小升初数学模拟试题及答案 套
- 格式:docx
- 大小:127.52 KB
- 文档页数:16
人教新课标小升初数学模拟试卷(1)1.(2分)截止到2013年底,全国大陆总人口为人,横线上的数读作,约亿人.2.(3分):24=24÷=0.375= %3.(2分)米2=公顷 6060立方厘米= 升毫升.4.(1分)一张长12厘米、宽5厘米的长方形纸板,最多可以剪边长为2厘米的小正方形个.5.(2分)把10米长的圆木,锯成同样长的小段,共锯5次,每段长米,每段占全长的;如果锯成两段需4分,锯成5段共需分.6.(2分)神舟十号载人飞船于2013年6月11日下午5时38分成功发射,于6月26日上午8时05分顺利着陆,其间共经过了日时分.7.(2分)一辆汽车行驶a千米路耗油b升,它耗油1升可行驶千米,它行驶1千米耗油升.8.(2分)小亮用计算机设计了一个计算程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出……当输入数据是9时,输出的数据是.如果输出的数据是,则输入的数据是.9.(1分)妈妈让笑笑烧开水给客人沏茶,洗热水壶要2分钟,烧开水要15分钟,洗茶壶要2分钟,洗茶杯要2分钟,拿茶叶要1分钟.为了让客人早点喝上茶,最少要分钟.10.(1分)停车场里停放着4个轮子的汽车和3个轮子的三轮摩托车共30辆,这些车共有100个轮子,那么三轮摩托车有辆.11.(1分)六年级有480名学生,至少有名学生在同一天生日.12.(1分)五(1)班为为学校艺术节书法和绘画展选送作品,要从4副书法作品中选出2副,3副书法作品中选出2副.一共有种选送方案.13.(1分)有两个相对面是正方形的长方体,它的其余四个面完全相同..(判断对错)14.(1分)两个质数的积一定不是质数..(判断对错)15.(1分)(2004•南长区)直径一定,圆的周长与π成正比例..16.(1分)衣服标签:羊毛70%,棉30%,说明羊毛含量比棉多40%..(判断对错)17.(1分)(2014•岚山区模拟)如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高..(判断对错)18.(1分)(2011•资中县)估计一下,下面最接近自己年龄的是()A.600分B.600时C.600周D.600月19.(1分)一个三角形(边长为整厘米数)的两条边长分别是3厘米和7厘米,则第三边的长度共有()种可能.A.4B.5C.620.(1分)钟面上分针转动的速度是时针的()A.12倍B.C.60倍D.21.(1分)一根铁丝第一次用去它的,第二次用去米,说法正确的是()A.第一次用去的长B.第二次用去的长C.无法确定哪次用的长22.(1分)5个小朋友在一起打雪仗,如果每人都向其他每个小朋友掷一个雪球,那么一共掷出()个雪球.A.10B.15C.2023.(8分)直接写出得数.132.2﹣19.9= 1÷1.25= 49×81≈ 1÷﹣÷1=2.5×2.4= 0.32﹣0.22= 23.9÷7.7≈ ×÷×= 24.(9分)简便计算.3.68﹣+6.32﹣2.15×7.5+×58.5(+)×26×17.25.(9分)解方程.(10+x)×=124.5:x=2.5×6﹣3x=3.26.(6分)(1)画出图A关于直线mn的轴对称图形.(2)画出图B绕O点顺时针旋转90°后的图形C,再将图形C向下平移2格.27.(5分)学校组织为灾区捐款活动,五年级学生共捐款1850元,比六年级学生捐款数的少150元.六年级学生捐款多少元?28.(5分)小华的身高是1.6m,他的影长是2.4m.如果同一时间、同一地点测得一棵树的影子长4.8m,这棵树有多高(用比例知识解答)29.(5分)如图,由棱长是5厘米的正方体搭成的图形,共有多少个小正方体?它的体积是多少立方厘米?它的表面积是多少平方厘米?30.(5分)一个圆锥形沙堆,高1.5米,底面周长为12.56米,每立方米沙子约重1.8吨,这堆沙子约重多少吨?31.(6分)明明和聪聪强赛跑情况如图.(1)先到达终点.(2)赛跑初,领先,然后领先.(3)两人平均速度分别是多少?(得数保留一位小数)32.(6分)(2012•宁德)张师傅加工一批零件,第一天完成的个数与零件的总个数的比是1﹕3,如果再加工25个,就完成了这批零件的一半.这批零件共有多少个?33.(6分)班级组织活动要买50瓶矿泉水,有甲、乙、丙三个超市可以选择,三个超市矿泉水的品牌和质量完全相同,原价都是1.5元/瓶,但采取了以下不同的促销手段.甲店:一律九折;乙店:购物每满70元返还现金10元;丙店:购买4瓶送1瓶,不满4瓶按原价出售.到哪个商店购买最节省?通过计算说明理由.参考答案1.1354040000;十三亿五千四百零四万,14.【解析】试题分析:根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.解:13 5404 0000读作:十三亿五千四百零四万;13 5404 0000≈14亿.故答案为:1354040000;十三亿五千四百零四万,14.点评:本题主要考查整数的写法、改写和求近似数,注意改写和求近似数时要带计数单位.2.9,64,37.5.【解析】试题分析:解答此题的关键是0.375,把0.375化成分数并化简是,根据比与分数的关系=3:8,再根据比的基本性质,比的前、后项都乘3就是9:24;根据分数与除法的有关系=3÷8,再根据商不变的性质,被除数、除数都乘8就是24÷64;把0.375的小数点向右移动两位添上百分号就是37.5%.解:9:24=24÷64=0.375=37.5%.故答案为:9,64,37.5.点评:本题主要是考查除法、小数、百分数、比之间的关系及转化,利用它们之间的关系和性质进行转化即可.3.3500,6,60.【解析】试题分析:把公顷换算为平方米,用乘进率10000;把6060立方厘米换算为复名数,用6060除以进率1000,商是升数,余数是毫升数.解:3500米2=公顷 6060立方厘米=6升 60毫升;故答案为:3500,6,60.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,反之,则除以进率.4.12.【解析】试题分析:正方形可以密铺在长方形中,12÷2=6(个),5÷2=2(个)…1,可以剪2排,每排6个,由此得解.解:12÷2=6(个),5÷2=2(个)…1(厘米),6×2=12(个),答:可以剪出12个边长为2厘米的小正方形.故答案为:12.点评:此题考查了图形的拼组,注意要尽量的密铺.5.、、16.【解析】试题分析:锯成同样长的小段,共锯了5次,则可将这根圆木平均分成5+1=6段,根据分数的意义可知,每段占全长的1÷6=,每段长10×=(米);将这根圆木锯成5段需要锯5﹣1=4次,锯成两段即锯一次需4分钟,则锯4次需要4×4=16分钟.解:1÷6=,每段长10×=(米);4×(5﹣1)=4×4=16(分钟).故答案为:、、16.点评:完成此类题目要注意,锯的次数=段数﹣1.6.1,14,27.【解析】试题分析:先把时间化成24时计时法,然后利用经过的时间=结束的时间﹣开始的时间即可.解:下午5时38分=17时38分,上午8时05分=8时5分24时﹣17时38分+8时5分=6小时22分+8时5分=14小时27分故答案为:1,14,27点评:本题考查经过的时间:利用经过的时间=结束的时间﹣开始的时间即可.7.,.【解析】试题分析:(1)用行的路程除以耗油量就是每升汽油可以行多少千米;(2)用耗油量除以行驶的路程就是每千米的耗油量.解:(1)a÷b=(千米)(2)b÷a=(升)答:1升汽油能行驶千米,平均每千米耗油升.故答案为:,.点评:求平均每千克汽油可行多少千米,是把路程进行平均分;行1千米路程要耗油多少千克,是把耗油量平均分.8.、15.【解析】试题分析:根据输入和输出的数据表,可得输出数据的分子等于输入数据,分母等于输入数据的平方与1的和,据此解答即可.解:根据输入和输出的数据表,可得输出数据的分子等于输入数据,分母等于输入数据的平方与1的和,所以当输入数据是9时,输出的数据是:,如果输出的数据是,则输入的数据是15.故答案为:、15.点评:此题主要考查了算术中的规律问题的应用,解答此题的关键是分析出:输出数据的分子等于输入数据,分母等于输入数据的平方与1的和.9.17.【解析】试题分析:根据题干可知,先洗水壶用2分钟,烧开水15分钟的同时,可以洗茶壶,洗茶杯,拿茶叶,可以节约2+2+1=5分钟,需要一共需要2+15=17分钟.解:洗水壶用2分钟,烧开水15分钟的同时,可以洗茶壶,洗茶杯,拿茶叶,一共需要:2+15=17(分钟)答:最少需要17分钟.故答案为:17.点评:此题属于合理安排时间问题,奔着每道程序不相互矛盾冲突,又能节约时间的思想进行设计.10.20.【解析】试题分析:假设全是三轮摩托车,则应该有30×3=90个轮子,比实际少100﹣90=10个轮子,因为每辆三轮摩托车比每辆汽车少4﹣3=1个轮子,所以汽车有:10÷1=10辆,进而可以求出三轮摩托车数量.解:假设全是三轮摩托车,则汽车有:(100﹣30×3)÷(4﹣3),=10÷1,=10(辆);摩托车有:30﹣10=20(辆).答:三轮摩托车有20辆.故答案为:20.点评:此题属于典型的鸡兔同笼问题,采用假设法即可解答.11.2.【解析】试题分析:平年有365天,闰年有366天,即使是闰年,将366天当做抽屉,480÷366=1人…114人,即平均每天有一个学生过生日的话,还余114名学生,根据抽屉原理可知,至少有1+1=2个学生的生日是同一天.解:480÷366=1(人)…114(人)1+1=2(人)答:至少有2人是同一天出生的.故答案为:2.点评:在此抽屉问题中,至少数=物体数除以抽屉数的商+1(有余的情况下).12.18.【解析】试题分析:要完成这件事,需要分两步:第一步先从4副书法作品中选出2副,有4×3÷2=6(种)选法;第二步从3副书法作品中选出2副,有3×2÷2=3(种)选法;这样一共有6×3=18(种)选送方案.解:4×3÷2=6(种),3×2÷2=3(种),一共有6×3=18(种),答:一共有18种选送方案.故答案为:18.点评:本题考查了排列组合中的分步计数原理,即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有M n种不同的方法,那么完成这件事就有M1×M2×…×M n种不同的方法.13.正确【解析】试题分析:假设是上、下两个面都是正方形的长方体,即长方体的长和宽相等,其它四个面的面积都等于正方形的边长×高,因为正方形的边长都相等,长方体的高不变,所以它的其余四个面完全相同,面积相等.解:由分析知:有两个相对面是正方形的长方体,它的其余四个面完全相同,面积相等;故答案为:正确.点评:解答此题的关键:应明确长方体的特征,可画图进行分析.14.正确【解析】试题分析:两个质数的积的因数有这两个质数、这两个质数的积和1,根据合数的意义,一个数如果除了1和它本身还有别的因数,这样的数叫做合数,两个质数的积一定是合数.解:两个质数的积一定是合数,即一定不是质数.故答案为:√点评:本题是考查质数与合数的意义,属于基础知识.15.错误【解析】试题分析:根据判断两种量成正比例还是成反比例的方法:关键是看这两种相关联的量中相对应的两个数的商一定还是积一定,如果商一定,就成正比例关系;如果积一定,就成反比例关系;进行解答即可.解:因为π是定值,π是不变化的,如果圆的直径一定,那么周长也是一定的;所以,直径一定,圆的周长与π不成比例关系;故答案为:错误.点评:此题考查了判断两种量成正比例还是成反比例的方法.16.错误【解析】试题分析:根据百分数的意义,知羊毛占衣服总质量的70%,棉占衣服总质量的30%,则羊毛的含量比棉多(70%﹣30%)÷30%,计算即可得解.解:(70%﹣30%)÷30%=40%÷30%≈133%即羊毛含量比棉多133%,所以题干的说法是错误的.故答案为:×.点评:本题考查对百分数的意义的理解及应用.17.正确【解析】试题分析:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.据此解答即可.解:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.说法正确.故答案为:√.点评:本题要结合圆柱的体积和圆锥的体积计算公式进行判断.18.C【解析】试题分析:此题用到时间单位分、时、日、星期、月、年之间的换算,用到的进率有1时=60分、1日=24时、1年=12个月、1年≈52个星期. 600分=10时,600时=25日,600周≈11 年,600月=50年,由此做出选择.解:600分=10时,600时=25日,600周≈11 年,600月≈50年;根据实际情况,故答案为:C.点评:此题考查对时间单位时、分,日、星期、月、年之间的换算,并根据具体情况进行选择.19.B【解析】试题分析:根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.解:7﹣3<第三边<7+3,所以4<第三边<10,即第三边在4厘米~10厘米之间(不包括4厘米和10厘米),第三边的长为:5、6、7、8、9,五种可能.故选:B.点评:解答此题的关键是根据三角形的特性进行分析、解答即可.20.A【解析】试题分析:把钟面看作单位“1”,平均分成12个大格子,时针一小时走一个大格,针一小时走12个大格;由此求解.解:在相同的时间内,时针走了1个大格,而分针走了12个大格;12÷1=12;答:钟面上分针转动的速度是时针的12倍.故选:A.点评:本题考查了在相同的时间内路程的比等于它们的速度的比.21.A【解析】试题分析:将这根铁丝的长度当做单位“1”,由于第一次用去它的,则还剩全部的1﹣=,>,所以第一次用去的长.解:1﹣=,>,所以第一次用去的长.故选:A.点评:完成本题的依据为:分数的意义.只比较两次用去所占的分率即可,正确区分两个分数.22.C【解析】试题分析:每人都向其他每个小朋友掷一个雪球,那么每个人就要向其它4人掷雪球,需要掷4个雪球,一共就是掷5×4个雪球.解:5×4=20(个)答:一共掷出20个雪球.故选:C.点评:解决本题要注意:甲掷向乙,与乙掷向甲是不同的,所以不用除以2.23.112.3;1;4000;2;6;0.05;3;;【解析】试题分析:运用小数及分数的加减法及乘除法的计算法则进行计算即可.解:132.2﹣19.9=112.3 1÷1.25=149×81≈4000 1÷﹣÷1=22.5×2.4=6 0.32﹣0.22=0.05 23.9÷7.7≈3 ×÷×=点评:计算49×81时把49看作50,把81看作80,然后再相乘即可,23.9÷7.7把23.9看作24,把7.7看作8由此进行计算即可.24.9;60;120;【解析】试题分析:(1)两小数结合,两分数结合可使计算简便.(2)7.5看作0.75乘10,把0.75化成分数,应用乘法分配律可使计算简便.(3)应用乘法分配律,用括号外的26×17分别乘括号内的,再求和.解:(1)3.68﹣+6.32﹣=(3.68+6.32)﹣(+)=10﹣1=9;(2)2.15×7.5+×58.5=21.5×+×58.5=(21.5+58.5)×=80×=60;(3)(+)×26×17=×26×17+×26×17=68+52=120.点评:此题是考查四则混合运算,要仔细观察算式的特点,灵活运用一些定律进行简便计算.25.5;7.2;3.75;【解析】试题分析:①依据等式的性质,方程两边同时除以,再减去10求解;②先根据比例的基本性质,把原式转化为x=4.5,然后根据等式的性质,在方程两边同时除以4.5求解;③先化简,再根据等式的性质,在方程两边同时加上3x,再同减去3,最后同除以3求解.解:①(10+x)×=12(10+x)×÷=12÷10+x﹣10=15﹣10x=5②4.5:x=x=4.5x÷=4.5÷x=7.2③2.5×6﹣3x=315﹣3x+3x=3+3x3+3x﹣3=15﹣33x÷3=11.25÷3x=3.75点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.26.如图所示:【解析】试题分析:(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴(直线mn)的下边画出上图的对称点,依次连结即可;(2)图B中除旋转中心O外的两个顶点为关键点,先找出这两个关键点绕点O顺时针旋转90°后的对应点,再顺次连接即可得图C;图形C的三个顶点为关键点,先找出这三个关键点“向下平移2格”后的对应点,再顺次连接即可得将图形C向下平移2格后的图形.解:如图所示:点评:本题考查了作轴对称图形以及旋转作图及平移作图,解题关键是确定关键点及其对应点的位置,另外还要求学生理解轴对称、平移及旋转的性质,才能准确作图.27.2500元.【解析】试题分析:五年级学生捐款的钱数加上150元就是六年级捐款钱数的,把六年级捐款的钱数看成单位“1”,它的对应的数量就是(1850+150)元,由此用除法求出六年级捐款的钱数.解:(1850+150)÷=2000÷=2500(元)答:六年级学生捐款2500元.点评:本题先找出单位“1”,已知一个数的几分之几是多少,求这个数用除法.28.3.2米.【解析】试题分析:同一时间,同一地点测得物体高度与影子长度的比值相等,也就是小华的身高与影子的比等于这棵树的高与影子的比,设这棵树的高为x,组成比例,解比例即可.解:设这棵树的高为x米,1.6:2.4=x:4.82.4x=1.6×4.8x=7.68÷2.4x=3.2答:这棵树有3.2米.点评:此题考查用比例的知识解应用题,设出未知数,组成比例然后解比例.29.9个;1125立方厘米;800平方厘米.【解析】试题分析:(1)棱长为5cm的正方体的体积是5×5×5=125立方厘米,观察图形可知,图中有7+2=9个小正方体,则这个图形的体积就是这9个小正方体的体积之和;(2)棱长为5cm的正方体的一个面的面积是5×5=25平方厘米,观察图形可知,图形的前、后2个面各有4个小正方体的面,左、右2个面分别是由5个小正方体的面组成的,上、下2个面分别是由7个小正方体组成的,由此即可求出这个图形的表面积.解:(1)观察图形可知,图中有7+2=9个小正方体,5×5×5×9=125×9=1125(立方厘米)(2)5×5×4×2+5×5×5×2+5×5×7×2=200+250+350=800(平方厘米).答:共有9个小正方体,它的体积是1125立方厘米,表面积是800平方厘米.点评:此题考查了不规则图形的体积与表面积的计算方法的灵活应用.30.11.304吨.【解析】试题分析:根据圆的周长公式C=2πr,知道r=C÷π÷2,求出圆锥的底面半径;而要求这堆沙子的重量,先求得沙堆的体积,沙堆的形状是圆锥形的,利用圆锥的体积计算公式求得体积,进一步再求沙堆的重量问题得解.解:沙堆的体积:×3.14×(12.56÷3.14÷2)2×1.5=×3.14×22×1.5=3.14×4×0.5=6.28(立方米)沙堆的重量:6.28×1.8=11.304(吨)答:这堆沙子约重11.304吨.点评:此题主要考查圆锥的体积计算公式V=sh=πr2h的实际应用,注意运用公式计算时不要漏乘.31.(1)明明;(2)聪聪;明明;(3)明明平均每分钟跑177.8米,聪聪平均每分钟跑145.5米. 【解析】试题分析:从折线统计图看出:(1)明明先到达终点.(2)赛跑初,聪聪领先,然后明明领先.(3)求明明的平均速度,用800÷4.5解答.求聪聪的平均速度,用800÷5.5即可.解:(1)明明先到达终点.(2)赛跑初,聪聪领先,然后明明领先.(3)800÷4.5≈177.8(米)800÷5.5≈145.5(米).答:明明平均每分钟跑177.8米,聪聪平均每分钟跑145.5米.故答案为:明明;聪聪;明明.点评:本题考查从统计图中获得数据解答相关问题的能力.还考查了速度的求法.32.150个.【解析】试题分析:我们把这批零件的总量看做单位“1”,找出25个零件对应的分率,即的差,用25除以它就是零件的个数.解:25÷(),=25÷(),=25×6,=150(个);答:这批零件共有150个.点评:本题是一道简单的复合应用题,考查了学生分析解决问题的能力.33.到丙商店购买最节省.【解析】试题分析:甲店:打九折是指现价是原价的90%,求出原一共要花多少钱,再乘90%就是在甲商店需要花的钱数;乙店:购物每满70元返还现金10元;先求出一共要花多少钱,再看这些钱里有几个70元,求出可返的现金,进而求出实际花的钱数;丙店:买4送1,如果买40瓶就赠送10瓶,也就是花40瓶的钱就可以,所以一共要花40×1.5=60(元);比较即可.解:甲店:1.5×50×90%=67.5(元);乙店:共应花1.5×50=75(元)返还现金10元,实际花75﹣10=65(元)丙:买40瓶就赠送10瓶,一共要花40×1.5=60(元);60元<65元<67.5元答:到丙商店购买最节省.点评:本题先理解各商店的优惠的办法,再根据这些办法求出在各商店实际花的钱数,进而求解.人教新课标小升初数学模拟试卷(2)1.(3分)设a=,b=,则a+b= ,a﹣b= ,a×b=,a÷b= .2.(3分)用长短相同的火柴棍摆成5×1997的方格网,每一个小方格的边长为一根火柴棍长(如图),共需用根火柴棍.3.(3分)有甲乙丙三种溶液,分别重7千克,8千克,2千克.现要分别装入小瓶并无剩余,并且每瓶重量相等,照这种装法,最少要用个瓶子.4.(3分)一块长方形耕地如图所示,已知其中三块小长方形的面积分别是15、16、20亩,则阴影部分的面积是亩.5.(3分)(2013•蓬溪县模拟)现有大小油桶40个,每个大桶可装油5千克,每个小桶可装油3千克,大桶比小桶共多装油24千克,那么,大油桶个,小油桶个.6.(3分)如图,把A,B,C,D,E,F这六个部分用5种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色,那么这幅图一共有种不同的着色方法.7.(3分)“123456789101112…282930”是一个多位数,从中划去40个数字,使剩下的数字(先后顺序不能变)组成最大的多位数,这个最大的多位数是.8.(3分)一水库存水量一定,河水均匀流入水库内.5台抽水机连续抽10天可以抽干;6台同样的抽水机连续抽8天可以抽干.若要求4天抽干,需要同样的抽水机台.9.(3分)如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A 地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距D地千米.10.(3分)一次足球赛,有A、B、C、D四队参加,每两队都赛一场.按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结果,C队得5分,A队得3分,D队得1分,所有场次共进了9个球,C队进球最多,进了4个球,A队共失了3个球,B队一个球也没进,D队与A队比分是2:3,则D队与C队的比分是.11.一个人以相同的速度在小路上散步,从第1棵树走到第13棵树用了18分,如果这个人走了24分,应走到第几棵树?12.在黑板上写出3个整数分别是1,3,5,然后擦去一个换成其它两数之和,这样操作下去,最后能否得到57,64,108?为什么?13.有一根6厘米长的绳子,它的一端固定在长是2厘米、宽是1厘米的长方形的一个顶点A处(如图),让绳子另一端C与边AB在一条线上,然后把它按顺时针方向绕长方形一周,绳子扫过的面积是多少?14.如图,四个圆相互交叉,它们把四个圆面分成13个区域.如果在这些区域上(加点的)分别填上6至18的自然数,然后把每个圆中的数各自分别相加,最后把这四个圆的和相加得总和,那么总和最大可能是多少?参考答案1.,﹣,,0.16.【解析】试题分析:(1)根据a、b的特征,求a+b时,a的最后一位上的4和b的最后一位上的5相加,和的小数点后面有1994个0;(2)根据a、b的特征,求a﹣b时,因为b>a,所以求出b﹣a,再在前面加上负号即可,差的小数点后面有1994个0;(3)a、b均是1996位小数,根据4×25=100,可得a×b的最后一位是1,1996×2﹣2=3990,积是3990位小数;(4)同时把a、b的小数点向右移动1996位,可得a÷b=4÷25=0.16.解:根据分析,可得a+b=,a﹣b=﹣,a×b=,a÷b=0.16.故答案为:,﹣,,0.16.点评:此题主要考查了小数的巧算问题,注意结果中0的个数.2.21972.【解析】试题分析:因为所有的火柴棍只有横向的和纵向的两种,横向长为1997根,纵向宽为6根;纵向长为1998根,宽为5根,由此分别求出后再相加即可.解:横放需1997×6根,竖放需1998×5根,共需:1997×6+1998×5,=1997×(6+5)+5,=21972(根);故答案为:21972.点评:先找到火柴棍摆放的规律,再根据规律求解.3.121.【解析】试题分析:7==,8==,2==,然后求出150和168和45的最大公约数,进而得出每瓶最多装多少千克,然后进行解答即可;解:7==,8==,2==,50=2×3×5×5,168=2×2×2×3×7,45=3×3×5,最大公约数是:3,所以1瓶是千克;需要:(7+8+2)÷=÷=121(个)答:最少要用121个瓶子;故答案为:121.点评:解答此题的关键是先求出每瓶最多装多少千克溶液,然后根据题意,进行解答即可.4.12【解析】试题分析:由长方形的面积=长×宽,可知等宽的两个长方形面积的比等于长的比,根据这个等量关系列出方程解答即可得到答案.解:根据长方形的性质,得20和16所在的长方形的长的比是5:4.设要求的第四块的面积是x,则15:x=5:4,5x=15×4x=60÷5x=12;答:阴影部分的面积为12.故答案为:12.点评:此题主要是找到等宽的两个长方形,根据面积的比等于长的比进行解答.5.18,22.【解析】试题分析:设大油桶有x个,小油桶有y个,两种桶的总数为40,于是可得方程x+y=40;又由“每个大桶可装油5千克,每个小桶可装油3千克,大桶比小桶共多装油24千克”得到方程,5x﹣3y=24;将这两个方程组成一个方程组,即可求其解.解:设大油桶有x个,小油桶有y个,由题意可得:,②+①×3得:8x=144,x=18;将x=18代入①,得y=22.答:大油桶有18个,小油桶有22个.故答案为:18,22.点评:解决此题的关键是利用题目条件,设出未知数,列方程,组成方程组,即可求解.6.960.【解析】试题分析:对于A有5种着色方法,B与A相邻,有4种着色方法;C与A相邻,它可以与B的颜色相同,因此C有4种着色方法;同理可以知D有4种着色方法,E有1种着色方法,F有3种着色方法,共有:5×4×4×4×1×3=960(种).解:5×4×4×4×1×3=960(种);答:幅图一共有 960种不同的着色方法;故答案为:960.点评:此题属于排列组合习题,解答此题的关键先通过分析,找出规律,继而得出结论.7.99627282930.【解析】试题分析:这个多位数共有9+21×2=51位数字,划去40个数字,还有11个数字.在划去数字时,前面尽可能多的留下9,才能保证剩下的数字最大,这个多位数只有3个9,所求数只能前两位是9,这时多位数还剩202122…282930这些数字,还要再留下9个数字,这时可以从后往前考虑,留下627282930.所以所求最大数为 99627282930.解:划去40个数字,还有11个数字.在划去数字时,前面尽可能多的留下9,所以去掉前面的1至8的8个数字;再去掉10至18的18个数字;再去掉19中的1共1个数字;再去掉20至25的12个数字;再去掉26中的2共1个数字.这样去掉了8+18+1+12+1=40个数字,则留下的数字是最大多位数为:99627282930.故答案为:99627282930.点评:从最大数字特点为切入点,划去前面较小的数字,再逐步划去各数段中的数,让留下的数字组合最大.8.11.【解析】试题分析:把一台抽水机一天抽水量看作单位“1”,1×5×10=50(单位)(第一种情况总的水量);1×6×8=48(单位)(第二种情况总的水量);50﹣48=2(单位)(第一种情况比第二种情况多的水量,即流入的水量);10﹣8=2(天)(第一种情况比第二种情况多的天数);2÷2=1(单位)(一天流入的水量);50﹣1×10=40(单位)(水库原有水量);40÷4+1=11(单位)(4天抽干,一天必须抽的水量);11÷1=11(台)(4天抽干,所用抽水机).解:①水库原有的水与20天流入水可供多少台抽水机抽1天?1×10×5=50(台)②水库原有水与15天流入的水可供多少台抽水机抽1天?1×6×8=48(台)③每天流入的水可供多少台抽水机抽1天?(50﹣48)÷(10﹣8)=1(台)④原有的水可供多少台抽水机抽1天?50﹣10×1=40(台)⑤若要4天抽完,需抽水机40÷4+1=11(台).故答案为:11.点评:此题属于“牛吃草问题”,解答此类问题应一步步推理.9.2.【解析】试题分析:如图:A﹣﹣﹣﹣﹣﹣C﹣﹣﹣﹣D﹣﹣﹣﹣﹣﹣﹣﹣B.第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4×3=12千米,通过画图,我们发现甲走了一个全程多了回那一段,就是距B地的3千米,所以全程是12﹣3=9千米,所以两次相遇点相距9﹣(3+4)=2千米.解:①第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4×3=12。
小学数学小升初模拟试题一.选择题(共5小题)1.a与b的和的3倍可列示表示为()A.a﹢3b B.3a﹢b C.3(a﹢b)2.李阿姨买了14个橘子共重2.1千克,如果买这样的橘子13千克,大约有()个.A.200个以上B.不到50个C.80多个3.一根绳子用去它的后,还剩下米,则.()A.用去的绳长B.剩下的绳长C.用去的与剩下的一样长D.无法确定4.千克的芝麻可榨千克油,每千克芝麻可榨油多少千克?正确列式是()A.÷B.÷C.×5.有三个相同的骰子摆放如图,底面点数之和最小是()A.10B.11C.12D.无法判断二.填空题(共14小题)6.二十三亿九千七百万是由2个,3个,9个和7个组成的.7.在+0.3、﹣3、+1、﹣0.2、+12、0、﹣这几个数中,正数有,负数有.8.在、2.67.2.06%、26.7% 中最大是,最小的是.9.0.125:的最简整数比是,比值是.10.甲、乙两地相距60千米,李林8时从甲地出发去乙地,前一半时间平均每分钟行1千米,后一半时间平均每分钟行0.8千米,李林从甲地到乙地共用了小时.11.旋转不改变图形的和,只改变图形的.12.图二是图一的表面展开图.将这个正方体先向前翻滚一个面,再向右翻滚一个面,这时正方体朝上一面的数字是.13.一个圆锥的体积比与它等底等高的圆柱的体积少36cm3,则圆锥的体积是cm3,圆柱的体积是cm3.14.如图,甲和乙是用相同的正方体搭成的,甲、乙两个立体图形所占空间大小关系是,表面积大小关系是A.甲=乙B.甲>乙C.甲<乙.15.阅读图中的信息,分析填空算式5×8+2×3表示;算式50﹣8×4表示;算式8÷2表示.16.2018年12月,张阿姨把4000元的存入银行,定期三年,年利率是2.75%到期后,应得利息元.17.有红、黄、蓝、绿四个不同颜色的小球,把它们放在三个盒子中,不管怎么放,至少有一个盒子中有个小球.18.用含有字母的式子或方程表示下面的数量关系.5减x的差除以3160减5个ax的3倍等于57x除以5等于1.619.一辆汽车从甲地出发去乙地,到达乙地后停留了一段时间后又沿原路返回,(如图),汽车出发一小时后行了千米,到达乙地的时间是,在乙地停留了时,汽车回甲地的速度是km/时.三.判断题(共5小题)20.所有的合数都是偶数,所有的质数都是奇数..(判断对错)21.在一个乘法算式里,两个因数都扩大5倍,积就扩大10倍.(判断对错)22.“大象会在天上飞”是可能的..(判断对错)23.如图的图形中,共有6个角.(判断对错)24.正方形的周长与该正方形的边长成正比例..(判断对错)四.计算题(共2小题)25.用你喜欢的方法计算20×(+)÷7+×4÷﹣×226.利用等式的基本性质解方程2x﹣13=3913x﹣7.5x=3.43(x+2.1)=1.4五.解答题(共2小题)27.张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个长方形,如图①,然后,他用这8块瓷砖又拼出一个正方形,如图②,中间恰好空出一个边长为1的正方形(阴影部分),求长方形瓷砖的长.28.在如图的方格纸上画出面积是16平方厘米的长方形和正方形,并计算它们的周长.六.解答题(共4小题)29.小敏和小刚都是集邮爱好者.小敏现在的邮票张数是小刚邮票张数的,如果小刚给小敏9张邮票,那么他们两人的邮票张数就相等,你知道小刚有多少张邮票吗?(用方程解答)30.求阴影部分面积.(单位:厘米)31.一间会议室长10米,宽8米,高5米,要粉刷会议室的侧面和屋顶,扣除门窗面积18平方米,平均每平方米用涂料0.2千克.一共需要用涂料多少千克?32.一个水泥厂生产了一批水泥,已经卖出2100吨,正好卖了这批水泥的70%,还有多少吨水泥没有卖出?参考答案与试题解析一.选择题(共5小题)1.【分析】a与b的和的3倍,先求出a与b的和,即(a+b),再乘3.【解答】解:(a+b)×3=3(a+b).故选:C.【点评】关键是弄清题意,a与b的和的3倍,先求a与b的和再乘3,先算a+b的和,a+b要加括号.2.【分析】首先根据除法的意义,用14个橘子的总重量除以14,求出每个橘子的重量大约是多少千克;然后用13除以每个橘子的重量,求出大约有多少个即可.【解答】解:13÷(2.1÷14)=13÷0.15≈87(个)所以如果买这样的橘子13千克,大约有80多个.答:如果买这样的橘子13千克,大约有80多个.故选:C.【点评】此题主要考查了除法的意义的应用,要熟练掌握,解答此题的关键是求出每个橘子的重量大约是多少千克.3.【分析】把这根绳子的长度看作单位“1”,把它平均分成5份,用去它,还剩下它的(1﹣),又知还剩下米,即这根绳子的(1﹣)是米,根据“已知一个数几分之几是多少,求这个数用除法计算”可求出这根绳子的长度,求出它的再与米比较即可解答.【解答】解:÷(1﹣)=÷,=×,=(米);×=(米),米>米,即用去的长;故选:A.【点评】本题是考查分数的意义,分数除法应用题,分数的大小比较.解答此题的关键是求出用去的长度,而要求用去的长度关键是求出这根绳子的长度.4.【分析】求每千克芝麻可榨油多少千克,用油的质量除以芝麻的重量即可.【解答】解:÷=(千克);答:每千克芝麻可榨油千克.故选:A.【点评】此题考查的是分数除法应用题,求1千克芝麻能榨油的数量,用油的千克数除以芝麻的千克数.5.【分析】由这三个相同的骰子摆放如图可知,与1(为便于叙述1点说1、2点说2……)相邻的四个面分别是2、3、4、5,从而推出与1相对的是6.由最右一个骰子可知,与5相邻的是1、4、6,它的对面可能是2或3.假设5的对面是2,则3的对面是4,这样底面点数之和就是5+4+3=12;假设5的对面是3,则2的对面就是4,这样底面点数之和就是4+5+2=11.由此可知,底面点数之和最小是11.【解答】解:由这三个相同的骰子摆放如图可知,与1(为便于叙述1点说1、2点说2……)相邻的四个面分别是2、3、4、5,从而推出1与6相对,记作:1⇔6;由最右一个骰子可知,与5相邻的是1、4、6,它的对面可能是2或3.假设5的对面是2,则3的对面就是4,即5⇔2,3⇔4,底面点数之和就是5+4+3=12;假设5的对面是3,则2的对面就是4,即5⇔3,2⇔4,底面点数之和就是4+5+2=11.因此,底面点数之和最小是11.故选:B.【点评】由图可知,与1相对的是6,这是固定的.由最右一个骰子可知,与5相对的有两种可能,要么是2,要么是3,根据这两种情况推出底面数字,通过计算、比较即可确定最小是多少.二.填空题(共14小题)6.【分析】首先搞清这个数字在整数的什么数位上和这个数位的计数单位,它就表示有几个这样的计数单位;据此解答.【解答】解:二十三亿九千七百万是由2个十亿,3个亿,9个千万和7个百万组成的;故答案为:十亿,亿,千万,百万.【点评】此题考查整数中的数字所表示的意义:有几个计数单位;解答时一定要看清数位和这个数位的计数单位.7.【分析】正数>0>负数,0既不是正数,也不是负数,据此判断出正数、负数各有哪些即可.【解答】解:在+0.3、﹣3、+1、﹣0.2、+12、0、﹣这几个数中,正数有+0.3、+1、+12,负数有﹣3、﹣0.2、﹣.故答案为:+0.3、+1、+12;﹣3、﹣0.2、﹣.【点评】此题主要考查了正、负数、0的大小比较,要熟练掌握,解答此题的关键是要明确:正数>0>负数,0既不是正数,也不是负数.8.【分析】本题可先将题目中的分数、小数化成百分数后,再进行比较大小.【解答】解:由于=260%,2.67=267%,又267%>260%>26.7%>2.06%,即2.67>>26.7%>2.06%;即最大是2.67,最小的是2.06%.故答案为:2.67、2.06%.【点评】在比较百分数、分数与小数的大小时,一般要将它们化成统一的数据形式后再进行比较.9.【分析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)根据求比值的方法,就用最简比的前项除以后项即得比值.【解答】解:(1)0.125:,=(×8):(×8),=1:5;(2)0.125:,=1:5,=1÷5,=.故答案为:1:5,.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.10.【分析】设一半的时间是x分钟,那么前一半时间行驶的路程是x千米,后一半时间行驶的路程是0.8x千米;把这两部分路程加在一起就是全程60千米,由此求解.【解答】解:设一半的时间是x分钟,由题意得:x+0.8x=601.8x=60x=×2=(分钟)分钟=小时答:李林从甲地到乙地共用了小时.故答案为:.【点评】本题根据速度、路程、时间三者之间的数量关系,找出等量关系列出方程求解.11.【分析】根据旋转的性质(旋转不改变图形的大小与形状,只改变图形的位置.也就是旋转前后图形全等,对应点与旋转中心所连线段间的夹角为旋转角)即可得出答案.【解答】解:旋转不改变图形的形状和大小,只改变图形的位置,故答案为:形状,大小,位置.【点评】此题考查了旋转的性质.12.【分析】不动时,1和5是对着的面,2和6是对着的面,3和4是对着的面,先向前翻滚一个面,4数字面朝上,再向右翻滚一个面,6数字面朝上,据此填空.【解答】解:向前翻滚一个面,再向右翻滚一个面时,正方体朝上一面的数字是6;故答案为:6.【点评】此题考查正方体的对面问题,解决此题的关键是无论怎样翻滚,相对的面不变.13.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆锥与圆柱的体积之差相当于圆锥体积的(3﹣1)倍,由此可以求出圆锥的体积,进而求出圆柱的体积.【解答】解:36÷(3﹣1)=36÷2=18(立方厘米),18×3=54(立方厘米),答:圆锥的体积是18立方厘米,圆柱的体积是54立方厘米.故答案为:18,54.【点评】此题主要考查等底等高的圆柱与圆锥体积之间关系的灵活运用.14.【分析】观察图形可知,这两个图形都是由7个小正方体拼组成的,所以它们的体积大小相等,即所占空间的大小相等;甲的表面积是棱长为2的正方体的表面积;乙的表面积是棱长为2的正方体的表面积,再加上小正方体的4个面的面积之和,据此即可选择.【解答】解:根据题干分析可得:这两个图形都是由7个小正方体拼组成的,所以它们的体积大小相等,即所占空间的大小相等;甲的表面积是棱长为2的正方体的表面积;乙的表面积是棱长为2的正方体的表面积,再加上小正方体的4个面的面积之和,所以甲的表面积<乙的表面积.故选:A;C.【点评】此题主要考查不规则立体图形的体积与表面积的计算方法.15.【分析】根据图意,成人票:8元;儿童票:2元,算式5×8+2×3表示5位成人和3名儿童的票价;算式50﹣8×4表示4位成人买票,给了50元,应找回多少钱;算式8÷2表示成人票价是儿童票价的几倍,进而完成填空即可.【解答】解:成人票:8元;儿童票:2元,算式5×8+2×3表示5位成人和3名儿童的票价,算式50﹣8×4表示4位成人买票,给了50元,应找回多少钱?算式8÷2表示成人票价是儿童票价的几倍?故答案为:5位成人和3名儿童的票价;4位成人买票,给了50元,应找回多少钱?成人票价是儿童票价的几倍?【点评】解决此题的关键是读懂图意进而解决问题.16.【分析】此题根据关系式:利息=本金×利率×时间,把相关数据代入此关系式,问题容易解决.【解答】解:4000×2.75%×3=110×3=330(元)答:到期后,她应得利息330元.故答案为:330.【点评】这种类型属于利息问题,有固定的计算方法,利息=本金×利率×时间,找清数据与问题,代入公式计算即可.17.【分析】这是抽屉原理问题:把3个盒子看作三个抽屉;4个小球,最差情况是:每个盒子等分的话,会获得1个;那还有一个球,随便分给哪一个盒子,都会使得一个盒子分得2个小球,据此即可解答.【解答】解:4÷3=1…1(个),1+1=2(个);答:至少有一个盒子中有2个小球.故答案为:2.【点评】抽屉原理问题的重点是建立抽屉,关键是在考虑最差情况的基础上得出均分数(商);然后根据:至少数=商+1(在有余数的情况下)18.【分析】根据题意:1字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写;2.字母和数字相乘时,省略乘号,并把数字放到字母前;“1”与任何字母相乘时,“1”省略不写.【解答】解:5减x的差除以3,(5﹣x)÷3160减5个a,160﹣5ax的3倍等于57,3x=57x除以5等于1.6x÷5=1.6故答案为:(5﹣x)÷3,160﹣5a,3x=57,x÷5=1.6.【点评】此题重点考查用字母表示数量关系,注意字母与数字相乘时应省略乘号,把数字写在字母的前面.19.【分析】通过观察折线统计图可知:汽车出发1小时行驶了60千米,达到目的地的时间是9时,在乙地停留了1小时,求返回的速度,首先根据去时的速度和时间求出路程,返回用了1小时,再根据速度=路程÷时间,据此列式解答.【解答】解:140÷1=140(千米/小时),答:汽车出发1小时行驶了60千米,达到目的地的时间是9时,在乙地停留了1小时,汽车回甲地的速度是每小时行驶120千米.故答案为:60、9、1、140.【点评】此题考查的目的是理解掌握折线统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.三.判断题(共5小题)20.【分析】除了1和它本身外,没有其它因数的数为质数,能被2整数的为偶数,2为偶数且除了1还它本身外再没有别的因数了,所以2既为质数也为偶数;不能被2整数的数为奇数,除了1和它本身外,还有别的因数的数为合数,如9,15等既为奇数也为合数;据此解答.【解答】解:根据偶数与奇数,质数与合数的定义可知,所有的偶数都是合数,所有的奇数都是质数的说法是错误的.如:2既为质数也为偶数;9,15等既为奇数也为合数.故答案为:×.【点评】奇数不一定为质数,但除2之外的质数都为奇数.21.【分析】根据积的变化规律,如果两个因数扩大相同的倍数(0除外),积扩大的倍数就等于两个因数扩大倍数的乘积;由此解答.【解答】解:根据积的变化规律可知,在一个乘法算式里,两个因数都扩大5倍,积扩大5×5=25倍.原题说法错误.故答案为:×.【点评】此题主要考查的是积的变化规律的灵活应用.22.【分析】根据事件的确定性和不确定性,可得“大象会在天上飞”是确定事件中的不可能事件,“大象会在天上飞”是不可能的,据此判断即可.【解答】解:因为“大象会在天上飞”是不可能的,所以题中说法不正确.故答案为:×.【点评】此题主要考查了事件的确定性与不确定性,要熟练掌握,解答此题的关键是要明确:事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件.不确定事件又称为随机事件.23.【分析】先数出图中的小角一共有3个,则图中角的总个数是1+2+3=6个.【解答】解:根据角的计数方法可得,图中一共有角:1+2+3=6(个)故答案为:√.【点评】考查了数角的个数,要有总结规律的能力或公式应用的能力.24.【分析】成正比例的量的特点是:两个相关联的量,一个量变化,另一个量也随之变化,它们的比值一定;由此利用正方形的周长=边长×4即可进行解答.【解答】解:因为正方形的周长=边长×4,所以可得:正方形的周长:边长=4,所以周长随边长的变化而变化,它们的比值一定,所以正方形的周长与边长成正比.故答案为:√.【点评】此题考查了利用成正比例的意义判定两个相关联的量成正比例关系的方法的灵活应用.四.计算题(共2小题)25.【分析】(1)根据乘法分配律简算;(2)先把除法变成乘法,再根据乘法分配律简算;(3)先同时计算除法和乘法,再算减法.【解答】解:(1)20×(+)=20×+20×=15+16=31(2)÷7+×=×+×=(+)×=1×=(3)4÷﹣×2=9﹣=8【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.26.【分析】(1)先把方程的两边同时加上13,再同时除以2即可;(2)先化简方程的左边,变成5.5x,再把方程的两边同时除以5.5即可;(3)先把方程的两边同时除以3,再同时减去2.1即可.【解答】解:(1)2x﹣13=392x﹣13+13=39+132x=522x÷2=52÷2x=26(2)13x﹣7.5x=3.45.5x=3.45.5x÷5.5=3.4÷5.5x=(3)3(x+2.1)=1.43(x+2.1)÷3=1.4÷3x+2.1=x+2.1﹣2.1=﹣2.1x=﹣【点评】本题考查了运用等式的性质解方程的方法,计算时要细心,注意把等号对齐.五.解答题(共2小题)27.【分析】根据图形①可得长方形的3条长=长方形的5条宽,即得出长方形的长与宽的比是5:3,由图②可得:长方形的宽×2=长方形的长+1,这里设长为5x、宽为3x,根据图②得出等量关系列出方程即可解答问题.【解答】解:设长为5x、宽为3x,根据题意可得:3x×2=5x+16x=5x+1x=1则长是5×1=5答:长方形瓷砖的长是5.【点评】解答此题关键是根据图中信息找出长方形的长与宽的比以及长与宽的等量关系式,据此设出未知数,列出方程即可解答问题.28.【分析】先依据面积已知,利用正方形和长方形的面积公式分别确定出长方形的长和宽及正方形的边长,进而可以作出符合要求的图形;再根据长方形的周长=(长+宽)×2、正方形的周长=边长×4解答即可.【解答】解:因为长方形和正方形的面积都是16平方厘米,所以长方形的长和宽可以为8厘米和2厘米,正方形的边长为4厘米,于是作图如下:长方形的周长:(8+2)×2=20(厘米)正方形的周长:4×4=16(厘米).【点评】解答此题的关键是:依据面积已知确定出长方形的长和宽及正方形的边长,进而作出符合要求的图形.六.解答题(共4小题)29.【分析】根据题干,设小刚有x张邮票,则小敏就有x张,根据等量关系:小刚的邮票﹣9张=小敏的邮票+9张,据此列出方程解决问题.【解答】解:设小刚有x张邮票,则小敏就有x张,根据题意可得方程:x﹣9=x+9,x=18,x=72,答:小刚有72张.【点评】此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.30.【分析】(1)作辅助线,把阴影部分“割”出A部分,阴影A通过旋转,翻转即可“补”到空白B处.这样阴影部分面积就是等于半径为4厘米的圆面积减两直角边都是4厘米的直角三角形面积的一半.(2)把阴影A、B两部分通过旋转、翻转或平移翻转,阴影部分面积就等于底为(10×2)厘米,高为10厘米的三角形面积减对边线为10厘米的正方形面积.对角线为10厘米的正方形面积看作底为10厘米,高为2厘米的两个三角形面积之和.【解答】解:(1)如图3.14×42×﹣4×4÷2÷2=3.14×16×﹣4×4÷2÷2=12.56﹣4=8.56(平方厘米)答:阴影部分面积是8.56平方厘米.(2)如图(10×2)×10÷2﹣10×(10÷2)÷2×2=20×10÷2﹣10×5÷2×2=100﹣50=50(平方厘米)答:阴影部分面积是50平方厘米.【点评】解答这两个题的关键是通过图形变的,把它们转化成规则图形,再根据规则图形的面积计算公式计算.31.【分析】一间会议室长10米,宽8米,高5米,要粉刷会议室的侧面和屋顶,要粉刷的就是除地板外的其余5个面,求出5个面的面积,再减去门窗的面积,然后乘每平方米需要涂料的重量即可.据此解答.【解答】解:10×8+10×5×2+8×5×2﹣18=80+100+80﹣18=260﹣18=242(平方米)242×0.2=48.4(千克)答:一共需要涂料48.4千克.【点评】本题主要考查了学生对长方体表面积计算公式的应用,在计算时一定要注意需要涂的是哪几个面.32.【分析】把这批水泥的总质量看成单位“1”,它的70%就是2100吨,由此用除法求出总质量,再减去卖出的吨数,就是还剩下的吨数.【解答】解:2100÷70%﹣2100=3000﹣2100=900(吨)答:还有900吨水泥没有卖出.【点评】本题先找出单位“1”,已知一个数的百分之几是多少,求这个数用除法求解.结束------------------------------------------。
数学六年级小升初模拟模拟试题测试卷(附答案)一、选择题1.xy =30中,x ,y 的关系是( )。
A .成正比例B .成反比例C .不成比例2.李明的座位用数对表示是(4,5),张英的座位在李明的东偏南45°方向上,她的座位可能是( )。
A .(3,4)B .(5,4)C .(5,6)D .(3,6)3.学校有排球32个,比篮球多,篮球有多少个?正确的算式是( ) A .32×(1+) B .32×(1﹣) C .32÷(1+) D .32÷(1﹣)4.鹏鹏用1根40厘米的铁丝围成了一个三角形,这个三角形的最长边可能是( )厘米。
A .13B .18C .20D .225.梯形的面积是280cm ,已知它的上底是30cm ,高是2cm ,则下底是多少厘米?设下底为cm x ,下列方程中正确的是( )。
A .()30280+⨯=xB .()302280+⨯÷=xC .802230⨯-=xD .280230=-⨯x6.下面这个立体图形,灵灵从右面看到的是( )A .B .C .7.下列说法错误的是( )。
A .如果1=a b ÷,那么a 一定是b 的倒数B .1千米增加15后,又减少15千米,结果还是1千米C .正方体的棱长扩大为原来的3倍,那么表面积扩大为原来的6倍,体积扩大为原来的9倍8.下面关于正比例和反比例的四个说法中,正确的有( )。
①正比例的图像是一条射线②一个人的年龄和体重既不成正比例关系也不成反比例关系 ③圆柱的底面积一定,体积和高成反比例关系④长方形的周长一定,长和宽不成比例。
A.①②③B.①②④C.②③④D.①③④9.一种商品提价20%后,又降价20%,现在的价格()。
A.与原价相同B.比原价低C.比原价高10.长方形ABCD的长是21厘米,宽7厘米,将长方形(如图)沿EF对折,阴影部分的周长是()厘米。
小学六年级小升初数学模拟综合试题测试卷(附答案解析)一、选择题1.杭州到北京的距离大约是1290千米。
在一幅中国地图上,量得杭州到北京的图上距离是15厘米,那么这幅地图的比例尺是()。
A.1:86B.1:86000C.1:8600000D.86:12.小明用棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起摆出了一个立体图形,这个立体图形的表面积是()平方厘米。
A.194 B.196 C.206 D.2343.菜市场有黄瓜150千克,黄瓜重量和西红柿重量的比是3:5,黄瓜重量比西红柿少多少千克?正确的算式是()A.150÷3×5 B.150÷3×5﹣150 C.150÷3×(5﹣3)4.一个直角三角形,两个锐角的度数比是1∶8,这个三角形中最小的锐角是()。
A.40°B.20°C.10°5.5千克棉花的和1千克铁的比较,结果是()A.5千克棉花的重B.1千克铁的重C.一样重D.无法比较6.从右面观察,所看到的图形是()。
A.B.C.7.下列说法错误的是()。
A.0是自然数B.平行四边形的面积是三角形的2倍C.梯形的高有无数条D.甲比乙多13,乙就比甲少148.下面说法正确的是()。
A.六年级学生今天出勤100人,缺勤2人,出勤率是98% B.射线比直线要短C.一个自然数,不是奇数就是偶数D.0除以任何数都得09.一批练习本分发给数学兴趣组的学生,平均每人分到36本,如果只发给女生,平均每人可分到60本,如果这批练习本不超过200本,若只发给男生,那么平均每人可分到()本。
A.36 B.40 C.48 D.9010.一个铁丝恰好围成一个圆,展开后将这个铁丝又折成一个正方形,那么这个圆与正方形关系的正确说法是()。
A.周长相等,面积变大B.周长相等,面积变小C.周长变大,面积相等D.周长变小,面积相等二、填空题11.334吨=(________)吨(________)千克;70分=(________)小时。
六年级数学小升初模拟试题(一)班级:姓名:得分:一﹑填空:1. 三十五万八千写作(),改写成用“万”作单位的数是()万。
2. 一个数由4个10、5个1和6个0.01组成,这个数写作(),读作()。
3. 435的分数单位是(),它有()个这样的分数单位。
错误!未指定书签。
4. 5480千克=()吨,214小时=()时()分。
5. 能同时被 2、3、5整除的最小两位数是(),最大两位数是()。
6. 48和72的最大公因数是(),最小公倍数是()。
7. 路程一定,速度和时间成()比例;单价一定,总价和数量成()比例。
8. 在一幅地图上,用20厘米的线段表示实际距离100千米,这副地图的比例尺是()。
9. 一个正方体棱长是5厘米,它的表面积是(),体积是()。
10. 10千克的小麦能磨出8.5千克的面粉,小麦的出粉率是();80千克这样的小麦能磨出()千克的面粉。
二、判断:(对的打“√”,错的打“×”)1. 一个数的末尾添上0或去掉0,这个数的大小不变。
()2. 真分数的倒数都大于1。
()3. 所有的的整数都可以做分数的分母。
()4. a×a×a可以简写成3a. ()5. 只有一组对边平行的四边形叫梯形. ()6. 等底等高的圆柱与圆锥体积比是3︰1. ()三、选择题。
(将正确答案的序号填在括号里)1. 角的两边是两条(). A.线段. B.射线 C.直线2. 一个合数至少有( )个约数. A.1 B.2 C.33. 圆是轴对称图形,它有( )条对称轴。
A.一条 B.两条 C.无数条4. 比的前项扩大5倍,后项缩小5倍,比值( ). A.扩大10倍 B.扩大25倍 C.不变5. 两个质数的乘积一定是( ). A.奇数 B.偶数 C.合数6. 一项工程,甲独做要10天完成,乙独做要8天完成,甲乙工作效率之比是( ). A.10︰8 B. 5︰4 C. 4︰5 四、计算:1.直接写出得数:0.25×4= 1.8×56 = 212 -7.8-2.2= 2.4÷38= 4.2+0.85=7×235 = 3.1-75 = 907 ÷6= (23 + 34 )×12=2.脱式计算:0.75÷0.25 + 34 ×23 (8.6×0.5-3110 )÷12 3910 ÷[154 -(43 +16)][800×(1+25%)-360×1.5] ÷25% 5-[43 +(2.5-73)] ÷0.1253.求未知数X.8.4-5X =4.8 107 ︰0.8=X ︰750五、列式计算:(1).甲的37 是乙的45,已知乙是60,甲是多少?(2). 49 的倒数,加上2.4乘以12 的积,和是多少?(3).一个数的12 比它的13多15,求这个数.(4).用分数单位是18的最大真分数除以2.54的倒数,商是多少?(5).3.6比一个数的25%少1.2,求这个数.六、应用题:1. 筑路队要修一条长750米的公路,前12天平均每天修40米,剩下的要在6天内完成,平均每天要修多少米?2. 学校有科技书1800本,故事书的本数比科技书的2倍少350本,故事书和科技书一共有多少本?3. 李师傅原计划加工一批零件,第一天完成原计划的47,第二天又加工了2个,这时已做的超过原计划的27,原计划加工多少个?4. 一块长方形地,长120米,宽比长短38,这块地的面积是多少平方米?5. 一件工作,甲独做要8小时完成,乙独做要6小时完成。
小学数学六年级小升初毕业模拟试题测试卷(附答案解析)一、选择题1.小明做100道口算题,做对题数和做错的题数()。
A.成正比例B.成反比例C.不成比例2.钟面上5时整,时针与分针形成的角是()。
A.钝角B.直角C.平角3.一壶油,用去15,还剩5千克.这壶油原来有多少千克?正确的算式是( ).A.5+5× 15B.5÷15C.5÷(1+15) D.5÷(1-15)4.一个三角形三个内角的度数比是6∶5∶1,这个三角形是()。
A.直角三角形B.锐角三角形C.钝角三角形5.某食堂六月烧煤30t,比五月节约110,设五月烧煤xt,下列方程正确的是()。
A.1110⎛⎫-⎪⎝⎭x=30 B.1110⎛⎫+⎪⎝⎭x=30 C.30×1110⎛⎫-⎪⎝⎭=x6.下面这个立体图形,灵灵从右面看到的是()A.B.C.7.甲、乙、两三个仓库各存粮若干吨,已知甲仓库存的粮是乙仓库的23,乙仓库存的粮比丙仓库多14,丙仓库比甲仓库多存粮40吨,下列说法中错误的是()。
A.丙仓库存的粮是乙仓库的45B.甲仓库存的粮是丙仓库的56C.甲、乙、丙三个仓库存粮之比是10∶15∶12 D.甲仓库存粮240吨8.下面关于正比例和反比例的四个说法中,正确的有()。
①正比例的图像是一条射线②一个人的年龄和体重既不成正比例关系也不成反比例关系③圆柱的底面积一定,体积和高成反比例关系④长方形的周长一定,长和宽不成比例。
A.①②③B.①②④C.②③④D.①③④9.某地出租车行S千米收费3S元。
甲、乙、丙三人约定:由甲在A地租一辆出租车,途中乙在B地上车,丙在其后的C地上车,三人同时在D地下车。
已知AB=BC=CD=10千米,出租车按规定收费90元,那么这笔车费由甲、乙、丙三人按乘车的路程合理分摊,顺次应付()元。
A.40,30,20 B.50,30,10 C.45,30,15 D.55,25、1010.如图,用同样的小棒摆正方形,像这样摆16个同样的正方形需要小棒()根。
小升初数学模拟测试卷(一)含答案姓名: 得分:一.填空题(共10小题,每小题3分,共30分)1.有甲乙两只桶,把甲桶的半桶水倒入空的乙桶,刚好装了乙桶的,再把乙桶里的水倒出全桶的后,还剩15千克,则甲桶可装 千克.2.一条长360米的河堤边等距离植树(两端都要植树).已挖好每隔4米植一棵树的坑后要改成每隔6米植一棵树,还要挖 个坑.3.有3个数字,能组成6个不同的三位数,这6个三位数之和是2886,那么其中最大的三位数是 .4.某校六年级原有两个班,现在重新编为三个班,将原一班人数的与原二班人数的组成新一班,将原一班人数的与原二班人数的组成新二班,余下的30人组成新三班.在新三班的人中,原二班的占.原一班有 人,二班有 人.5.一种农药,药和水的比值是,现有药5千克,要加水 千克.6.平面上5条直线最多能把圆的内部分成 部分.7.如果一个三角形的底边长增加20%,底边上的高缩短20%,那么这个新三角形的面积是原来三角形面积的 %.8.在一次考试中,甲、乙两人考试结果如下,甲答错了全部试题的31,乙答错了7题,甲、乙都答错的试题占全部试题的71,那么甲、乙都答对的试题至少有 题.9.一种喷洒果树的药水,农药和水的质量比是1:120.现有3千克农药,需要水 千克.现要配605千克的药水,需要水 千克,需要农药 千克.10.一个表面涂成红色的长方体,分割成棱长为l 厘米的小正方体,恰好有3块小正方体的四面是红色的,原长方体的体积是 立方厘米.二.选择题(共5小题,每小题3分,共15分)11.用100个盒子装杯子,每盒装的个数都不相同,并且每盒不空,那么至少要用()杯子.A.100 B.500 C.1000 D.505012.小明喝一杯牛奶,第一次喝了一半后,加满水;第二次又喝了一半后,又加满水,最后全部喝完.他喝的牛奶与水比较()A.牛奶多B.水多C.一样多13.电影院第一排有m个座位,后面每一排比前一排多1个座位.第n排的座位数是()A.n个B.m+n个C.m+n﹣1个14.甲数的50%与乙数的相等(甲数、乙数均不为0)则甲数()乙数.A.>B.<C.= D.无法确定15.一筐苹果,2个2个地拿,3个3个地拿,4个4个地拿,5个5个地拿都正好拿完没有余数,这筐苹果最少应有()个.A.120 B.90 C.60 D.30三.计算题(共16分)16.解方程.(每小题4分,共8分)0.75×3﹣3x=0.06 7(x+6)﹣3x=4(2x+5)17.简便运算(每小题4分,共8分)(1)4.38﹣2.85+3.62﹣5.15 (2)0.25×1.9×0.5×4四.图形题(共6分)18.如图所示,长方形ABCD的面积为36平方厘米,E、F、G分别为边AB、BC、CD的中点,H为AD边上任意一点,问阴影部分的面积是多少?五.解答题(共5题,6+6+7+7+7,共33分)19、一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?20、甲瓶盐水浓度为8%,乙瓶盐水浓度为5%,混合后浓度为6.2%,若从甲瓶取盐水,从乙瓶取盐水,则混合后的浓度为多少?21、28名师生去公园划船,恰好坐满了大、小船共5只.大船每只坐6人,小船每只坐4人,一共租了多少只小船?22.甲、乙两人共有人民币存款若干元,甲占两人存款总数的,若乙给甲40元,则甲、乙两人存款的钱数相等.问甲、乙两人原来各有存款多少元?23.一辆公共汽车和一辆小汽车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小汽车每小时行50千米,几小时后两车相距90千米?(两种情况都解答)小升初数学模拟测试卷(二)参考答案与试题解析一.填空题.1.有甲乙两只桶,把甲桶的半桶水倒入空的乙桶,刚好装了乙桶的,再把乙桶里的水倒出全桶的后,还剩15千克,则甲桶可装千克.【分析】甲桶的半桶水即甲桶的倒入空的乙桶后,刚好装了乙桶的,则甲桶的容量是乙桶的=,再把乙桶里的水倒出全桶的后,还剩15千克,则乙桶的容量为15÷(﹣)=千克,则甲桶可装水×=千克.【解答】解:[15÷(﹣)]×()=[15]×,=×,=360(千克).答:甲桶可装千克.故答案为:.2.一条长360米的河堤边等距离植树(两端都要植树).已挖好每隔4米植一棵树的坑后要改成每隔6米植一棵树,还要挖30个坑.【分析】先求出6和4的最小公倍数12,求出已经挖的坑里面公共的坑的个数360÷12+1=31个,而当每隔6米植一棵树时,需要挖360÷6+1=61个坑,所以还要挖坑的个数是61﹣31=30个.【解答】解:因为6和4的最小公倍数12,还要挖坑的个数:(360÷6+1)﹣(360÷12+1),=61﹣31,=30(个),答:还要挖30个坑.故答案为:30.【点评】关键是利用6和4的最小公倍数,求出已经挖的坑里面公共的坑的个数,进而解决问题.3.有3个数字,能组成6个不同的三位数,这6个三位数之和是2886,那么其中最大的三位数是931.【分析】方法一:设三个数分别为X,Y,Z,这6个三位数分别为100X+10Y+Z、100X+10Z+Y、100Y+10X+Z、100Y+10Z+X、100Z+10X+Y、100Z+10Y+X,然后根据题意列出方程.方法二:因为6个三位数之和是2886,所以可能求出一个三位数数字的和,进而求出各个数字的和,由此得出答案.【解答】解:设三个数分别为X,Y,Z,则(100X+10Y+Z)+(100X+10Z+Y)+(100Y+10X+Z)+(100Y+10Z+X)+(100Z+10X+Y)+(100Z+10Y+X)=2886(100+100+10+10+1+1)X+(10+1+100+100+1+10)Y+(1+10+1+10+100+100)Z=2886222X+222Y+222Z=2886222(X+Y+Z)=2886X+Y+Z=13要求最大,所以百位要越大越好,就是9,十位最大只能是3,个位是1,可知此数最大是931.方法二:2886÷6=481算出数中位的数量是:4+8+1=13而13=9+3+1.所以百位要越大越好,就是9,十位最大只能是3,个位是1,故答案为:931.【点评】此题用方程解答,比较好理解,解题的关键是表示出这6个三位数,然后根据和是2886列出方程.5.某校六年级原有两个班,现在重新编为三个班,将原一班人数的与原二班人数的组成新一班,将原一班人数的与原二班人数的组成新二班,余下的30人组成新三班.在新三班的人中,原二班的占.原一班有40人,二班有60人.【分析】在新三班的30人中,原二班的占,则这30人中原二班的人数有30×=18人,原一班的有30﹣18=12人.又原一班人数中的分入新一班,分入新二班,则新三班中,原一班的人数占原来一班总人数的1﹣﹣,则原来一班有12÷(1﹣﹣)人.同理可求出原二班有多少人.【解答】解:(30﹣30×)÷(1﹣﹣)=(30﹣18)×,=40(人);30×÷(1﹣﹣)=18,=60(人).答:原一班有40人,二班有60人.故答案为:40,60.【点评】求出新三班中原一班、二班的人数各有多少人及各占原来人数的分率是完成本题的关键.5.一种农药,药和水的比值是,现有药5千克,要加水1500千克.【分析】根据题意,可得水是药的300倍,所以用药的重量乘以300,求出要加水多少千克即可.【解答】解:因为药和水的比值是,所以水是药的300倍,5×300=1500(千克)答:现有药5千克,要加水1500千克.故答案为:1500.【点评】此题主要考查了比的应用.6.平面上5条直线最多能把圆的内部分成16部分.【分析】根据平面上n条直线最多能把圆的内部分成n(n+1)÷2+1可知,5条直线可以把一个圆内部分分成5×6÷2+1=16部分,依此计算即可得出答案.【解答】解:5×6÷2+1=15+1=16(部分)答:平面上5条直线最多能把圆的内部分成16部分.故答案为:16.【点评】本题考查直线与平面的关系,有一定难度,注意本题只考虑圆内部分.7.如果一个三角形的底边长增加20%,底边上的高缩短20%,那么这个新三角形的面积是原来三角形面积的96%.【分析】设原来的三角形的底为a,高为h,求出这个三角形的面积;然后再把原来的底和高看成单位“1”,新的底是原来的1+20%,新的高是原来的1﹣20%,再求出新的面积,用新的面积除以原来的三角形的面积即可.【解答】解:设原来的三角形的底为a,高为h,那么:原来三角形的面积是:0.5ah;三角形的底增加后是:a×(1+20%)=1.2a,三角形的高缩短后是:h×(1﹣20%)=0.8h,新三角形的面积是:×1.2a×0.8h=0.48ah,0.48ah÷0.5ah=96%.答:这个新三角形的面积是原来三角形面积的96%.故答案为:96.【点评】解答此题的关键是分清单位“1”的区别,找清各自以谁为标准,再把数据设出,根据基本的数量关系求解.8.在一次考试中,甲、乙两人考试结果如下,甲答错了全部试题的,乙答错了7题,甲、乙都答错的试题占全部试题的,那么甲、乙都答对的试题至少有10题.【分析】首先根据甲答错了全部试题的,甲、乙都答错的试题占全部试题的,可得全部试题的数量是3、7的公倍数,所以全部试题最少有21题;然后把全部试题的数量看作单位“1”,根据分数乘法的意义,用全部试题的数量乘,求出甲、乙都答错的有3题;再根据分数乘法的意义,用全部试题的数量乘,求出甲一共答错了多少题;最后用全部试题的数量减去甲、乙答错的试题的数量,以及甲答错而乙答对的试题的数量,以及乙答错而甲答对的试题的数量,求出甲、乙都答对的试题至少有多少题即可.【解答】解:因为甲答错了全部试题的,甲、乙都答错的试题占全部试题的,所以全部试题的数量是3、7的公倍数,所以全部试题最少有:3×7=21(题)甲、乙都答错的试题有:21×=3(题)甲答错的试题有:21×=7(题)甲、乙都答对的试题至少有:21﹣3﹣(7﹣3)﹣(7﹣3)=21﹣3﹣4﹣4=10(题)答:甲、乙都答对的试题至少有10题.故答案为:10.【点评】此题主要考查了分数四则复合应用题,要熟练掌握,解答此题的关键是求出甲答错而乙答对的试题的数量,以及乙答错而甲答对的试题的数量各是多少.9.一种喷洒果树的药水,农药和水的质量比是1:120.现有3千克农药,需要水360千克.现要配605千克的药水,需要水600千克,需要农药5千克.【分析】由农药和水的比是1:120可知;农药占1份,水占120份,求3千克农药,需要加水多少千克,用3÷1×120计算解答;由1+120=121,求出药和水的总份数,那农药和水占配成农药的几分之几也可以求出,把农药的总重看作单位“1”,根据一个数乘分数的意义,解答即可.【解答】解:3÷1×120=3×120=360(千克)答:需要水360千克.现要配605千克的药水,需要水600千克,需要农药5千克.故答案为:360;600;5.【点评】本题主要考查比的应用,解答本题是把1:120看成农药占一份,水占120份.10.一个表面涂成红色的长方体,分割成棱长为l厘米的小正方体,恰好有3块小正方体的四面是红色的,原长方体的体积是5立方厘米.【分析】根据长方体的特征:6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.把一个表面涂成红色的长方体,分割成棱长为l 厘米的小正方体,恰好有3块小正方体的四面是红色的,这个长方体的长应该是5厘米、宽是1厘米、高是1厘米,这样长方体可以分割成5个棱长为1厘米的小正方体,两段的两块五面是红色,中间的3块四面是红色.【解答】解:如图:根据分析知:这个长方体的长应该是5厘米、宽是1厘米、高是1厘米,这样长方体可以分割成5个棱长为1厘米的小正方体,两段的两块五面是红色,中间的3块四面是红色.这个长方体的体积是:5×1×1=5(立方厘米);答:原来长方体的体积是5立方厘米.故答案为:5.【点评】此题考查的目的是掌握长方体的特征、长方体的体积计算方法.二、选择题11.用100个盒子装杯子,每盒装的个数都不相同,并且每盒不空,那么至少要用()杯子.A.100 B.500 C.1000 D.5050【分析】用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,所以又100种不同的装法,要求至少需要多少个杯子,那么可以从最少的个数装起:即每个盒子里的杯子数分别为1、2、3、4、5、6…100,由此可得出所需要的杯子数为:1+2+3+4+5+…+100,利用高斯求和的方法即可解决问题.【解答】解:根据题干分析可得:每个盒子里的杯子数分别为1、2、3、4、5、6…100,所以需要的杯子数为:1+2+3+4+5+ (100)=(1+100)×(100÷2),=101×50,=5050(个),故选:D.12.小明喝一杯牛奶,第一次喝了一半后,加满水;第二次又喝了一半后,又加满水,最后全部喝完.他喝的牛奶与水比较()A.牛奶多B.水多C.一样多【分析】这一过程中,一直没有加牛奶,最后全部喝完,所以共喝了一杯牛奶,又前后共加两半杯水,+=1,则共喝了一杯水,所以喝的牛奶与水一样多.【解答】解:+=1,则共喝了一杯水,所以喝的牛奶与水一样多.故选:C.13.电影院第一排有m个座位,后面每一排比前一排多1个座位.第n排的座位数是()A.n个B.m+n个C.m+n﹣1个【分析】第1排m个,第2排(m+1)个,第3排(m+2)个,…,从而找到规律,求出第n排的座位.【解答】解:根据题意得:第n排有(m+n﹣1)个座位.故选:C.14.甲数的50%与乙数的相等(甲数、乙数均不为0)则甲数()乙数.A.>B.<C.= D.无法确定【分析】甲数的50%与乙数的相等,则甲数与乙数的比为:50%=4:5,所以甲数<乙数.【解答】解:甲数:乙数=:50%=4:5,所以甲数<乙数.故选:B.15.一筐苹果,2个2个地拿,3个3个地拿,4个4个地拿,5个5个地拿都正好拿完没有余数,这筐苹果最少应有()个.A.120 B.90 C.60 D.30【分析】一筐苹果,2个2个地拿,3个3个地拿,4个4个地拿,5个5个地拿都正好拿完而没有余数,说明这框苹果是2、3、4、5的倍数,因为4是2的倍数,只要是3、4、5的倍数就一定也是2的倍数,所以只要求出3、4、5的最小公倍数,即可得解.【解答】解:3、4、5互质,所以3、4、5的最小公倍数是3×4×5=60(个),答:这筐苹果最少应有60个;故选:C.二、计算题。
小学六年级小升初数学模拟模拟试卷测试题(答案)一、选择题1.—幅地图的比例尺是1:12000000,那么在这幅地图上1厘米表示的实际距离是( )千米.A.12 B.120 C.1200 D.120002.有一个深4分米的长方体容器,其内侧底面为边长3分米的正方形。
当容器底面的一边紧贴桌面倾斜如图时,容器内的水刚好不溢出。
则此时容器内的水有()。
A.13.5升B.18升C.22.5升D.27升3.已知一个半圆的半径是r,计算它的周长,正确的算式为( ).A.r+2r B.2r+r C.r+r D.2r+2r4.一个三角形的三个角的度数比为2∶2∶5,这个三角形中最大的角是()。
A.直角B.锐角C.钝角5.一辆汽车3小时行驶126km,照这样的速度行驶168千米,需要多少小时?设需要x小时,下列方程正确的是()。
A.1263168x=B.1263168x⨯=C.3168126x=⨯D.1261683x=6.如图是一个正方体纸盒的表面展开图,与数字3所在的面相对的面上的数字是()。
A.1 B.5 C.67.如图,表示福福骑车从家到图书馆看书然后返回家的过程中离家的距离与时间的变化关系。
下面说法错误的是()。
A.福福家到图书馆的距离是5千米B.福福去图书馆的骑车速度是10千米/小时C.福福在图书馆停留了2小时D.福福从图书馆返回家用了0.5小时8.笑笑用一张正方形纸如下图这样折叠4次,再沿虚线剪一刀,打开后的图形接近圆。
他这样做利用了圆的什么知识?下面说法中最贴切的是( )。
A.圆的周长永远是它的直径的兀倍B.同圆(等圆)中直径是半径的2倍C.正多边形边数越多越趋近圆D.圆是曲线图形9.一件毛衣原价120元,降价了15后又提价15,现在的价格比原价().A.高了B.低了C.一样10.观察下面的点阵图规律,第(10)个点阵图中点的个数是()A.30个B.33 个C.36个D.39 个二、填空题11.4吨50千克=(______)吨34公顷=(______)平方米 2.3小时=(______)小时(______)分12.4÷(________)=0.2=(________)%=(________)∶15。
综合训练三【能力训练】一、选择题1.如果把2002个2002依次连接起来的组成一个多位数200220022002…2002,那么这个多位数被21除的余数是()。
A.7 B.10 C.14 D.172.若A、B、C、D均为正整数,并且A×B=90,B×C=54,C×D=39,则A+B+C +D的和是()。
A.39 B.32 C.48 D.263.设A=300×365×84×B,要使A的末五位数都是0,那么B至少要取数()。
A.25 B.50 C.100 D.2004.五年级的72名学生共交了□527□元课本费,其中的万位上数和个位上的数被水弄模糊了,那么,每名学生交了()元课本费。
A.351 B.349 C.347 D.3455.有甲、乙两人玩掷骰子的游戏。
共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则甲胜;若点数和为8,则乙胜。
那么甲、乙两人()获胜的可能性更大。
A.甲B.乙C.一样D.无法比较6.从三枚5分硬币,三枚1角硬币和三枚5角硬币中至少各取一枚,这样共可以组成()种不同的币值。
A.18 B.19 C.20 D.217.现有四个等式:□+□=□;□-□=□;□×□=□;□÷□=□。
已知□中的数均为自然数,并且每一个等式里同时有奇数和偶数,那么这四个等式里偶数的个数最多有()个。
A.4 B.6 C.7 D.88.如果把数14拆成5个数的和,再求这些数的乘积。
那么,所能得到的最大乘积是()。
A.172.104 B.174.386 C.170.259 D.173.6969.把2×2的方格棋盘(如图1a所示)中的几个方格涂成黑色或白色,有()种不同的涂法?(如果经翻转或旋转后能一致的涂法只算一种,如图1b、c所示)。
A.3 B.4 C.5 D.610.在两个容器内装有同样的盐水。
第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4。
重点中学小升初数学模拟试题(一)一、直接写出下列各题的得数。
(共6分)=1.25×8=0.25+0.75= =4505÷5=24.3-8.87-0.13= =二、填空。
(16分)1、由1、2、3这三个数字能组成的三位数一共有()个,它们的和是()。
2、一道除式,商是22,余数是6,被除数与除数的和是259,这道除式的除数是(),被除数是()。
3、甲乙两数的最小公倍数是78,最大公约数是13,已知甲数是26,乙数是()。
4、小明有15本故事书,比小英的3倍多a本,小英有()本故事书。
5、两个数相除的商是7.83,如果把被除数和除数的小数点同时向右移动一位,商是()。
6、一个比例的两个内项互为倒数,它的一个外项是0.8,另一个外项是()。
7、单独完成同一件工作,甲要4天,乙要5天,甲的工作效率是乙的()%。
8、一个带小数的整数部分与小数部分的值相差88.11,整数部分的值恰好是小数部分的100倍,这个数是()。
三、选择正确答案的序号填在题中的括号里。
(20分)1、圆有()对称轴.A.1条B.2条C.4条D.无数条2、5米增加它的后,再减少米,结果是()A. B.C.5米D.7米3、气象台表示一天中气温变化的情况,采用()最合适。
A.统计表B.条形统计图C.扇形统计图D.折线统计图4、五年级同学参加科技小组的有23人,比参加书法小组人数的2倍多5人,如果设书法小组有x人,则正确的方程是()A.2( x+5)=23B.2x+5=23C.2x=23-5D.2x-5=235、一根钢管,截去部分是剩下部分的,剩下部分是原钢管长的()%。
A.75B.400C.80D.256、等底等体积的圆柱和圆锥,圆锥高是9米,圆柱高是()A.9米B.18米C.6米D.3米7、一个长方体的长、宽、高分别是a米、b米和h米,如果高增加3米,体积增加()立方米。
A.3abB.3abhC.ab(h+3)D.3bh8、把24分解质因数是()A.24=3×8B.24=2×3×4C.24=2×2×2×3D.24=6×4×19、乙数比甲数少40%,甲数和乙数的比是()A.2:3B.3:2C.3:5D.5,310、甲把自己的钱的给乙以后,甲、乙两人钱数相等,甲、乙原有钱数的比是()A.2:3B.3:2C.3:5D.5:3四、用递等式计算(12分)1042-384÷16×13 4.1-2.56÷(0.18+0.62)3.14×43+7.2×31.4-150×0.314五、解答题。
小升初数学试题(一)(限时:80分) 姓名_________成绩________ 一、 填空。
1、 五百零三万七千写作( ),7295300省略“万”后面的尾数约是( )万。
2、 1小时15分=( )小时 公顷=( )平方米3、 在,,%和43中,最大的数是( ),最小的数是( )。
4、在比例尺1:的地图上,量得A 地到B 地的距离是厘米,则A 地到B 地的实际距离是( )。
5、 甲乙两数的和是28,甲与乙的比是3:4,乙数是( ),甲乙两数的差是( )。
6、 一个两位小数,若去掉它的小数点,得到的新数比原数多。
这个两位小数是( )。
7、 A 、B 两个数是互质数,它们的最大公因数是( ),最小公倍数是( )。
8、 小红把2000元存入银行,存期一年,年利率为%,利息税是5%,那么到期时可得利息( )元。
9、 在边长为a 厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是( )。
10、一种铁丝21米重31千克,这种铁丝1米重( )千克,1千克长( )米。
11、一个圆柱与一个圆锥体积相等,底面积也相等。
已知圆柱的高是12厘米,圆锥的高是( )。
12、已知一个比例中两个外项的积是最小的合数,一个内项是65,另一个内项是( )。
13、一辆汽车从A 城到B 城,去时每小时行30千米,返回时每小时行25千米。
去时和返回时的速度比是( ),在相同的时间里,行的路程比是( ),往返AB 两城所需要的时间比是( )。
二、判断。
1、小数都比整数小。
( )2、把一根长为1米的绳子分成5段,每段长15米。
( )3、甲数的41等于乙数的61,则甲乙两数之比为2:3。
( )4、任何一个质数加上1,必定是合数。
( )5、半径为2厘米的加,圆的周长和面积相等。
( ) 三、选择。
1、2009年第一季度与第二季度的天数相比是( )A 、第一季度多一天B 、天数相等C 、第二季度多1天 2、一个三角形最小的锐角是50度,这个三角形一定是( )三角形。
A 、钝角 B 、直角 C 、锐角 3、一件商品先涨价5%,后又降价5%,则( )A 、现价比原价低B 、现价比原价高C 、现价和原价一样 4、把%后的%去掉,这个数( )A 、扩大到原来的100倍B 、缩小原来的1001C 、大小不变 5、孙爷爷今年a 岁,张伯伯今年(a -20)岁,过X 年后,他们相差( )岁。
A 、20 B 、X+20 C 、X -20 6、在一条线段中间另有6个点,则这8个点可以构成( )条线段。
A 、21 B 、28 C 、36 四、计算。
1、直接写出得数。
1÷= 91+198= 65×24= 83+31= 51-61=470×= 10÷52= 654×0= 3×21-21×3=2、求X 的值。
31:X =65: 6X -×5=3、能简算的要简算。
51÷13+54×131 43×52÷43×526-292+197×32×4、求阴影部分的面积(单位:厘米)五、综合运用。
1、甲乙两个商场出售洗衣机,一月份甲商场共售出980台,比乙商场多售出61,甲商场比乙商场多售出多少台?2、农机厂计划生产800台,平均每天生产44台,生产了10天,余下的任务要求8天完成,平均每天要生产多少台?3、一间教室要用方砖铺地。
用边长是3分米的正方形方砖,需要960块,如果改用边长为2分米的正方形方砖,需要多少块?(用比例解)4、一个长为12厘米的长方形的面积比边长是12厘米的正方形面积少36平方厘米。
这个长方形的宽是多少厘米?5、六年级三个班植树,任务分配是:甲班要植三个班植树总棵树的40%,乙、丙两班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班植树总棵树的72。
丙班植树多少棵?6、请根据下面的统计图回答下列问题。
⑴( )月份收入和支出相差最小。
⑵9月份收入和支出相差( )万元。
⑶全年实际收入( )万元。
⑷平均每月支出( )万元。
⑸你还获得了哪些信息?2015年小升初数学试题及答案一、填空。
1、十亿五千九百四十万写作( ),四舍五入到“亿”位约是( )。
2、10个是( ),里有( )个十分之一。
3、近似数的取值范围是( )。
4、1 的分数单位是( ),它有( )个5、被差数+减数+差役20,被减数是( )。
6、从4里连续减( )个结果为1。
7、一件衣服单价100元,先降低10%,再提价10%,现在是( )元。
8、一个分数约分后是 ,原分数分子分母和是72,原分数是( )。
9、198厘米=( )分米=( )米, 2 小时=( )小时( )分钟15日=( )小时, 650公顷=( )平方千米 10、一根绳子长75米,平均截成5段,2段是全长的( ),2段长( )米。
11、把4个边长是6分米的正方形拼成长方形,这个长方形的周长( ),面积( )。
12、甲比乙多20%,甲与乙的比是( )。
13、圆柱和圆锥底面积相等,体积也相等。
圆柱的高是15厘米,圆锥的高是( )。
二、判断题(5分)1、两个面积相等的长方形,周长也相等。
( )2、一个水桶的体积是50立方分米,可以说这个水桶的容积是50升。
( )3、任何一个圆,周长与直径的比值都不变。
( )4、锐角三角形中,如果一个角是30°,其余两个角可以是55°、95°。
( )5、A 的 与B 的 相等,(A ≠0),那么B 是甲的50%。
( )三、选择(10分)1、下列式子中( )是方程。
A 、4+χ>90B 、χ–5C 、χ=0D 、3+2=5 2、( )不能分割成两个完全一样的三角形。
A 、平行四边形B 、等腰梯形C 、长方形D 、正方形3、一个圆柱侧面展开后是一个正方形,这个圆柱的底面半径与高的比是( ) A 、1:π B 、1:2π C 、π:1 D 、2π:153 10 1 75416 1 314、盒子里有8个黄球,5个红球,至少摸( )次一定会摸到红球。
A 、8 B 、5 C 、9 D 、65、从甲堆货物中取出 给乙堆,这时两堆货物质量相等,原来甲、乙两堆的质量比是( )A 、7:9B 、9:8C 、9:7D 、9:6 四、计算(23分) 1、解方程式或比例(8分)13— χ=10 8× +χ=4: χ=15: =2、用适当的方法计算。
(9分)× +×80%+ 8 ÷[+ ×+ ]÷[( - )÷ ]3、列式计算。
(6分)(1) 比一个数的 少7,求这个数。
(2) 除以 与 的和,所得的商再扩大3倍,得多少?5 3 41418 5 χ 32432 1 8 5 5 4 5 4 4154 5 3 4 1 10 7 91五、求阴影部分周长与面积(单位:米)(6分)64六、解决问题(33分,1~3题,每题5分,4~6题,每题6分)1、一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?2、大厅里有8根圆柱形木桩要刷油漆,木桩底面周长米,高米,1千克的油漆可以漆6平方米,那么刷这些木桩要多少油漆?3、张爷爷用篱笆围成如图养鸡场,一边利用房屋墙壁,篱笆长35米,求养鸡场面积?10米4、小刚骑车上坡速度是每小时5千米,原路返回下坡速度是10千米,求小刚上、下坡的平均速度。
5、用72块方砖铺了18平方米,那么铺24平方米,要这样的方砖几块?(用比例解)6、甲、乙、丙三人共同加工一批零件,甲加工零件与乙、丙两人加工零件总数的比是1:2,甲、丙两人共加工135个,乙加工这批零件的1/4,这批零件共有几个?7、2015年小升初数学试题一、填空1.第五次全国人口普查,我国总人口为十二亿九千五百三十三万人。
这个数写作(),省略亿后面的尾数约是()亿人。
2. 6月7日,中午11时30分,董事长陈某报警,在自家车库被绑架,犯罪嫌疑人勒索100万后驾车逃离现场。
6月9日凌晨1时30分,四名犯罪嫌疑人全部落网,警方只用( )小时就破了案。
3.一天早晨的温度是b摄氏度,中午比早晨高6摄氏度,中午的温度是()摄氏度。
4. 3 ÷ 5= =()÷30=()%=9:()=()折5.自然数16和28的最大公约数是(),最小公倍数是()。
6.在1:的地图上,量得A、B两地的图上距离是厘米,AB两地的实际距离是()千米。
7.规定A※B=A×B+A-B,那么5※6=()。
8.一张CD碟片的周长是厘米,它的面积是( )平方厘米。
9.小明新买一瓶净量45立方厘米的牙膏,牙膏的圆形出口的直径是6毫米。
他早晚各刷一次牙,每次挤出的牙膏长约20毫米。
这瓶牙膏估计能用()天。
(取3作为圆周率的近似值)10.甲2小时做14个零件,乙做一个零件需小时,丙每小时做8个零件,这三个人中工作效率最高的是()。
二、选择题1.有两个圆,大圆直径是小圆半径的4倍,则小圆周长与大圆周长的比是()。
①1:2 ②1:4 ③1:8 ④1:162.一个圆柱体的底面半径是3厘米,高是厘米,它的侧面展开图是()。
①正方形②长方形③两个圆形和一个长方形组成3.将A组人数的给B组后,两组人数相等,原A组比B组多()。
①②③④4.下面是方程的有()。
① 4x-1 ② 4 x-1=0 ③ 4 x>1 ④4×5 =20杭州站168千米宁波站5. 一根4米长的钢材,截下 ,再截下 ,还剩( )。
① 2米 ② 3米 ③ 2 米 ④ 2 米 三、判断题1、任意四个连续的年份中,一定有一个闰年。
( )2、本金和利息成正比例关系。
( )3、六(1)出勤率98%,六(2)班出勤率%,六(3)班出勤率100%,所以六(3)班人数最多。
( ) 4、甲数的 等于乙数的 ,甲数大于乙数。
( ) 5、小红把1千克铁和1千克棉花放在天平上,发现铁比棉花重。
( ) 四、计 算1、递等式计算(能简算的要写出简算过程)325.225.1⨯⨯ [2-(+ ×)]÷ 415)2925.4(217÷+⨯- 10÷8+×%+×2、解方程413:25.21513:=x ×3+3x=363、列式计算3除5.1的商乘32与21的差,积是多少?一个数的 和36的 一样大,求这个数。
五、求下面阴影部分的面积 (单位:厘米)六、解决问题1. 甲、乙两列火车分别从两城同时相向开出,小时相遇,甲火车平均每小时行58千米,乙火车平均每小时行多少千米?(请用两种方法解答)2.王老师需购买一套住房,现已选中一套98平方米房子,单价4500元,王老师如果一次付清购房费,房价可打九五折,这样共需付多少万元?3. 三月份各家用电情况表住户 分电表(度数)应付电费(元)王家 40 张家 38 赵家 29 李家534、有一座粮仓,先把比存粮总数的 少33吨的粮食运走,然后又运进143吨 粮食,此时粮仓存粮比原来增加了15%,粮仓原来存粮多少吨?5、公园只售两种门票:个人每张5元,10人一张的团体票每张30元,购买10 张以上团体票都可优惠10%,学校共有208人去公园游玩,最少付多少2015年小升初数学试题三月份共付电费元,按每家分电表的度数分摊电费。