家畜育种学七——西北农林科技大学PPT课件
- 格式:ppt
- 大小:2.92 MB
- 文档页数:70
第七章 个体遗传评定 – BLUP 法在前一章中,我们介绍了个体遗传评定的意义、基本概念和传统的育种值估计方法,这些方法在20世纪70年代以前被广泛应用于各种家畜的个体遗传评定。
但自80年代以来,随着数理统计学(尤其是线性模型理论)、计算机科学、计算数学等学科领域的迅速发展,家畜育种值估计的方法发生了根本的变化,以美国动物育种学家C.R. Henderson 为代表所发展起来的以线性混合模型为基础的现代育种值估计方法 - BLUP 育种值估计法,将畜禽遗传育种的理论与实践带入了一个新的发展阶段。
目前在世界各国,尤其是发达国家,这种方法已得到广泛应用,为畜禽重要经济性状的遗传改良做出了重大贡献。
本章我们将主要介绍BLUP 育种值估计法的基本原理和使用方法,并简要介绍线性混合模型在估计遗传参数中的一些应用。
由于这个方法要涉及线性模型及其他一些有关知识,为读者便于阅读理解起见,我们将先对它们作一简要介绍。
第一节 有关基础知识一、随机向量,期望向量和方差-协方差矩阵设x 1,x 2,…,x n 是n 个随机变量,令 μi = E(x i ) = x i 的数学期望,2e σI = V ar(x i ) = E(x i - μi )2 = x i 的方差,ij σ= Cov(x i ,x j ) = E(x i - μi )(x j - μj ) = x i 和x j 的协方差i = 1,2, ,n ; i n j ≠=,,2,1将这n 个随机变量和它们的期望、方差和协方差用向量和矩阵表示:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x 21x ,E(x ) =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n μμμ 21μ,V ar(x ) =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=2212221211221n n n n n σσσσσσσσσ V称x 为随机向量(random vector ),μ为x 的期望向量(expectation vector),可表示为E(x ) = μ,V 为x 的方差-协方差矩阵(variance-covariance matrix),或简称协方差矩阵,可表示为V ar(x ) = V 或V(x ) = V ,V 中的对角线元素为各个x 的方差,非对角线元素为各个x 间的协方差,它是一个对称矩阵。