁群中的信息素和路径选择规则完成问题求解。
其中,路径选择规则被认为是蚁群算法的重要组成部分之一。
伪随机比例选择规则是常用的蚁群算法路径选择规则之一。
该规则的核心思想是根据路径上的信息素浓度和启发因子对路径进行选择。
具体来说,蚂蚁在选择下一步要走的路径时,会根据当前路径上的信息素和启发因子计算选择概率,并以一定概率选择信息素浓度较高的路径,同时在一定概率内随机选择其他路径。
这样,蚂蚁沿着信息素激励的路径前进,同时也能够随机探索其他可能更优的路径。
该规则的目的是在信息素重要的情况下保持多样性,因为如果蚂蚁仅依靠信息素选择,将会选择最短路径,但这并不一定是最优的路径。
伪随机比例选择规则主要包括三个部分:信息素强度、启发因子和选择概率计算。
信息素强度部分指的是在路径上存储的信息素浓度。
信息素是一些特定的数值,反映了蚂蚁走过一条路径的“好坏程度”。
蚂蚁在路径上遇到环境条件良好的情况下会释放信息素来吸引其他的蚂蚁跟随,最终形成一条蚂蚁们共同使用的路径。
路径的信息素强度高,说明蚂蚁在这条路径上摆脱了危险,并找到了食物。
因此,蚂蚁在选择下一步要走的路径时,会更倾向于选择信息素浓度较高的路径。
启发因子部分是指根据问题本身的特点设计的一些因素。
例如,在解决旅行商问题(TSP)时,启发因子可以根据两个城市之间的距离大小进行计算。
启发因子能够提供一些关于路径好坏的信息,辅助蚂蚁进行路径选择。
选择概率计算部分是将信息素强度和启发因子转换为蚂蚁选择路径的概率。
这里的选择概率计算一般采用轮盘赌(Roulette Wheel)算法,根据概率大小随机选择路径。
其中,伪随机比例选择规则与传统的比例选择规则不同之处在于,它引入了一个随机性因素,使其更具有多样性。
全局优化报告——遗传算法和蚁群算法的比较******学号:**********班级:硕20411遗传算法1.1遗传算法的发展历史遗传算法是一种模拟自然选择和遗传机制的寻优方法。
20世纪60年代初期,Holland教授开始认识到生物的自然遗传现象与人工自适应系统行为的相似性。
他认为不仅要研究自适应系统自身,也要研究与之相关的环境。
因此,他提出在研究和设计人工自适应系统时,可以借鉴生物自然遗传的基本原理,模仿生物自然遗传的基本方法。
1967年,他的学生Bagley在博士论文中首次提出了“遗传算法”一词。
到70年代初,Holland教授提出了“模式定理”,一般认为是遗传算法的基本定理,从而奠定了遗传算法的基本理论。
1975年,Holland出版了著名的《自然系统和人工系统的自适应性》,这是第一本系统论述遗传算法的专著。
因此,也有人把1975年作为遗传算法的诞生年。
1985年,在美国召开了第一届两年一次的遗传算法国际会议,并且成立了国际遗传算法协会。
1989年,Holland的学生Goldberg出版了《搜索、优化和机器学习中的遗传算法》,总结了遗传算法研究的主要成果,对遗传算法作了全面而系统的论述。
一般认为,这个时期的遗传算法从古典时期发展了现代阶段,这本书则奠定了现代遗传算法的基础。
遗传算法是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。
在进化论中,每一个物种在不断发展的过程中都是越来越适应环境,物种每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来;否则,就将被淘汰。
在遗传学中认为,遗传是作为一种指令遗传码封装在每个细胞中,并以基因的形式包含在染色体中,每个基因有特殊的位置并控制某个特殊的性质。
每个基因产生的个体对环境有一定的适应性。
基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。
遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。
基于蚁群算法的聚类分析方法的研究及应用的开题报告一、研究背景随着现代科技的不断发展,数据量的不断增加,数据分析成为了当前热门的研究方向之一。
其中,聚类分析作为数据挖掘和机器学习领域中的一种重要方法,可以将数据集中的样本划分成若干个不同的类别,并且在同一类别中的样本具有相似的特征,而不同类别之间的样本存在显著差异。
聚类分析方法在市场细分、医学诊断、生物信息学等领域中具有重要应用。
蚁群算法作为一种新兴的优化算法,在优化问题的求解方面具有良好的性能。
蚁群算法源于对蚂蚁觅食行为的研究,它通过模拟蚂蚁在寻找食物时的行为,通过信息交流和趋同行为来寻找问题的最优解。
蚁群算法已经成功地应用于TSP问题、图着色问题、网络路由等领域。
将蚁群算法应用于聚类分析中,将样本等同于蚂蚁,样本之间的相似度等同于蚂蚁之间通过信息素交流所建立的连接关系,利用蚁群算法进行信息素的更新和蚂蚁的移动从而得到聚类结果。
相比于传统的聚类算法,蚁群算法具有更好的鲁棒性、稳定性和有效性,能够处理具有复杂特征的高维数据集。
二、研究目的本文旨在研究基于蚁群算法的聚类分析方法,并将其应用于实际数据集。
具体研究目的如下:1. 综述聚类分析和蚁群算法的相关理论和算法2. 设计基于蚁群算法的聚类分析模型,并验证模型的正确性和有效性3. 对比不同聚类算法在不同数据集下的实验结果,展示蚁群算法的优越性4. 在真实数据集中应用蚁群算法进行聚类分析,并探讨实际应用中的优化措施和注意事项三、研究内容为实现上述研究目的,本文将分以下几个方面进行研究:1. 聚类分析理论概述:对聚类分析的基础理论和算法进行综述,如K-means、层次聚类等2. 蚁群算法理论概述:对蚁群算法的基础理论和算法进行综述,如蚁群优化算法和蚁群聚类算法3. 基于蚁群算法的聚类分析模型设计:设计基于蚁群算法的聚类分析模型,并结合实际数据集验证模型正确性和有效性4. 蚁群算法在聚类分析中的应用:将蚁群算法应用于不同数据集的聚类分析中,并与其他聚类算法进行比较5. 蚁群算法聚类分析的优化措施:探讨蚁群算法在聚类分析中的优化措施,如参数调节、蚁群规模选择等四、研究意义本文的研究结合了蚁群算法和聚类分析两个领域的优势,提出基于蚁群算法的聚类分析模型,并将其应用于实际数据集,探索了蚁群算法在聚类分析中的优越性和实际应用中的注意事项。