遥感图像处理—图像分割
- 格式:doc
- 大小:4.05 MB
- 文档页数:16
光学图像处理技术在遥感图像中的应用随着科技的不断发展,人类对于地球的认识也越来越深入。
其中,遥感技术在地球观测中扮演着越来越重要的角色。
遥感图像是使用卫星、飞机、无人机等载体采集并传输的地球表面信息,被广泛用于气象、地质、农业、城市规划等领域。
在获取遥感图像的同时,如何高效地处理和分析这些图像数据也成为了一个迫切的问题。
光学图像处理技术,则是一种被广泛应用于遥感图像处理的技术。
光学图像处理技术是指通过数字信号处理、统计学和数学算法等方法来提取、过滤、压缩、增强或重建光学图像的过程。
在遥感图像中,这些技术能够帮助我们从数据中提取有用的信息,比如提取城市中心、农作物分布、海岸线位置等,然后进行更深入的研究和分析。
下面我们将探讨光学图像处理技术在遥感图像中的应用。
1. 图像增强图像增强是指通过调整图像的对比度、色彩等参数来使图像的质量得到提高。
在遥感图像中,由于图像中各种地物的灰度和颜色往往相似,导致图像中的细节信息难以被发现。
此时采用图像增强技术可以使得这些细节信息浮现出来。
比如,在城市规划工作中,我们可以通过图像增强技术来准确地提取建筑物轮廓、街道轮廓等。
2. 图像分割图像分割是指将图像中的区域分解成不同的部分,以便进行目标检测和识别。
在遥感图像中,图像分割可以用于提取特定区域的信息,比如水域、农田、林区等。
与此同时,这些信息对于环境监测、资源利用以及自然灾害预防和应对等都有着十分重要的意义。
3. 特征提取特征提取是指从图像中提取出具有代表性的特征。
在遥感图像中,由于遥感图像覆盖范围大,因此往往需要把分析的目标先区分开来,才能做出一些有意义的结论。
通过特征提取技术,可以得到目标区域的特定特征,比如植被覆盖度、水道宽度等,然后通过分析这些特征得出结论。
4. 图像配准图像配准是指将不同来源的图像进行对齐管理,以便进行更进一步的分析和处理。
在遥感图像中,由于各种图像数据来源不同,往往需要进行配准。
这种技术能够使得数据更加精确,确保精度和准确性。
遥感图像处理的基本原理与方法遥感技术是指利用航空、航天等手段获取地球表面信息的技术和方法。
遥感图像处理是对获取的遥感图像进行分析、解译和推断的过程,可以提取出有用的地貌、植被、土地利用等信息。
本文将介绍遥感图像处理的基本原理与方法,帮助读者更好地理解和应用遥感技术。
一、遥感图像的获取和特点遥感图像是通过感光器件(如传感器)对地面反射和辐射的能量进行记录和测量而获得的图像。
这些感光器件可以测量和记录不同波段(如红外、可见光和微波等)的电磁辐射,并产生相应的数字图像。
遥感图像具有以下几个特点:1. 遥感图像拥有广阔的视野,可以获取大范围的地表信息;2. 遥感图像可以获取地面特定时间的状态,可以进行长期观测和时序分析;3. 遥感图像具有数字化特征,可以进行数字图像处理和分析。
二、遥感图像的处理流程遥感图像处理的主要流程包括数据获取、预处理、特征提取和解译等环节。
1. 数据获取数据获取是遥感图像处理的第一步,可以通过卫星、航空遥感以及无人机等手段获取图像数据。
卫星提供的数据通常具有较高的分辨率和全球覆盖能力,而航空遥感和无人机则可以获取更高分辨率的数据,但覆盖范围较小。
2. 预处理预处理是对原始遥感图像进行预处理,以剔除噪声、校正几何畸变和辐射定标等。
常见的预处理操作包括大气校正、辐射定标、几何校正等。
预处理能够提高图像质量,为后续处理奠定良好的基础。
3. 特征提取特征提取是遥感图像处理的核心环节,通过分析图像中的颜色、纹理、形状等特征,提取出所需的地物信息。
常用的特征提取方法包括直方图均衡化、滤波、边缘检测、分割等。
4. 解译解译是将所提取的特征与已知的地物信息进行匹配,进一步推断和识别图像中的地物。
解译可以通过人工解译和自动解译两种方式进行。
人工解译需要依靠专业知识和经验,而自动解译则可以借助计算机算法进行。
三、遥感图像处理的应用领域遥感图像处理在许多领域都有广泛的应用。
1. 农业领域遥感图像可以提供农业领域的土地利用、农作物生长状态等信息。
遥感数字图像处理主要研究的内容有以下几个方面:1、图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4、图像分割图像分割是遥感数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5、图像描述图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
遥感图像处理的基本步骤与技巧遥感技术是指利用航天器、飞机、卫星等高空平台获得的遥感图像进行信息提取和数据分析的过程。
随着科技的不断进步和应用范围的扩大,遥感图像处理已经成为许多领域中的重要工具。
本文将介绍遥感图像处理的基本步骤与技巧,以帮助读者更好地理解和应用这一技术。
一、图像预处理遥感图像预处理是遥感图像处理的第一步,旨在通过去除噪声、辐射校正和几何校正等处理,使图像质量更高,方便后续处理。
其中,去除噪声主要是采用滤波算法,如中值滤波、均值滤波等。
辐射校正主要用于将图像的辐射能量转换为表观反射率,以消除云、阴影等因素的影响。
几何校正是通过对图像进行几何变换,将其与地理坐标系统对齐,以便于后续的地理信息提取。
二、特征提取特征提取是遥感图像处理的核心环节,目的是从遥感图像中提取出具有代表性和区分度的特征信息。
常用的特征包括光谱特征、纹理特征、形状特征等。
光谱特征是指根据图像像素的光谱反射率或辐射能量,提取出不同波段的特征。
纹理特征是指从图像中提取出地物的纹理信息,包括纹理方向、纹理密度等。
形状特征是指从图像中提取出地物的形状信息,包括面积、周长等。
三、分类与识别分类与识别是遥感图像处理中的重要任务,目的是将地物按照其属性进行分类和识别。
常见的分类方法包括监督分类和无监督分类。
监督分类是指根据已知的样本类别信息,通过训练分类器将图像中的地物分到不同的类别中。
无监督分类是指根据图像像素之间的相似性将其分为一定数量的类别。
分类结果可以用于制作地图、监测资源变化等。
四、变化检测变化检测是遥感图像处理中的一项重要任务,主要应用于监测和分析地表物体的变化。
遥感图像在不同时间获取的变化信息可以帮助我们了解自然和人类活动对地表的影响。
常见的变化检测方法包括像素级变化检测和对象级变化检测。
像素级变化检测是指比较两幅图像对应像素之间的差异,以确定变化的位置和类型。
对象级变化检测是指先将图像分割成不同的对象,然后比较不同时间获取的对象之间的差异。
雷达遥感图像处理方法与目标识别的基本原理与应用概述雷达遥感是一种利用雷达技术获取地球表面信息的遥感技术。
雷达遥感图像处理方法与目标识别是该领域中的关键技术,本文将介绍其基本原理与应用。
一、雷达遥感图像处理方法1. 预处理雷达遥感图像预处理是为了提高后续处理的可靠性和有效性。
包括噪声抑制、几何校正和辐射校正等。
噪声抑制通过滤波、去斑等算法降低雷达图像中的噪声干扰;几何校正将雷达图像与地面实际位置对应起来;辐射校正则是为了消除图像中的辐射差异。
2. 特征提取特征提取是雷达遥感图像处理中的关键一步,目的是将图像中的目标与背景区分开来。
常用的特征包括纹理特征、形状特征和频谱特征等。
纹理特征描述图像中的像素分布和灰度级变化;形状特征描述目标的形态和几何结构;频谱特征描述目标反射和散射特性。
3. 分割与分类分割将雷达图像分为不同的区域,使不同目标或背景出现在不同区域中。
常用的分割算法包括基于阈值、基于边缘、基于区域和基于特征等。
分类将图像中的区域分为不同的类别,以达到目标识别或目标检测的目的。
常用的分类算法包括最近邻分类器、支持向量机、决策树等。
二、目标识别的基本原理目标识别是雷达遥感图像处理的重点任务之一,其基本原理如下:1. 目标特征提取通过特征提取算法提取目标在雷达图像中的特征,包括目标的形状、纹理、尺寸和位置等信息。
这些特征可以用于后续的目标分类和识别。
2. 目标分类通过将目标与已知类别进行比较,将其归入某个类别中。
常用的分类算法包括最近邻分类器、支持向量机和人工神经网络等。
3. 目标检测与定位目标检测是指在雷达图像中找到目标的位置和尺寸。
常用的目标检测算法包括基于阈值、基于边缘和基于模板匹配等。
目标定位是指确定目标在地球表面的精确位置,一般通过地理坐标转换技术实现。
三、雷达遥感图像处理方法与目标识别的应用雷达遥感图像处理方法与目标识别技术在军事、农业、气象和城市规划等领域有广泛应用。
1. 军事雷达遥感图像处理与目标识别在军事领域中具有重要意义。
卫星遥感数据处理算法随着科技的不断发展,卫星遥感技术在环境、农业、水资源、城市规划等领域得到广泛应用。
卫星遥感数据的获取是第一步,而对这些数据进行处理和分析则是进一步挖掘其潜在价值的关键。
因此,卫星遥感数据处理算法的研究和应用显得尤为重要。
卫星遥感数据处理算法是一种用于提取和解释卫星遥感数据的方法。
这些数据往往是多光谱图像或雷达图像,其包含了丰富的地貌、植被、水文和气象信息。
卫星遥感数据处理算法的目标是用统计学、数学模型和计算机科学的方法对这些图像进行处理,从中提取出有用的地学信息。
在卫星遥感数据处理算法的研究中,最常用的方法之一是图像分割。
图像分割是将遥感图像划分为若干个区域,使每个区域内的像素具有相似的颜色、纹理或其他特征。
这种处理技术可以用于提取土地利用类型、植被覆盖、景观格局等信息,并为后续的地表变化监测和资源管理提供基础数据。
另外,基于统计和机器学习的方法也被广泛应用于卫星遥感数据处理算法中。
这种方法利用大量的训练样本数据,通过建立数学模型来对遥感数据进行分类和预测。
例如,支持向量机、随机森林和深度学习等方法在遥感图像分类和目标识别中展现了强大的性能。
除了图像分割和分类外,特征提取也是卫星遥感数据处理算法中的重要步骤。
特征提取是指从原始遥感数据中提取出与特定目标或现象相关的特征。
这些特征可以是图像的纹理、光谱、形状等,经过合适的数学变换和计算,可以提供有关地物种类、状况、分布等信息。
在处理卫星遥感数据时,还存在一些挑战需要克服。
首先,由于遥感数据的分辨率通常很高,处理的计算量较大,因此需要高效的算法和计算平台。
其次,由于遥感图像的噪声和复杂性,算法的鲁棒性和适应性也是研究的重点。
此外,遥感数据还存在光照、云雾等干扰因素,这些因素对算法的性能和准确性造成一定的影响。
随着计算机科学、数学和统计学等学科的不断进步,卫星遥感数据处理算法的研究也在不断发展。
未来,我们可以期待更精确、高效的算法被提出,进一步提升卫星遥感数据的处理速度和数据质量。
遥感遥测中的数据解析与图像处理技术遥感遥测技术是一种通过卫星或其他远距离传感器获取地球表面信息的方法。
通过遥感遥测可以获取到大量的地球观测数据和图像,但是这些数据和图像的信息量往往庞大且复杂,需要经过数据解析和图像处理技术的支持,以提取有用的信息和进行进一步的分析。
数据解析是指将原始的遥感遥测数据进行转换和解释的过程。
在解析过程中,首先需要了解数据所采集的传感器类型和数据格式。
不同类型的传感器可能采用不同的测量方法和数据编码方式,因此需要针对具体的传感器进行数据解析。
在数据解析的过程中,最常见的任务是将数据转换为可理解的数值形式,例如将遥感图像中的每个像素点的亮度值转换为真实的地表反射率。
遥感图像处理技术是指对遥感图像进行数字化处理以提取有用信息的方法。
遥感图像处理技术广泛应用于土地利用/覆盖分类、目标识别和变化检测等领域。
图像处理的一般流程包括预处理、特征提取和分类或分割等步骤。
预处理是指对原始图像进行降噪、增强和几何校正等操作,以消除图像中的噪声、调整图像的对比度和亮度,并使图像准确地对应到地面实际位置。
常用的预处理操作包括直方图均衡化、滤波和几何校正。
特征提取是指从预处理后的图像中获取地表特征的过程。
特征可以是图像的纹理、形状、颜色等。
特征提取的方法有很多,如基于统计的方法、频域分析和人工智能算法等。
分类是将图像中的像素点划分到不同的类别中的过程。
分类可根据不同的目标进行,例如土地利用/覆盖分类、植被分类和水体分类等。
分类方法有很多种,包括基于像元的分类、基于目标的分类和混合分类等。
分割是将图像中的区域划分为不同的物体或地物的过程。
分割可以根据不同的目标进行,例如目标检测和变化检测。
分割方法有很多种,包括基于像素的分割和基于区域的分割等。
综合上述的数据解析和图像处理技术,遥感遥测数据可以为各个领域提供丰富的信息和数据支持。
在环境监测领域,遥感遥测可以用于检测植被覆盖变化、水体质量变化和土地利用变化等。
深度学习算法在图像分割中的应用近年来,随着计算机科学的迅速发展,人工智能技术已经逐渐渗透到生活的各个领域。
其中,深度学习算法作为一种重要的技术手段,正越来越广泛地应用到图像处理和分析中,其中最为重要的应用之一就是图像分割。
图像分割是指把一幅包含多个物体的图像分成若干个子区域,每个子区域内的像素具有一定的相似性。
图像分割技术一直是计算机视觉领域的重要研究内容,其应用涉及到许多领域,比如医学影像分析、遥感图像处理、机器人导航等。
在以往的图像分割算法中,主要采用的是基于统计方法或者启发式算法,虽然取得了一定的成功,但是由于这些算法往往需要人工选择或者标记一些特征,且需要手动调节一些参数,导致这些算法在处理大规模复杂的图像时效率较低,且分割质量有限。
与传统算法相比,深度学习算法是一种更加自动化、高效、准确的图像分割方法,通过机器学习的手段,可以从大量的数据和经验中自动学习到特征和规律。
下面,我们将详细介绍深度学习算法在图像分割中的应用。
一、基于深度卷积神经网络的图像分割近年来,基于深度卷积神经网络的图像分割方法在计算机视觉领域中得到了广泛应用和研究。
卷积神经网络(Convolutional Neural Network,CNN)是一种能够自动提取图像特征的模型,通过在卷积和池化层之间交替进行特征提取和降采样,可以进行有效的图像分割。
深度卷积神经网络中最常用的架构是U-Net,该架构由两个部分组成,一个是下采样的卷积神经网络,另一个是上采样的卷积神经网络。
下采样的网络主要用于提取图像的低层次特征,上采样的网络用于利用低层次特征进行精细的图像分割。
使用U-Net 可以使分割结果更加精确,且具有较好的抗噪声性能,可以应用于多种图像分割任务,如医学影像分割、人像分割等。
二、深度学习算法在医学影像分割中的应用医学影像分割是利用计算机自动对医学图像中的结构进行分割的一项技术,是医学影像处理领域中的重要研究内容。
传统的医学影像分割算法需要人工标记特定部位的位置和形状,并进行手工调整,然而这种人工工作费时费力,且存在标记偏差的隐患。
从高分辨率遥感影像中提取城市道路的新方
法
高分辨率遥感影像在城市规划和交通管理中发挥了至关重要的作用。
然而,在这些影像中提取城市道路依然是一项具有挑战性的任务。
本
文将介绍一种新方法,该方法可以在高分辨率遥感影像中准确地提取
城市道路。
第一步:影像预处理
首先,需要对影像进行预处理,以减少噪音和消除不必要的信息。
这
涉及到影像增强和过滤。
影像增强可以提高影像中的对比度和清晰度,使道路更加明显。
过滤可以去除不相关的信息,如树木和建筑。
第二步:图像分割
图像分割是将图像划分为多个区域的过程。
通过对影像进行图像分割,可以更好地识别道路区域。
目前,常用的图像分割算法包括基于边缘
检测的方法、阈值化方法和区域生长方法等。
第三步:提取道路特征
提取道路特征是指在分割后的图像中标记和提取道路的像素,以求得
道路的几何和拓扑特征。
这可以通过多种方法实现,如基于形态学操
作的方法、基于纹理的方法等。
第四步:道路拟合和重建
最后,需要对提取的道路特征进行拟合和重建。
道路拟合是基于检测
到的道路特征生成道路中心线的过程。
道路重建是基于检测到的道路
特征重建整条道路的过程。
这可以通过多种数学模型来实现,如三次
B样条曲线等。
总结:
该新方法以高分辨率遥感影像为主要数据来源,采用图像处理、图像
分割、道路特征提取、道路拟合和重建等技术手段,实现了准确地提
取城市道路。
该方法在城市规划和交通管理等领域具有重要应用价值。
海洋遥感图像的分割与目标检测研究随着科技的不断进步,遥感技术成为见证现代社会发展变化的重要手段之一。
其中,海洋遥感图像的分割与目标检测研究受到越来越多的关注。
本文将从以下几个方面探讨海洋遥感图像的分割与目标检测研究。
一、海洋遥感图像的特点海洋遥感图像具有以下一些特点。
首先,海洋遥感图像中的目标数量巨大,涉及到的种类也非常广泛,如船只、浮标、浮筒、浅滩、陆地、云等。
其次,海面具有动态性和复杂性,如潮汐、浪花、水流等,这些因素都会对图像信息的提取与处理造成困难。
此外,海洋遥感图像的分辨率往往较低,需要对其进行分割和目标检测才能准确获取其中的信息。
二、海洋遥感图像的分割研究1. 基于传统方法的海洋遥感图像分割传统的海洋遥感图像分割通常采用的是有监督学习方法,即通过人工标注的图像进行训练。
例如,使用聚类算法、基于阈值的分割方法、灰度级变换等方法进行分割。
但是这种方法需要人工标注大量的图像,耗时耗力,并且无法对复杂图像进行处理。
2. 基于深度学习的海洋遥感图像分割近年来,深度学习方法在海洋遥感图像分割方面表现出了良好的性能。
例如,卷积神经网络(CNN)被广泛应用于图像分割。
CNN不需要特征工程,具有很强的自适应性和鲁棒性,并且可以处理大规模的数据集。
三、海洋遥感图像的目标检测研究1. 基于传统方法的海洋遥感图像目标检测传统的海洋遥感图像目标检测方法通常采用的是先对图像进行分割,再对分割结果进行特征提取、分类等处理。
例如,使用一些常见的目标检测算法如边界框检测算法、模板匹配算法等。
但是这种方法存在一些问题,如对于大量的目标类别需要进行特征提取,耗时耗力。
2. 基于深度学习的海洋遥感图像目标检测近年来,深度学习方法在海洋遥感图像目标检测方面表现出了良好的性能。
例如,使用基于区域提议网络(RPN)的目标检测方法。
RPN可以针对性地产生若干个可能区域,并使用卷积神经网络对区域进行特征提取和分类,进而得到目标的位置和类别信息。
遥感图像预处理实习姓名徐丹学号120154088成绩日期2014、4、28实习内容:遥感图像的裁剪、镶嵌与几何校正1、在实际的工作中,为何经常需要对影像进行裁剪与镶嵌操作?在ENVI软件平台如何实现影像的裁剪与镶嵌,以一示例详细叙述裁剪与镶嵌的具体操作步骤。
由于遥感卫星就是在一个预先设计的轨道上运行,星载传感器沿着轨道在地面上的轨迹按一定宽度垂直于运行方向进行扫描,在实际工作中有时需要分析的地区并不完全处在同一幅图像内,这时候需要把多景相邻遥感图像拼接成一个大范围无缝的图像,即图像镶嵌,而图像剪裁的目的则就是将研究之外的区域去除。
一、图像裁剪:(1)规则分幅裁剪a)在主菜单中,选择File ——Open Image File,打开裁剪图像bhtmref、img。
b)在主菜单中,选择File——Save ——ENVI Standard,弹出New 对话框。
c)在New 对话框中,单击Import File按钮,弹出Create New File对话框。
d)在Create New File对话框中,选中Select Input File列表中的裁剪图像,单击Spatial Subset按钮。
e)在Select Spatial Subset对话框中,单击Image按钮,弹出Subset ByImage对话框。
f)在Subset By Image对话框中,可以通过输入行列数确定剪裁尺寸并按住鼠标左键拖动图像中的红色矩形框确定剪裁区域,或直接用鼠标左键按红色边框拖动来确定剪裁尺寸以及位置,单击OK按钮。
g)在Select Spatial Subset对话框中可以瞧到剪裁区域信息,单击OK按钮。
h)在Create New File对话框中,可以通过Spectral Subset按钮选择输出波段子集,单击OK按钮。
i)选择输出路径及文件名或者选择Memory直接在窗口上显示,单击OK按钮,完成规则分幅裁剪过程。
实验七 图像分割
一.内容
◆利用直方图进行图像分割
◆提取指定颜色的对象
◆去除图片的背景噪声
◆提取AA图像中的水体信息
◆提取线性地物信息
◆图像形态学基本方法
二.目的
利用光谱特征进行遥感图像的分割和分割后处理
三.实验过程
1.利用直方图进行图像分割
1.1打开图像
图1:原始影像
1.2查看直方图,并将RGB拉伸的最小值分别为150,160,150
图2:拉伸后影像
1.3.使用表达式去除天空
表达式:b4*(1-(b1 gt 150)*(b2 gt 160)*(b3 gt 150))
图3:处理对比图
2.彩色图像的分割
2.1提取图像中的兰花
查看直方图,观察各通道上的灰度值差异,确定表达式
导出公式:(b1 gt b2)*(b1 gt b3)
图4:提取及去除兰花示意图
2.2.去除背景噪音,增强图像中的字符信息
表达式:255*(1-((b3 lt 200)and(b2 lt 100) and(b1 lt 100)))