第1讲 二次根式
- 格式:doc
- 大小:237.50 KB
- 文档页数:5
《二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根的概念,会用根号表示数的平方根、算数平方根根,知道开方与开平方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要,激发学生的数学学习兴趣。
(2)了解二次根式的概念,培养从特殊到一般的思维能力。
(3)理解二次根式有意义的条件。
2. 教学目标解析1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“双重非负性,”即被开方数≥0是非负数,算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1解答:(1)9的平方根是_______,算术平方根是_______;一个正数有_______个平方根;0的平方根是_______;负数_______平方根.你能用带有根号的的式子填空吗?(2)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(3)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(4)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t=? _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 见ppt 例1、知识点一的1、2及思考:下列式子,哪些是二次根式?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2 见ppt知识点二4、5当是怎样的实数时,在实数范围内有意义呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成ppt第7题练习2 完成ppt8 , 9 , 10【设计意图】辨析二次根式的概念,确定二次根式有意义的条件. 【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题. (1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5, 7,10题.。
《16.1 二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2. 教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t?,如果用含有h的式子表示t,则t= _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成教科书第3页的练习.练习2 当x是什么实数时,下列各式有意义.(1);(2);(3);(4).【设计意图】辨析二次根式的概念,确定二次根式有意义的条件.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5,7,10题.五、目标检测设计1.下列各式中,一定是二次根式的是()A.B.C.D.【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2.当时,二次根式无意义.【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.3.当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4.对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。
5.1二次根式第1课时二次根式的概念及性质1.了解二次根式的定义;2.理解二次根式在实数范围内有意义的条件;(重点)3.掌握二次根式的两条重要性质.(重点,难点)一、情境导入前面我们学习了平方根和算术平方根,我们把a的算术平方根记作a,那么形如a的式子有哪些性质?对于a中a的取值有什么要求?二、合作探究探究点一:二次根式的定义下列各式中:①3,②33,③a4,④a2+1,⑤-15,⑥a2-1,一定是二次根式的有( )A.1个 B.2个 C.3个 D.4个解析:根据二次根式的定义判断.33的根指数是3,不是二次根式;-15的被开方数为负数,不是二次根式;a2-1的被开方数可能是负数,可能不是二次根式.一定是二次根式的有①③④,共3个,故选C.方法总结:根据二次根式的定义,必须满足两个条件:①根指数是2,即形如a;②被开方数为非负数.探究点二:二次根式在实数范围内有意义的条件x取何值时,下列各式在实数范围内有意义.(1)x +2;(2)x -1x -2;(3)x 2+1;(4)-x 2. 解析:(1)要使x +2有意义,必须使x +2≥0;(2)要使x -1x -2有意义,必须使x -1≥0,且x -2≠0;(3)要使x 2+1有意义,必须使x 2+1≥0,显然x 为任何实数;(4)要使-x 2有意义,必须使-x 2≥0,这时x =0.解:(1)x +2≥0,所以x ≥-2;(2)⎩⎨⎧x -1≥0,x -2≠0,所以⎩⎨⎧x ≥1,x ≠2,所以x ≥1且x ≠2; (3)x 2+1≥0,所以x 为全体实数;(4)-x 2≥0,所以x =0.方法总结:要使代数式有意义,应考虑如下情况:①有二次根式的,被开方数应大于或等于零,有多个二次根式的,应使所有被开方数大于或等于零;②有分式的,分母不等于零;③零次幂、负整数指数幂的底数不等于零.探究点三:二次根式的性质【类型一】 计算:(1)(12)2;(2)(23)2;(3)(-323)2. 解析:利用(a )2=a (a ≥0)及(ab )n =a n b n 进行计算.解:(1)(12)2=12; (2)(23)2=4×(3)2=4×3=12; (3)(-323)2=(-3)2×(23)2=9×23=6. 方法总结:利用(a )2=a (a ≥0)计算时,幂的运算法则仍然适用.【类型二】 二次根式a 中隐含条件a ≥0的应用 已知y =x -2-2-x +5,则x y=________. 解析:由已知条件y =x -2-2-x +5可知x -2与2-x 都有意义,所以存在隐含条件⎩⎨⎧x -2≥0,2-x ≥0,故x =2.把x =2代入y =x -2-2-x +5,求得y =5,所以x y =25. 方法总结:解决此类问题时应充分挖掘“二次根式有意义的条件被开方数(式)的非负性”,它往往是解答问题的突破口.【类型三】 利用a 2=|a |计算计算:(1)22; (2)(-23)2; (3)-(-π)2. 解析:利用a 2=|a |进行计算.解:(1)22=2;(2)(-23)2=|-23|=23;(3)-(-π)2=-|-π|=-π.方法总结:a 2=|a |的实质是求a 2的算术平方根,其结果一定是非负数.【类型四】 利用a 2=|a |化简如图所示为a ,b 在数轴上的位置,化简2a 2-(a -b )2+(a +b )2.解析:由a ,b 在数轴上的位置确定a <0,a -b <0,a +b <0.再根据a 2=|a |进行化简.解:由数轴可知-2<a <-1,0<b <1,则a -b <0,a +b <0.原式=2|a |-|a -b |+|a +b |=-2a +a -b -(a +b )=-2a -2b .方法总结:利用a 2=|a |化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:①把被开方数的底数移到绝对值符号中;②根据绝对值内代数式的正负性去掉绝对值符号.三、板书设计 二次根式⎩⎪⎨⎪⎧概念有意义的条件:被开方数大于或等于零性质⎩⎪⎨⎪⎧(a )2=a (a ≥0)a 2=a (a ≥0)本节课内容是在我们已学过的平方根、算术平方根的知识基础上,进一步引入二次根式的概念与性质.教学过程中,把学生当作主体,鼓励学生积极参与,并让学生探究二次根式在实数范围内有意义的条件.引导学生总结、归纳,得出二次根式的两条重要性质.。
第1讲 二次根式认识、性质第一部分 知识梳理知识点一: 二次根式的概念形如()的式子叫做二次根式。
必须注意:因为负数没有平方根,所以是为二次根式的前提条件知识点二:二次根式()的非负性()表示a 的算术平方根, 即0()。
非负性:算术平方根,和绝对值、偶次方。
非负性质的解题应用: (1)、如若,则a=0,b=0; (2)、若,则a=0,b=0; (3)、若,则a=0,b=0。
知识点三:二次根式的性质第二部分 考点精讲精练考点1、二次根式概念 例1、下列各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________(填序号). 例2、下列各式哪些是二次根式?哪些不是?为什么?(121 (219-(321x +(439 (56a - (6221x x ---例3)))2302,12203,1,2xx y y x x x x y +=--++f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例4、下列各式中,属于二次根式的有( )例5、若21x +的平方根是5±_____=.1、下列各式中,一定是二次根式的是( )A B C D2中是二次根式的个数有______个 3、下列各式一定是二次根式的是( )A B C D4、下列式子,哪些是二次根式, 1x、 x>0)1x y +、(x≥0,y ≥0) .51+x 、2+1x 、______个。
考点2、根式取值范围及应用例1有意义,则x 的取值范围是例2有意义的x 的取值范围例3、当_____x 时,式子4x -有意义. 例4、在下列各式中,m 的取值范围不是全体实数的是( ) A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、若y=5-x +x -5+2019,则x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,则x 、y 应满足的条件是( ) A .0≥x 且0≥y B .0>yxC .0≥x 且0>yD .0≥yx 62()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。
第一讲 二次根式及化简一、典例解析例1(1)下列二次根式a 45、30、213、240b 、54、中最简二次根式是 。
(2)已知y=42-x +24x -,+3,则x y = .(3)(华师一中招生)把(a-b)a b -1根号外的因式移到根号内结果为( )A .b a -B .a b -C . -a b - D. -b a -变式训练:1.(2010广东湛江)下列二次根式是最简二次根式的是( ) A .21B .4C .12+a D. -y x 22.(2010.湖北荆门)计算1-x +x -1= 。
3.代数式a a 1-化简为( )A .a -B . -a -C .a D. -a例2.若x +y +z +3=2﹙x +1+y +1-z ﹚,求﹙x +y +z ﹚y-x 的值。
变式训练:4.(2010.荆门)若a,b 为实数,且满足︳a -2︳+2b -=0,则b -a 的值为( )A .2B . 0C .-2 D. 以上都不对5.已知△ABC 的三边a,b,c 满足a 2+b +︳1-c -2︳=10a +24-b -22,则△ABC 为()A .等腰三角形B . 等边三角形C .直角三角形 D. .等腰直角三角形例3.已知n -17是整数,求自然数n 的值。
变式训练:6.(2010.湖北孝感)使n 12是整数的最小整数n= 。
7.(2010.自贡)已知n 是一个正整数,n 135是 整数,则n 的最小值是( )A . 3B . 5C . 15 D. 25例4.(2010.全国初中数学联赛)若实数a,b,c 满足2a +3︳b ︳=6,4a -9︳b ︳=6c, C 可能取的最大值为﹙ ﹚A . 0B . 1C . 2 D. 3变式训练:8.(武汉竞赛)已知实数a 满足|2006-a|+2007-a =a,那么a -20062的值是( )A . 2005B . 2006C .2007 D. 20089.((华师一中招生)已知实数满足c b a +++)6)(2008(2-+b a +|10-2b =2|,则代数式 ab +bc 的值为 。
1
第1讲 二次根式
复习引入:
(1)已知x2 = a,那么a是x的______; x是a的________, 记为______,
a一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;
正数a的算术平方根为_______,0的算术平方根为_______;
式子)0(0aa的意义是 。
知识点梳理:
二次根式的概念:一般地,我们把形如)0(0aa的式子叫做二次根式,“”称为二次根号
二次根式的性质:(1))0(0aa (2))0()(2aaa (3)aa2
经典例题:
例1:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16
,34,5,12x
例2.x取何值时,下列各二次根式有意义?
①43x ②223x ③x21
例3、(1)若33aa有意义,则a的值为___________.
(2)若x在实数范围内有意义,则x为( )。
A.正数 B.负数 C.非负数 D.非正数
例4.在实数范围内因式分解
72x
4a2-11
2
例5(1)、计算:24 22.0 2)54( 220
观察其结果与根号内幂底数的关系,归纳得到:
当2,0aa时
(2)、计算:2)4( 2)2.0( 2)54( 2)20(
观察其结果与根号内幂底数的关系,归纳得到:当2,0aa时
(3)、计算:20 ,当2,0aa时
归纳总结: 2a
例6.化简下列各式
(1))0(42xx (2) 4x
(3))3()3(2aa (4)232x(x<-2)
例7. 已知:baba,把(2-x)21x的根号外的(2-x)适当变形后移入根号内,得( )
A、x2 B、2x C、x2 D、2x
经典练习:
1、计算的值为2)13(( )
A. 169 B.-13 C±13 D.13
3
2、已知 ,03x则x为( )
A. x>-3 B. x<-3 C.x=-3 D x的值不能确定
3、下列计算中,不正确的是 ( )。
A. 3= 2)3( B 0.5=2)5.0( C 2)3.0(=0.3 D 2)75(=35
4、下列各式中,正确的是( )。
A. 2424 B.4994
C. 4949 D.653625
5、2(1)0.3______2(2)0.3______2(3)5_______ 2(4)(2)_____a0a(<)
(5)253 =________;
6、 在实数范围内因式分解:
(1)x2-9= x2 - ( )2= (x+ ____)(x-____)
(2)x2-3 = x2 - ( ) 2= (x+ ____) (x- ___)
7、(1)在式子xx121中,x的取值范围是____________.
(2)已知42x+yx2=0,则x-y= _____________.
(3)、当x= 时,代数式45x有最小值,其最小值是 。
8.若二次根式26x有意义,化简│x-4│-│7-x│。
4
9、 已知0 <x<1,化简:4)1(2xx-4)1(2xx
能力提高
1.已知x,y满足0|84|myxx,当0y时,m的取值范围是
2、若x,y为实数,且y=x41+14x+21,求22)(2)(xyyx的值
巩固作业
1. 二次根式25x有意义,则x 。
2.如果等式2)(x= x成立,那么x为( )。
A x≤0; B.x=0 ; C.x<0; D.x≥0
3. 若230ab,则 2ab= 。
4、填空:(1)2)12(x-2)32(x)2(x=_________. (2)2)4(=
5
5、a、b、c为三角形的三条边,则cabcba2)(____________.
6、已知y=x3+23x,则xy= ___________,yx
7、在实数范围内因式分解:
(1)x2-6= x2-( )2=(x+ ____)(x-____)
(2)4424xx
8、已知2<x<3,化简:3)2(2xx