液压滑阀卡紧力
- 格式:ppt
- 大小:1.39 MB
- 文档页数:16
三级项目-液压滑阀卡紧力机械工程学院液压流体力学课程三级项目液压滑阀中液压卡紧力的计算与分析组员:指导教师:2013/10/18前言在实际生产设备中安装的滑阀式换向阀, 在使用中经常出现动作失灵的现象, 经检查是滑阀阀芯“卡死”。
一般会有如下几个原因:(1)由于加工工艺不完善。
零件加工工艺和磨损等原因,柱塞为圆锥型。
阀芯和阀套的滑动副之间有一定的间隙, 在正常充满油液的条件下, 摩擦力应该是很小的, 但是由于加工锥度的原因, 在圆柱滑动副的密封长度内, 各个截面上的环形缝隙中的流体压强分布不均, 对柱体产生侧向力, 这个侧向力使得阀芯和阀套之间产生摩擦力导致了滑阀卡紧现象。
(2)由于液压油污染,液压元件受污染物的磨损和侵蚀使摩擦副摩擦变形,从而产生不同心度,也会产生液压卡紧。
(3)系统工作参数偏高。
系统工作压力偏高,使磨损加剧,使阀体,阀芯产生形状误差,阀的泄露增大,引起油液和阀的温升偏高,阀芯处于高温的油液中,温升速度远大于阀体,使得配合间隙减少,甚至发生卡紧。
本文详细推导了滑阀卡紧现象的相关公式, 并借助这些公式说明了阀芯“卡死”产生的原因, 并提出了相关解决方案。
第一章液压阀上的作用力液压阀的阀芯在工作过程中所受的作用力是多种多样的,掌握各种作用力的特点及计算方法是分析液压阀的基础。
下面将介绍液压阀设计中常见的集中作用力。
1-1 液压力液压元件中,由于液体重力引起的液体压力相差对于液压力而言是极小的,可以忽略不计。
因此,在计算时认为同一容腔中液体的压力相同。
作用在容腔周围固体壁上的液压力F的大小为 p式1-1 FPd,pA,,A当壁面为平面时,液压力F为压强p与作用面积A的p乘积,即 FpA,p1-2 液动力立体经过阀口时,由于流动方向和流速的变化造成液体动量的改变,使阀芯受到附加的作用力,这就是液动力。
在阀口开度一定的稳定流动情况下,流动力为稳态液动力;当阀口开度发生变化时,还有瞬态液动力的作用。
§5. 液压控制元件一、填空题1、常见压力控制阀有溢流阀,减压阀,顺序阀,压力继电器。
2、溢流阀的作用是溢流和稳压。
当溢流阀的入口处压力小于阀的调定压力时,阀口关闭;当阀的入口处压力达到阀的调定压力时,阀口开启,此后阀的入口处压力保持稳定。
溢流阀为入口压力控制,阀口常闭,先导阀弹簧腔的泄漏油与阀的出口相通。
3、先导式溢流阀的结构由先导阀和主阀组成,其中先导阀主要用于调整和控制压力,而主阀主要作用是溢流。
4、溢流阀在液压系统中,有溢流稳压、安全保护、泵卸荷和远程调压等应用。
5、溢流阀的进口压力随溢流量变化而波动的性能称为压力流量特性,性能的好坏用调压偏差或开启比、闭合比评价。
显然调压偏差小好,开启比和闭合比大好。
6、定值减压阀为出口压力控制,阀口常开,先导阀弹簧腔的泄漏油必须单独接油箱(外泄口)。
定值输出减压阀,当阀的进口压力小于阀的调定压力时,阀处于非工作状态,阀口全开;当阀的进口压力等于或大于阀的调定压力时,阀处于工作状态,阀的出口处压力等于调定压力。
7、顺序阀依控制压力的不同,分为内控式和外控式。
当控制压力小于顺序阀的调定压力时,阀口关闭,当控制压力达到阀的调定压力时,阀口开启。
8、节流阀是依靠改变阀口通流面积大小来控制油液流量大小,从而用来控制液压系统中执行元件的运动速度。
节流阀在实际使用过程中,流量大小还受到负载变化和温度变化的影响。
因此,人们设计出调速阀,它由定差减压阀和节流阀串接组合而成。
旁通型调速阀是由差压式溢流阀和节流阀并联而成。
9、单向阀的主要作用是只允许液流正向流动,反向截止。
液控单向阀,当控制口X未通压力油时,阀只允许液流单向流动。
当控制口X通入压力油时,阀允许液流双向流动。
10、换向阀的控制方式有手动,机动,电磁,液动,电液。
11、三位换向阀常用的中位机能有O,H,M,P,Y五种类型。
12、在电液换向阀中,先导阀为电磁阀,主阀为液动阀。
13.多路换向阀是一种两个以上换向阀组合而成手动换向阀,常用于工程机械等要求的设备中。
液压换向阀阀芯卡紧故障分析目前,液压系统中广泛使用的各种液压换向阀中,均存在着阀芯卡紧现象。
其中有液压卡紧,也有机械卡紧。
为解决液压卡紧,国内外都在设计中采用阀芯外工作表面加工若干个平衡槽的办法,其效果很好。
对于机械卡紧也都制定了一些相应的技术规范来限制其配合间隙和偏心量等主要影响因素。
但尽管这样,卡紧现象仍时有发生,下面就卡紧产生的原因和解决办法作详细讨论。
1 产生卡紧的原因1.1 液压卡紧来自滑阀副几何形状误差和同轴度误差所引起的径向不平衡压力,即液体在高压下通过偏心环状锥形间隙,并且沿液体流动方向缝隙是逐渐扩大的,这时就会产生通常所说的液压卡紧现象。
1) 阀芯因加工误差而带有倒锥(锥体大端朝向高压腔),在阀芯与阀孔中心线平行且不重合时,阀芯受到径向不平衡力的作用。
使阀芯和阀孔的偏心矩越来越大,直到两者表面接触而发生卡紧现象。
此时,径向不平衡力达到最大值。
2) 阀芯无几何形状误差,但是由于装配误差使阀芯在阀孔中歪斜放置,或者颗粒状污染物凝聚楔入阀孔与阀芯的间隙,使阀芯在孔中偏斜放置,产生很大的径向不平衡力及转矩。
3) 在加工或工序间转移过程中,将阀芯碰伤,有局部凸起及残留毛刺。
这时凸起部分背后的液压流将造成较大的压降,产生一个使凸起部分压向阀孔的力矩。
这也是液压卡紧的一种成因。
4) 设计时为防止径向不平衡力的产生,杜绝液压卡紧,在阀芯上开若干个环形槽,以均衡阀芯受到的径向压力,一般称为平衡槽。
但在加工中有时环形槽与阀芯不同心;或由于淬火变形,造成磨削后环形槽深浅不一,这样亦会产生径向不平衡力导致液压卡紧。
1.2 机械卡紧换向阀在使用中除发生液压卡紧外,有时还会发生机械卡紧,机械卡紧一般有下列原因。
1) 液压油中的污染物(如砂粒、铁屑、漆皮)楔入阀芯与阀孔间隙使之卡紧。
2) 阀芯与阀孔配合间隙过小造成卡紧。
3) 对于手动换向阀,由于其结构上的原因,阀芯、阀孔都较长,因而存在着直线度误差。
又由于残余应力的存在,有时会使阀芯在使用中产生弯曲,严重时阀芯与阀孔间会产生较大的接触压力,阀芯运动时产生摩擦,造成阀芯运动阻滞,产生机械卡紧。
仿真分析液压卡紧现象1、仿真分析方法基于Fluent软件对液压卡紧现象进行仿真分析。
首先利用Inventor软件建立带有锥度的间隙密封卡紧模型,使用ICEM对模型流体域进行网格划分,最后采用Fluent对网格模型进行压力场仿真,对获取的数据进行分析计算,得到最优的间隙密封结构。
2、模型参数滑阀卡紧力仿真几何模型以阀芯、阀套间隙密封中流场为基型,采用三维模型的形式。
模型的基本参数为:密封长度为20mm,阀套的直径为20.05,阀心的大端直径为20.01,小端直径为20mm。
顺锥模型示意圈如图所示,其中1d 、2d 、0D 、e 别为小端直径、大端直径、阀套孔直径、偏心量,1P 、2P 为进出口压差,参数设置如前文所述。
将倒锥模型导入到Fluent 软件中。
滑阀间隙密封内部流场仿真分析结果如图所示,图1为阀总表面压力分布图,图2为模型上下对称面压力分布曲线。
由图可知,压力沿X轴从12Mpa 到2MPa 依次减小,由于仿真模型的偏屯、量是沿着Y轴正方向,根据前文的理论分析可知,由于阀忘下对称面间隙高度小,压力下降慢,故下对称面的压力高于上对称面压力,与仿真结果一致,如图所示。
最终会产生一个使阀芯沿Y轴负方向运动的力,使阀,芭对中。
在Fluent 中设置力监测器,得出阀芯沿Y轴的受力为14.31N ,使阀巧对中。
因此,阀芯的顺锥模型有利于滑阀的对中。
倒锥模型与顺锥模型结构上基本相同,只是在阀芯的安装方向上有所不同,倒锥模型阀狂大端朝向高压进口腔。
将模型导入到Fluent中,边界条件与顺锥设置相同。
由图可知,压力在阀巧表面沿X轴方向依次减小,但是分布并不均匀,滑阀上对称面压降比上对称面的压降慢,在曲线上显示为上对称面曲线在下对称面曲线上方,两曲线形成一封闭区域,由公式可知,封闭区域对阀拉圆周表面积分即为阀巧卡紧力大小。
在Fluent中设置力传感器,监测得到阀孩受到的卡紧力为12.20N,方向沿着Y轴正方向,最终会使阀总向阀孔底侧壁面移动,直到卡死。
液动力:流动液体作用在使其流速发生变化的固体壁面上的力液压卡紧现象:当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
1.粘度:液体在外力作用下流动时,分子间聚力的存在使其流动受到牵制,从而沿其界面产生内摩擦力,该特性称为粘性。
2.条件粘度:(相对粘度)是根据特定测量条件制定的。
运动粘度:动力粘度卩和该液体密度P之比值。
3.恩氏粘度:表示的实际上只是与运动粘度成一定关系的值。
4.理想液体:既无粘性又不可能压缩的假想液体称为理想液体。
5.电液伺服阀:是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀。
7.真空度:如果液体中某点处的绝对压力小于大气压力,这时该点的绝对压力比大气压力小的那部分压力值,称为真空度。
8.气穴现象:液压系统中,当流动液体某处的压力低于空气分离压时,原先溶解在液体中得空气就会游离出来,时液体产生大量的气泡,这种现象称为气穴现象。
9.液压阀:是用来控制液压系统中油液的流动方向或调节其压力和流量的,可分为方向阀、压力阀和流量阀三大类。
10.节流调速回路:通过改变回路中流量控制元件通留截面的大小来控制流入执行元件或自执行元件流出的流量,以调节其运动速度。
11.容积调速回路:通过改变回路中变量泵或变量马达的排量来调节执行元件的运动速度的。
12.临界雷诺数:液流由层流转变为湍流时的雷诺数和由湍流转变为层流的雷诺数是不同的,后者数值小。
所以一般用后者作为判断流动状态的依据,称为临界雷诺数,记做Recr,小于该值时为层流,大于该值为湍流。
13.液压传动优缺点:优点1)在同等体积下,液压装置比电气装置产生更大的动力。
2)液压装置比较稳定。
3)液压装置能在大范围内实现无极调速,它还可以在运行的过程中进行调速。
4)液压传动易于对液体压力、流量或流动方向进行调节或控制。
5)液压装置易于实现过载保护。
液压系统常见故障及排除方法:液压系统大部分故障并不是突然发生的,一般总有一些预兆。
如噪声、振动、冲击、爬行、污染、气穴和泄漏等。
如及时发现并加以适当控制与排除,系统故障就可以消除或相对减少。
一、振动和噪声(一)液压元件的合理选择(二)液压泵吸油管路的气穴现象排除方法:(1)增加吸油管道直径,减少或避免吸油管路的弯曲,以降低吸油速度,减少管路阻力损失。
(2)选用适当地吸油过滤器,并且要经常检查清洗,避免堵塞。
(3)液压泵的吸入高度要尽量小。
自吸性能差的液压泵应由低压辅助泵供油。
(4)避免油粘度过高而产生吸油不足现象。
(5)使用正确的配管方法。
(三)液压泵的吸空现象液压泵吸空主要是指泵吸进的油中混入空气,这种现象不仅容易引起气蚀,增加噪声,而且还影响液压泵的容积效率,使工作油液变质,所以是液压系统不允许存在的现象。
主要原因:油箱设计和油管安排不合理,油箱中的油液不足:吸油管浸入油箱太浅:液压泵吸油位置太高:油液粘度太大:液压泵的吸油口通流面积过小,造成吸油不畅:滤油器表面被污物阻塞:管道泄漏或回油管没有浸入油箱而造成大量空气进入油液中。
排除方法:(1)液压泵吸油管路联接处严格密封,防止进入空气。
(2)合理设计油箱,回油管要以45度的斜切口面朝箱壁并靠近箱壁插入油中。
流速不应应太高,防止回油冲入油箱时搅动液面而混入空气。
油箱中要设置隔板。
使油中气泡上浮后不会进入吸油管附近。
(3)油箱中油液要加到油标线所示的高度吸油管一定要浸入油箱的2/3深度处,液压泵的吸油口至液面的距离尽可能短,以减少吸油阻力。
若油液粘度太高要更换低的油液。
滤油器堵塞要及时清除污物。
这样就能有效的防止过量的空气浸入。
(4)采用消泡性好的工作油液,或在油内加入消泡剂。
(四)、液压泵的噪声与控制从液压泵的结构设计上下功夫。
(五)、排油管路和机械系统的振动避免措施:(1)用软管连接泵与阀、管路。
(2)配置排油管时防止共振与驻波现象发生。
(3)配管的支撑应设在坚固定台架上。
液压阀上的作用力分析摘要:液压阀是液压系统中的重要元件,阀芯又是液压阀的一个重要组成部分,阀芯的使用寿命也直接决定了整个液压阀的使用寿命,本文分析了阀芯受到的作用力。
关键词:液压阀芯作用力液压控制阀(简称液压阀),是液压系统中的控制元件。
任何一个液压系统,不论其如何简单,都不能缺少液压阀。
液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内相对运动的操纵控制机构。
其基本工作原理是利用阀芯相对于阀体的运动来控制阀口的通断及开度的大小,实现对液流方向、压力和流量的控制。
在工作过程中,阀芯要受到多种力的作用。
一、液压作用力在液压阀中,液体重力引起的压力差相对于工作压力是极小的,通常可忽略不计,认为同容腔中各点的液体工作压力相等。
液体压力对与其相接触的固壁的作用力因固壁不同有两种情况:1.平面固壁:液压作用力fp等于压力p与承压面积a的乘积,即fp=pa2.曲面固壁:液压作用力应指明作用方向。
曲面上的液压作用力在某一方向的分力fpx等于压力p与曲面在该方向的垂直面内投影面积即承压面积ax的乘积。
即fpx=pax二、液动力液体流经阀口时,由于流动方向和流速的变化引起液体动量的变化,使阀芯受到附加的作用力,即液动力。
分为稳态液动力和瞬态液动力。
以滑阀为例进行分析计算。
图一滑阀的稳态液动力1. 稳态液动力:在阀口开度一定的稳定流动下,液流流过阀口时因动量变化作用在阀芯上的力。
稳态液动力可分解为轴向分力和径向分力。
由于一般将阀体的油腔对称地设置在阀芯的周围,因此沿阀芯的径向分力互相抵消了,只剩下沿阀芯轴线方向的稳态液动力。
对于某一固定的阀口开度x来说,根据动量定理(参考图5.7中虚线所示的控制体积)可求得流出阀口时[图一(a)]的稳态液动力为可见,液动力指向阀口关闭的方向。
流入阀口时[图一(b)]的稳态液动力为可见,液动力仍指向阀口关闭的方向。
考虑到,所以上式又可写成考虑到阀口的流速较高,雷诺数较大,流量系数 cq可取为常数,且令液动力系数,则上式又可写成:当压差δp一定时,可知,稳态液动力与阀口开度x成正比。
液压系统常见故障排除方法
青岛国森机械有限公司
一、液压泵
二、液压缸
装,弹力大小不异,,所有电磁阀阀芯安装时要注意,先安装开槽的大垫片再安装小垫片(靠阀芯安装)
压放泵泄压关闭总进油管的阀门压力保持不变,打开总管阀门压力;压力一下下降之某一位置(如有14MPa将至6-10MPa时)电磁阀泄压从高压泄之低压时并且再向大调还是在某一位置(如6-10MPa)不再上升就可以判断出是操控相内的电磁阀或者油缸泄压(内泄)在一个个排查,现排查油缸打开出口,升起压放缸,观察出口有无漏油现象,有就说明油缸有内漏,没有就说明正常。
然后在排查三位四通电磁换向阀,打开一两个与胶皮油管的接口,手动电磁阀有没有从一个口出或者从一个口进的现象,有就说明有内漏,让后打开所有与油管的连接处,给泵给压力看有没有喷油现象,有看是那个油管,就可以断定是那个阀有内泄,如果没有就一切正常。
用同样的方法排查二位三通单向阀,看有没有内泄
如果大立缸有内泄要查看图纸,并且与实物对照,看看进出口有没有装单向阀,如果在进出口有,就可以查看立缸有没有泄漏、内漏,看看立缸密封有误损坏。
如果进口有出口没有查看控制立缸下降的控制阀(查看插装阀)密封有无损坏,是否卡阀,下降管路有无渗漏等如以上问题都没有,那就立缸有内泄(用互换发比较)
如果进口没有出口有,查看进口油管有无渗漏,查看电磁溢流阀有无内泄,如以上问题都没有那就说明立缸有内漏(用阀与阀的互换来查看)
9。
液压系统常见故障产生原因及排除方法1.液压系统无压力或压力不足的原因及排除方法
2.液压系统流量不足的原因及排除方法
3.液压系统产生振动和噪声的原因及排除方法
4.液压系统发热、油温升高的原因及排除方法
5.运动部件换向有冲击或冲击大的原因及排除方法
6动部件爬行的原因及排除方法
7.液压泵常见故障分析及排除方法
8.液压缸常见故障分析及排除方法
9. 溢流阀的常见故障及排除方法
10. 减压阀的故障分析
11. 顺序阀常见故障,产生原因及排除方法
12.
14.液控单向阀的故障分析及排除方法
15.流量控制阀的常见故障及排除方法。