2020年春华师版中考数学知识点梳理第4讲 二次根式
- 格式:pdf
- 大小:91.41 KB
- 文档页数:1
华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
二次根式的乘除1. 二次根式的乘法【知识与技能】a•=ab〔a≥b,b≥0〕,并利用它们进展计算和化简.理解b【过程与方法】a•=ab〔a≥0,b≥0〕并运用它进展计算.由具体数据发现规律,导出b【情感态度】a•=ab〔a≥0,b≥0〕,培养特殊到一般的探究精神,培养学生对事通过探究b物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab〔a≥0,b≥0〕,及它的运用.b【教学难点】a•=ab〔a≥0,b≥0〕.发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>〞、“<〞或“=〞填空.2.利用计算器计算填空.a•=ab〔a≥0,b≥0〕.【教学说明】由学生通过具体数据,发现规律,导出b二、思考探究,获取新知〔学生活动〕让3、4个同学上台总结规律.教师点评:〔1〕被开方数都是正数;〔2〕两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a•=ab〔a≥0,b≥0〕.:b【教学说明】引导学生应用公式a•=ab〔a≥0,b≥0〕.b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是〔〕23【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab〔a≥0,b≥0〕.b【教学说明】教师引发学习回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.五、教学反思a•=ab〔a≥0,b≥0〕,这节课教师引导学生通过具体数据,发现规律,导出b并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.2. 积的算术平方根【知识与技能】a•〔a≥0,b≥0〕;ab=ba•〔a≥0,b≥0〕.ab=b【过程与方法】a•〔a≥0,b≥0〕,并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a•〔a≥0,b≥0〕以训练逆向思维,通过严谨解题,增强学生让学生推导ab=b准确解题的能力.【教学重点】a•〔a≥0,b≥0〕及其运用.ab=b【教学难点】a•〔a≥0,b≥0〕的理解与应用.ab=b一、情境导入,初步认识a•=ab〔a≥0,b≥0〕.反过来,一般地,对二次根式的乘法规定为ba•〔a≥0,b≥0〕.ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向思维,得出a•〔a≥0,b≥0〕.ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a •〔a ≥0,b ≥0〕直接化简即可. 例2判断以下各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a ≥0,b ≥0. 三、运用新知,深化理解1.化简:〔1〕20;〔2〕18;〔3〕24;〔4〕54.2.自由落体的公式为s=21gt 2〔g 为重力加速度,它的值为10m/s 2〕,假设物体下落的高度为120m ,那么下落的时间是 s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由教师总结归纳. 四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a •〔a ≥0,b ≥0〕.【教学说明】教师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳. 五、教学反思本课时教学以“自主探究——合作交流〞为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力. 3. 二次根式的除法【知识与技能】b a b a =〔a ≥0,b >0〕和bab a =〔a ≥0,b >0〕,并运用它们进展计算. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进展计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0〕,并用它进展计算. 2.再利用逆向思维,得出bab a =〔a ≥0,b >0〕,并运用它进展解题和化简. 3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【情感态度】 通过探究b aba =〔a ≥0,b >0〕培养学生由特殊到一般的探究精神;让学生推导bab a =〔a ≥0,b >0〕以训练逆向思维,通过严谨解题,增强学生准确解题的能力. 【教学重点】b a b a =〔a ≥0,b >0〕,bab a =〔a ≥0,b >0〕及利用它们进展计算和化简. 2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识〔学生活动〕请同学们完成以下各题. 1.写出二次根式的乘法规定及逆向公式.2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚刚同学们都练习得很好,上台的同学也答复得十分准确,根据大家的练习和答复,我们可以得到:一般地,对二次根式的除法规定:b aba 〔a ≥0,b >0〕反过来,bab a =〔a ≥0,b >0〕 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】 直接利用b aba =〔a ≥0,b >0〕 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:〔1〕被开方数中不含分母;〔2〕被开方数中所含的因数〔或因式〕的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请假设干学生口述小结,教师再利用电子课件将小结放映在屏幕上.五、教学反思本课时教学突出学生主体性原那么,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.。
华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=0 5.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
华师大版八年级数学下册各章知识汇总精编第 16章分式1、形如 AB(A 、B 都是整式,且 B 中含有字母, B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠ 0 时,分式存心义。
分母=0 时,分式无心义。
3、分式的值为 0,要同时知足两个条件:分子=0,而分母≠ 0。
4、分式基天性质:分式的分子、分母都乘以或除以同一个不为0 的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变此中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的重点是通分,把异分母的分式,转变为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,而后再约去同样的因式。
3)分式的混杂运算,注意运算次序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不可以混杂.分式化简是恒等变形,不可以任意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,经过查验去掉增根。
3)解相关应用题的步骤和列整式方程解应用题的步骤是同样的:设、列、解、验、答。
第17 章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A 、B 的坐标为 x1、x2, 则 AB =。
2、拥有公共原点且相互垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x 轴上的点纵坐标 y=0;y 轴上的点横坐标 x=0。
第一象限内的点 x>0,y>0;第二象限内的点 x<0,y>0 ;第三象限内的点 x<0,y<0;第四象限内的点 x>0,y<0 ;由此可知, x 轴上方的点,纵坐标 y>0;x 轴下方的点,纵坐标 y<0;y 轴左侧的点,横坐标 x<0;y 轴右侧的点,横坐标 x >0.4、对于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
华师大版九年级上册数学第21章二次根式含答案一、单选题(共15题,共计45分)1、下列各式计算正确的是()A.3a 3+2a 2=5a 6B.C.a 4•a 2=a 8D.(ab 2)3=ab 62、下列各式中计算正确的是()A. =(﹣2)(﹣4)=8B. =4aC.=3+4=7 D.(+2)2=7+43、下列计算正确的是()A. B. C. D.4、下列二次根式中,与是同类二次根式的是( ).A. B. C. D.5、下列运算结果正确是()A. =﹣9B.C.D.6、估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7、要使二次根式有意义,字母必须满足的条件是()A. B. C. D.8、要使二次根式有意义,字母x必须满足的条件是()A.x≥1B.x>-1C.x≥-1D.x>19、已知a≥0,b≥0,下列式子不成立的是( )A. B. C. D.10、下列计算中,正确的是()A. =±4B.3 -2 =1C. ÷=4D. ×=211、下列根式中是最简二次根式的是( )A. B. C. D.12、下列式子没有意义的是()A. B. C. D.13、已知M= ,则M的取值范围是()A.8<M<9B.7<M<8C.6<M<7D.5<M<614、下列二次根式中,最简二次根式是()A. B. C. D.15、下列运算:①﹣3 =0:②2 ×3 =6 :③÷=2;④(+2)2=7,其中错误的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若在实数范围内有意义,则x的取值范围是________17、函数中自变量x的取值范围为________.18、如果有意义,那么a的取值范围是________.19、我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为________.20、计算:=________.21、把化为最简二次根式,结果是________.22、若,,则的值为________.23、计算:=________。
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
2021-2022学年九年级数学上册尖子生同步培优题典【华师大版】专题21.1二次根式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•x 的取值范围是( )A .x >0B .x ≥0C .x >0且x ≠2D .x ≥0且x ≠22.(2021•A .x >―12B .x ≠―12C .x <―12D .x ≥―123.(2021•南京一模)当x =1时,下列式子没有意义的是( )A .x x 1B .x 1xC D .x 14.(2021春•江夏区校级月考)若式子1有意义,则x 的取值范围为( )A .x >4B .x <4C .x ≥4D .x ≤45.(2020秋•x ﹣3成立,则满足的条件是( )A .x >3B .x <3C .x ≥3D .x ≤36.(2021春•麻城市校级月考)化简二次根式﹣AB C .D .7.(2020秋•内江期末)已知﹣1<a <0A .2a B .﹣2a C .―2a D .2a8.(2020秋•沈北新区校级期末)已知a <0,b ≠0A .B .﹣C .D .﹣9.(2020秋•高邮市期末)已知y =x +5―x 分别取1,2,3,…,2021时,所对应y 值的总和是( )A .16162B .16164C .16166D .1616810.(2020春•淮安区校级期末)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)( )A B C D二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•= .12.(2021春•广州校级期中)若y=+1,求3x+y的值是 .13.(2021春•蜀山区校级期中)当代数式1有意义时,x应满足的条件是 .14.(2014秋•x的取值范围是 .15.(2021春•同安区校级月考)已知y=5,则(x+y)2021= .16.(2021•泉州模拟)已知y=―x+3,当x分别取1,2,3,……,2021时,所对应的y值的总和是 .17.(2020春•a的取值范围是 .18.(2021春•―a|=a,则20202―a= .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•公安县期末)已知x、y都是实数,且y=―3,求(x+y)2020的平方根.20.(2021春•番禺区月考)已知数a,b在数轴上的位置如图所示.(1)试确定﹣b,a﹣b,b+a的符号;(2|a+b|.21.(2020秋•锦江区校级月考)计算:(1)已知a、b满足(a+3b+1)2+=05,求3a2+7b﹣c的平方根.。
完整版)华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式16.1 分式及基本性质一、分式的概念1.分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫做分式。
2.对于分式概念的理解,应把握以下几点:1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;3)分母不能为零。
3.分式有意义、无意义的条件1)分式有意义的条件:分式的分母不等于 0;2)分式无意义的条件:分式的分母等于 0.4.分式的值为 0 的条件:当分式的分子等于 0,而分母不等于 0 时,分式的值为 0.即,使 A=0,B≠0 的条件是。
5.有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式整式多项式分式ABAB单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:A·M/B=A·M/B·M/M=A·M·1/B·M,其中M(M≠0)为整式。
2.通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3.约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
王老师网络编辑整理
王老师网络编辑整理
第4讲 二次根式
一、知识清单梳理
知识点一:二次根式 关键点拨及对应举例
1.
有关概念
(1)二次根式的概念:形如(a≥0)的式子.
a
(2)二次根式有意义的条件:被开方数大于或等于0.
(3)最简二次根式:①被开方数的因数是整数,因式是整
式(分母中不含根号);②被开方数中不含能开得尽方
的因数或因式
失分点警示:当判断分式、二次根式组成的
复合代数式有意义的条件时,注意确保各部
分都有意义,即分母不为0,被开方数大于等
于0等.例:若代数式有意义,则x
1
1x
的取值范围是x>1.
(1)双重非负性:
①被开方数是非负数,即a≥0;
②二次根式的值是非负数,即≥0.
a
注意:初中阶段学过的非负数有:绝对值、偶幂、算式平
方根、二次根式.
利用二次根式的双重非负性解题:
(1)值非负:当多个非负数的和为0时,可得
各个非负数均为0.如+
1a1b
=0,则a=-1,b=1.
(2)被开方数非负:当互为相反数的两个数同
时出现在二次根式的被开方数下时,可得
这一对相反数的数均为0.如
已知b=
+,则a=1,b=0.
1a1a
2.
二次根式
的性质
(2)两个重要性质:
①()2=a(a≥0);②=|a|=;
aa2
00aa
aa
(3)积的算术平方根:=·(a≥0,b≥0);
abab
(4)商的算术平方根: (a≥0,b>0).
a
b
a
b
例:计算:
=3.14;=2;
2
3.14
2
2
=;=2 ;
24
442
93
9
知识点二 :二次根式的运算
3
.二次根式的
加减法
先将各根式化为最简二次根式,再合并被开方数相同的二
次根式.
例:计算:=.
283232
4
.二次根式的
乘除法
(1)乘法:
·=
(a≥0,b≥0);
abab
(2)除法: = (a≥0,b>0).
a
b
a
b
注意:将运算结果化为最简二次根式.
例:计算:=1;4.
32
23
3232
2
2
5
.二次根式的
混合运算
运算顺序与实数的运算顺序相同,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去括号).运算时,注意观察,有时运用乘法公式会使运算简便.
例:计算:(+1)(
-1)= 1 .
22