旋翼翼型非定常动态失速特性的CFD 模拟及参数分析
- 格式:docx
- 大小:48.21 KB
- 文档页数:16
旋翼翼型动态失速模型参数识别及应用柳泉;胡国才;雷卫东【摘要】On the basis of the characteristics of Leishman-Beddoes (L-B) dynamic stall model, the method of parameters identification was put forward in order to expand the application range of L-B dynamic stall model and adapt to dynamic stall analysis of specific airfoil. The dynamic stall lift and drag were calculated with the parameters identified from the stat⁃ic stall lift and drag curves of SC-1095, the results agreed well with the experimental value.%为了拓展Leishman-Beddoes(L-B)动态失速模型的应用范围,以适应特定翼型的动态失速分析,在详细分析L-B动态失速模型特点的基础上,提出一种模型参数的识别方法。
以SC-1095翼型为例,采用其静态升阻特性数据,对L-B动态失速模型中的参数进行了识别,并据此对该翼型的动态失速升阻特性进行了数值计算,计算结果与试验值吻合良好。
【期刊名称】《海军航空工程学院学报》【年(卷),期】2015(000)002【总页数】5页(P129-133)【关键词】旋翼;翼型;动态失速;参数识别【作者】柳泉;胡国才;雷卫东【作者单位】海军航空工程学院飞行器工程系,山东烟台264001;海军航空工程学院飞行器工程系,山东烟台264001;海军航空工程学院飞行器工程系,山东烟台264001【正文语种】中文【中图分类】V212.4动态失速是指在直升机旋翼旋转过程中,旋翼剖面翼型迎角呈现非定常变化,当迎角超过临界值时,翼型升力系数并不与静态失速模型描述的一样直接发生失速,而是产生失速延迟的现象。
第二十八届(2012)全国直升机年会论文基于运动嵌套网格的旋翼翼型动态失速数值分析赵国庆招启军王清(南京航空航天大学直升机旋翼动力学重点实验室,江苏南京,210016)摘要:基于运动嵌套网格和N-S方程,建立了旋翼翼型非定常状态气动特性的数值分析方法。
在该方法中,首先采用Poisson方程方法生成围绕旋翼翼型的粘性贴体正交网格,并自动生成相应的笛卡尔背景网格,然后采用最小距离法生成两者之间的运动嵌套网格。
在此基础上,以计入粘性影响的雷诺平均N-S方程为流场求解控制方程,采用双时间方法发展了一套旋翼翼型动态失速分析方法,其中旋翼翼型非定常振荡过程的翼型网格和背景网格的信息传递采用双线性插值方法。
应用以上方法,以旋翼翼型NACA0012为对象验证了本文动态失速数值模拟方法的有效性,并开展了减缩频率对翼型非定常气动力影响的研究。
关键词:旋翼;翼型;运动嵌套网格;动态失速;N-S方程1引言旋翼的动态失速现象对旋翼的升力、阻力、力矩以及振动特性都有重要影响,成为制约直升机旋翼气动性能提高的主要原因[1],而旋翼翼型的动态失速是其具体体现。
因此,关于翼型在动态失速情况下的气动性能的研究一直是直升机技术研究领域的一个重点和难点,具有重要的理论和实际应用价值。
翼型动态失速的基本特征是翼型表面发生的复杂的非定常分离和大尺度漩涡结构[2],气动力表现出明显的非线性迟滞特性。
Leishman和Beddoes[3]提出了针对NACA0012翼型动态失速计算的L-B 模型,L-B模型是在大量试验数据基础上发展的基于调控参数的翼型动态失速计算模型。
然而L-B模型仅对特定翼型适用,对不同翼型的模拟并不能一劳永逸的解决;并且在来流马赫数过高或是过低,如低于0.3或高于0.8时,均无法对翼型非定常气动力进行有效模拟;另外,L-B模型在迎角减小下的再附着流的计算值同试验值相比有很大偏差。
因此,近年来随着计算流体力学的飞速发展,国内外许多学者对翼型动态失速现象采用CFD方法展开了大量数值分析研究[4-7]。
水平轴大型风力机翼型非定常气动特性分析的开题报告一、选题背景与意义随着能源需求的增长和环境保护的日益重视,风能成为全球清洁能源开发的重要方向之一。
水平轴大型风力机是当前主流的商业化风力发电设备,但在其运行过程中,存在着一系列气动问题,例如复杂的非定常气动特性和翼型失速现象等。
因此,对水平轴大型风力机的气动特性进行深入的研究,能够有效地提高其效率和可靠性,为风能发电技术的进一步发展奠定基础。
二、研究内容与方法本文研究内容为水平轴大型风力机的翼型非定常气动特性,其中主要包括:1.翼型的几何形状分析。
通过对常见的翼型进行分析,确定适用于水平轴大型风力机的翼型类型及其主要参数。
2.数值模拟方法研究。
综合考虑复杂气动流场的影响和计算效率的要求,选用合适的计算模型和仿真软件,进行翼型非定常气动特性的数值模拟。
3.非定常气动特性分析。
从压力分布、力矩、升力和阻力等方面,对翼型非定常气动特性进行深入的分析和探究。
三、预期结果与创新点预期通过本文的研究,可以深入了解水平轴大型风力机的非定常气动特性,为设计优化提供理论指导和实验依据。
具体预期结果包括:1.翼型的几何形状分析结果,将为后续的仿真模拟提供翼型参数。
2.数值模拟方法研究结果,将为气动特性分析提供计算基础。
3.非定常气动特性分析结果,将为翼型设计和风力机的性能提升提供理论支撑。
创新点:1.本文研究针对非定常气动特性做了深入探究。
2.选择了适合翼型非定常气动特性分析的数值模拟方法和仿真软件,优化了模型和方法。
3.翼型的几何形状参数选择和分析基于对商用风力机的考虑。
四、进度安排1.前期准备(1个月):查阅文献、对水平轴大型风力机翼型进行几何形状分析。
2.数值模拟方法研究(2个月):选择数值模拟方法和仿真软件,构建计算模型。
3.数值模拟分析(3个月):进行翼型非定常气动特性的数值模拟。
4.分析与证明(2个月):分析非定常气动特性的分布规律和影响因素。
5.总结与撰写论文(1个月):总结结果,撰写论文并进行修改。
旋翼翼型低速动态失速研究孔卫红;陈仁良;孙振航【摘要】为了提高旋翼翼型动态失速模拟的精度,基于动态混合网格技术和ALE形式的RANS控制方程,构建了一套可用于低速流场中旋翼翼型动态失速分析的计算方法.采用守恒变量形式的低速预处理技术,解决了由于特征值差异过大引起的收敛困难问题;在物面采用层推进泊松方程光顺法生成结构网格,以获得较好贴体性和正交性;采用分离流中应用广泛的 k-ω SST湍流模型捕捉深失速下流场的大分离特性.计算结果表明该计算方法可以有效地分析不同马赫数下的旋翼翼型动态失速,收敛精度有不小于两个数量级的提升.针对低速流场不同马赫数下深失速的流场特征的计算分析表明,马赫数对动态失速的迟滞特性具有明显的规律性影响.%In order to improve the precision in the simulation of rotor airfoil dynamic stall,a numerical method based on hybrid grid and RANS equations in ALE form is established which is available for ana-lyzing dynamic stall of rotor airfoil in low-speed flow.The low-speed preconditioning method is adopted in the form of conserved variables to solve the problem hard to converge due to the big difference in ei-genvalue.Structured grid on the wall is generated using advancing-layer Poisson equation,which pos-sesses better texture and orthogonality.The widely used k-ω SST turbulent model is applied to capture the characteristics of the large separation in the deep stall.The calculation results show that this method can effectively analyze the dynamic stall of rotor airfoil under different Mach numbers,and the conver-gence accuracy is increased by no less than 2 orders of magnitude.The computational analysis of the flow field characteristics ofdeep stall with different Mach numbers indicates that the Mach number has obvious regularity influence on the hysteresis characteristic of dynamic stall.【期刊名称】《南京航空航天大学学报》【年(卷),期】2018(050)002【总页数】8页(P213-220)【关键词】翼型;动态失速;预处理技术;低速流场【作者】孔卫红;陈仁良;孙振航【作者单位】南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016【正文语种】中文【中图分类】V211.3动态失速现象在旋翼运动中尤为显著,旋翼桨叶在旋转过程中,来流速度、安装角等发生周期变化,加上旋翼尾迹畸变诱导的非均匀入流,会导致桨叶剖面在不同方位角处的迎角有很大差别。
翼型非定常来流下复合运动动态失速仿真谢凯;Laith K.Abbas;陈东阳;杨富锋;芮筱亭【摘要】针对直升机前飞时的动态失速问题,本文采用转捩修正的SST k-ω湍流模型和嵌套网格技术对雷诺数Re为3.92× 106时的直升机二维翼型SC1095进行数值仿真.以非定常来流条件下的纯俯仰运动为基础,对比分析了在耦合挥舞、摆振运动时,相位差、振幅对动态失速的影响;比较挥舞、摆振二者运动对于动态失速角的作用大小.结果表明:固定振幅条件下,挥舞和摆振运动相位差的增加会使动态失速角提前,升力系数峰值提高;固定相位角条件下,挥舞和摆振运动振幅的增加会使动态失速角延迟,升力系数峰值减小.挥舞运动对于非定常来流下俯仰运动翼型动态失速角的影响要大于摆振运动.本文计算方法和研究结果为翼型多自由度耦合运动下的动态失速行为预测提供参考.【期刊名称】《哈尔滨工程大学学报》【年(卷),期】2019(040)005【总页数】7页(P865-871)【关键词】直升机旋翼翼型;动态失速;计算流体力学;嵌套网格;俯仰运动;挥舞运动;摆振运动【作者】谢凯;Laith K.Abbas;陈东阳;杨富锋;芮筱亭【作者单位】南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094;南京理工大学发射动力学研究所,江苏南京210094【正文语种】中文【中图分类】V211.3动态失速是指翼型或机翼的非定常运动造成失速角明显超过其静态失速角的失速迟滞现象[1]。
虽然动态失速能够增大升力峰值,但同时也造成了阻力、俯仰力矩的突增和气动中心失稳[2],严重限制了直升机安全飞行包线,对直升机飞行安全造成严重危害。
而对于前飞时的直升机,其旋翼所处的气动环境更加复杂,一方面桨叶会随方位角做周期性变距、挥舞、摆振的复合运动;另一方面由于旋转速度与前飞速度的叠加,桨叶周向来流速度会随方位角呈现出明显的非定常性[3],这给直升机动态失速的预测增加了困难。
前缘外形对翼型动态失速特性影响分析王清;招启军;王博【摘要】为模拟旋翼翼型动态失速特性,以非定常雷诺平均N-S方程为控制方程,采用双时间推进法,建立了旋翼翼型非定常流场模拟的CFD方法.为研究旋翼翼型前缘外形对动态失速特性的影响,在NACA0012翼型的基础上,采用了不同的前缘变形量,设计了3类(每类2种,修改翼型1~6)不同类型的旋翼翼型,并对比分析了这3类翼型的动态失速特性.通过对比分析发现:翼型上表面变形能够有效地影响翼型的动态失速特性,上表面凸出变形增大,在一定范围内能有效抑制动态失速;翼型下表面变形对动态失速特性的影响较小;改变前缘附近弯度也可以在一定程度上影响翼型的动态失速特性,翼型的弯度增加,在一定范围内也能有效抑制动态失速特性.【期刊名称】《南京航空航天大学学报》【年(卷),期】2016(048)002【总页数】7页(P205-211)【关键词】旋翼;翼型;前缘外形;动态失速;RANS方程【作者】王清;招启军;王博【作者单位】南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,南京,210016【正文语种】中文【中图分类】V224直升机的飞行性能好坏在很大程度上取决于旋翼的气动特性,而旋翼的气动特性又与旋翼翼型密切相关。
相对于固定翼飞行器的机翼,直升机旋翼通常工作在严重的非定常气动环境中,特别是在前飞情况下,旋翼翼型一直处于动态失速状态。
与定常状态下翼型的气动特性不同,动态失速状态下的翼型气动特性呈现一个明显的迟滞回线,由此带来的翼型气动力的变化将给直升机旋翼气动特性带来很多不利影响,例如失速颤振、振动载荷激增、噪声增强[1-2]等,因此旋翼翼型的动态失速特性一直是直升机非定常空气动力学研究领域的难点和重点,开展旋翼翼型的动态失速特性的研究对于认识和改造旋翼气动特性有重要的实际意义和学术价值。
翼型动态失速的非定常模拟方法作者:于佳鑫陈江涛王晓东吴晓军康顺来源:《计算机辅助工程》2022年第01期摘要:为探究翼型动态失速的高可信非定常模拟方法,以FFA-W3-241翼型为研究对象,采用开源计算流体动力学求解器OpenFOAM开展翼型动态失速下的流动模拟。
研究重叠网格和滑移网格2种不同网格运动形式、2种不同时间步长、2种不同计算周期和OpenFOAM 默认湍流模型与修正的k-ω SST湍流模型对动态失速过程中翼型气动力的模拟精度,并对流场结构进行分析。
结果表明:修正模型预测的翼型气动力和流场特征与实验值更接近;重叠网格在翼型的动态失速模拟中更具优势。
关键词: OpenFOAM; 动态失速; 湍流模型; 风力机; 翼型; 重叠网格中图分类号: V211.41; TK83文献标志码: BUnsteady simulation method for airfoil dynamic stallYU Jiaxin CHEN Jiangtao WANG Xiaodong WU Xiaojun KANG Shun(1. Key Laboratory of Power Station Energy Transfer Conversion and System(Ministry of Education), North ChinaElectric Power University, Beijing 102206, China;2. China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan,China)Abstract: To explore the highly reliable unsteady simulation method of airfoil dynamic stall,the flow of airfoil under dynamic stall is simulated using the open source computational fluid dynamics(CFD) solver OpenFOAM taking the FFA-W3-241 airfoil as the research object. The accuracy of the aerodynamic simulation of airfoil during dynamic stall is studied under different conditions, that includes two different mesh motion forms(overlapping mesh and sliding mesh),two different time steps, two different calculation cycles, and OpenFOAM defaulted turbulence model and modified k-ω SST turbulence model. The flow field structure is analyzed. The results shows that the aerodynamic and flow field characteristics predicted by the modified turbulence model are closer to the experimental value. The overset mesh is more advantageous in the dynamic stall simulation of airfoil.Key words: OpenFOAM; dynamic stall; turbulence model; wind turbine; airfoil; overset mesh-基金項目:国家数值风洞工程项目(NNW2018-ZT7B14);国家自然科学基金(51876063)作者简介:于佳鑫(1993—),女,辽宁建昌人,博士研究生,研究方向为CFD可信度分析和不确定性方法,(E-mail)****************通信作者:王晓东(1979—),男,北京人,教授,博导,研究方向为海上风电机组设计,(E-mail)****************.cn0引言翼型失速分为静态失速和动态失速。
风力机三维旋转叶片非定常气动特性数值模拟研究胡国玉;孙文磊;曹莉【摘要】Based on computational fluid dynamics (CFD) method,this paper simulated the aerodynamic characteristics of NREL Phase VI wind turbine.Reynolds-Averaged Navier-Stokes (URANS) turbulence models are used in the simulations,and extensive comparisons with experimental data are performed.By the comparison for power,thrust and sectional force coefficients of NREL Phase Ⅵ wind turbine between CFD and NREL,the results at constant pitch and variable wind speed show that the CFD predictions match the experimental data consistently well at low wind speed.At high wind speed,there is a little difference due to the effects of flow separation.The simulation results reveal the unsteady aerodynamic characteristics of wind turbine blade with three-dimensional rotational effect.%文章基于CFD方法对NREL Phase VI风机的气动特性进行了数值模拟.根据NREL定桨变速的实验工况,通过求解三维非定常雷诺平均Navier-Stokes方程(RANS),基于k-ω SST湍流模型分析了不同风速工况下的风机叶片流场特性,得到了气流沿叶片展向的流动分布.通过与NREL NASA-Ames风洞实验数据的对比,在低风速时采用CFD仿真的计算结果与实验结果更为吻合;在失速区域,由于气流分离的影响,CFD仿真的计算结果与实验结果对比差异较明显.CFD仿真大体上能够较好地预测实验风机的性能,分析动态失速现象发生的原因,揭示叶片在三维旋转效应下的非定常气动特性.【期刊名称】《可再生能源》【年(卷),期】2016(034)006【总页数】5页(P867-871)【关键词】风力发电机;三维旋转效应;非定常气动特性;动态失速;分离流【作者】胡国玉;孙文磊;曹莉【作者单位】新疆大学机械工程学院,新疆乌鲁木齐 830047;新疆大学机械工程学院,新疆乌鲁木齐 830047;新疆大学机械工程学院,新疆乌鲁木齐 830047【正文语种】中文【中图分类】TK83一般情况下,风力机的气动设计和载荷分析是采用稳态叶素-动量理论BEM[1](Blade Element Momentum,BEM)进行计算的,但是由于基于二维翼型数据的BEM方法没有考虑到三维旋转效应,导致其计算值偏低。
旋翼翼型非定常动态失速特性的CFD 模拟及参数分析赵国庆;招启军;王清【摘要】构建了一套基于运动嵌套网格技术和可压缩 RANS 方程的旋翼翼型非定常流动特性模拟的高效、高精度的 CFD 方法。
首先,发展了基于 Poisson 方程求解的围绕翼型的粘性贴体正交网格生成方法,并提出了基于最小距离法(MDM)改进策略的运动嵌套网格生成方法,克服了弹簧法可能导致网格畸变的不足;其次,为准确模拟由湍流分离和气流再附引起的气动力的迟滞效应,基于 RANS 方程、双时间方法和高阶插值格式,建立了旋翼翼型非定常气动特性分析的高精度数值方法,并采用能够较好捕捉气流分离现象的 S-A 湍流模型;再次,针对旋翼后行桨叶动态失速时桨叶剖面来流速度较低、迎角较大的特点,为解决低来流速度时 L-B 半经验模型在旋翼翼型非定常动态失速计算中的局限性,并克服可压缩方程对低速流场计算收敛困难和精度低的问题,建立了基于Pletcher-Chen 低速预处理方法、FAS 多重网格法和隐式 LU-SGS 方法相结合的高效数值方法。
应用发展的方法,分别针对NACA0012、SC1095旋翼翼型静态和轻度、深度动态失速进行计算,精确捕捉了气动力迟滞效应以及翼型前缘脱体涡的产生、对流和脱落过程,验证了本文方法的有效性;最后,着重针对 NACA0012动态失速状态,开展了振荡参数对旋翼翼型非定常动态失速特性影响的分析,研究结果表明翼型迎角平均值、振幅及减缩频率的变化均能引起迟滞效应的改变并使得气动力峰值发生有规律的前、后移现象等。
%A high-efficiency and high-precision CFD method for simulating the unsteady dynamic stall of rotor airfoil has been established based on moving-embedded grid and compressi-ble RANSequations.Firstly,the generation method of viscous and orthogonal body-fitted grid around the rotor airfoil is developed by solving Poissonequations.Meanwhile,aiming at overco-ming the shortcoming of spring simulation approach which may result in the distortion of grid,an improved Minimum Distance Method is proposed to generate the embedded grid around airfoil. Secondly,in order to simulate the hysteresis effect of aerodynamic forces caused by the turbu-lence separation and re-attachment of the flow,a high-precision method on the analysis of unsteady aerodynamic characteristics of rotor airfoil is developed by employing RANS equations and dual-time method.The S-A turbulence model is employed to capture the separation phenomenon of flow around airfoil.Thirdly,according to the conditions of low-speed inflow and high AOAs of the retreating blade,together with the limitation of L-B semi-empirical model on the calculation of unsteady dynamic stall of airfoil,a combination method of Pletcher-Chen preconditioning, FAS multigrid approaches and implicit LU-SGS scheme is established to overcome the problems of convergence difficulty and insufficient precision of compressible equations.The steady,mild and deep dynamic stall cases of NACA0012 and SC1095 rotor airfoils are calculated using this pre-viously mentioned method,the hysteresis effect and theformation,convection,shedding of the vortical disturbance are well captured,the effectiveness of numerical simulation method on dynamic stall is verified.Finally,focus on the deep stall of NACA0012 airfoil,the influence ana-lyses of parameters on the unsteady aerodynamic forces of rotor airfoil are carried out,and the results demonstrate that the exchanges of averaged AOA,amplitude and reduced frequency may cause avariational hysteresis effect and regularly changes of peak value of aerodynamic force.【期刊名称】《空气动力学学报》【年(卷),期】2015(000)001【总页数】10页(P72-81)【关键词】旋翼;翼型;动态失速;N-S 方程;运动嵌套网格;参数分析【作者】赵国庆;招启军;王清【作者单位】南京航空航天大学直升机旋翼动力学国家级重点实验室,江苏南京210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,江苏南京210016;南京航空航天大学直升机旋翼动力学国家级重点实验室,江苏南京210016【正文语种】中文【中图分类】V211.52;V211.3旋翼工作在严重非对称、非定常的涡流场中,旋翼桨叶的挥舞、周期变距以及畸变尾迹(诱导)形成的非均匀入流,导致桨叶剖面在不同方位角处的迎角有很大差别。
当旋翼桨盘载荷很高时,后行桨叶工作在较大的迎角状态,容易产生气流分离进而出现复杂的非定常动态失速现象。
旋翼动态失速现象虽然能够增大升力峰值,但同时造成阻力和力矩的突增,且翼型气动力中心不再稳定,这对旋翼的振动特性有重要影响,从而严重制约着直升机气动性能和飞行速度的提高[1],因此其准确预测有助于直升机飞行性能包线的划定、振动水平的分析和设计等。
与此同时,翼型作为旋翼的基本组成元素,其非定常动态失速特性反映了旋翼动态失速的基本特性。
然而,旋翼及翼型的动态失速现象的机理仍在探索之中,对脱体涡的运动引起的气动力迟滞效应、逆压梯度的产生及大小等规律都未能彻底掌握,关于旋翼翼型非定常动态失速特性的研究一直是直升机空气动力学领域的研究焦点和难点。
因此,进行旋翼翼型动态失速的研究具有重要的理论和实际应用价值。
目前,旋翼翼型动态失速特性的研究主要采用数值方法和试验方法。
试验研究主要是针对风洞中振荡的翼型进行气动力、压力的测量[2-3],因而可以直观地认知旋翼翼型动态失速中气动力的迟滞效应。
但是旋翼翼型动态失速的风洞试验复杂、代价大、周期长并受试验测量技术的限制,并且很难捕捉动态失速过程中涡的流动细节、气流分离及再附等现象,因而其只能进行原理性或特定工况的研究。
数值计算方法可以克服试验研究中存在的这些不足和难题,针对旋翼翼型动态失速可进行多种工况及流动细节的模拟,已成为旋翼翼型非定常动态失速特性研究的一条重要途径。
旋翼翼型动态失速模拟的数值方法包括基于试验数据的半经验模型和计算流体力学(CFD)方法。
国外学者已发展了一系列的半经验动态失速理论模型,如Leishman-Beddoes(L-B)[4]、ONERA[5]、Johnson[6]等模型。
其中,最为著名的是L-B二维翼型动态失速模型,该模型是由几个从翼型试验数据中获得经验参数,采用指数法建立的半经验模型。
L-B模型在达到一定精度的要求下,大大缩短了计算时间,在直升机旋翼气动载荷、气动弹性以及飞行力学等方面有着广泛的应用[7-9]。
但L-B等半经验模型并不是严格的预测方法[10],仅对特定翼型适用,同时L-B模型对动态失速中气流再附时气动力的计算值与试验值相比有很大偏差,并且针对如旋翼后行桨叶的低来流速度、大迎角状态,其无法完全胜任翼型非定常气动力的准确模拟;此外,L-B模型只能针对气动力进行有效计算,无法模拟翼型非定常流场中复杂的气流分离及再附现象中的涡流动细节,从而很难更深入地探索动态失速的形成机理。
Leishman指出,只有通过基于Navier-Stokes方程的CFD方法才能完整地描述旋翼翼型的动态失速现象[11]。
Jameson[12]较早地提出了非定常流动模拟的双时间方法,并采用Eluer方程对翼型的动态振荡过程进行数值模拟,有效地计算了翼型浅度失速时升力系数的迟滞效应,显示了CFD方法在模拟翼型非定常动态失速方面的优越性。
由此,国内外学者相继开展了翼型动态失速现象的CFD数值分析研究[13-17]。
现有CFD研究结果表明,动态失速的显著特征是具有能量的翼型前缘干扰涡的运动,涡运动引起翼型压力场、力和力矩等的瞬时变化,导致气动力表现出明显的非线性迟滞效应。
然而,这些研究大多针对固定翼飞机的跨音速、小迎角的工作状态,对于旋翼后行桨叶翼型所处的低马赫数、大迎角状态的数值研究不多,并且针对翼型振荡参数对失速特性的影响分析也很少涉及,而上述这些对旋翼后行桨叶动态失速特性的研究却至关重要。