C
∴∠ 2 +∠3=180°(__等__量__代__换__).
平行线性质3: 两条平行线被第三条直线所截,内错角相等。 简单说成:两直线平行,同旁内角互补。
几何语言: ∵ AB//CD (已知) ∴∠2+∠3=180°(两直线平行,同旁内角互补)
1B 3
2
D
1
【例题讲解】性质3:两直线平行,同旁内角互补
【例2】如图, AB//CD,AD//BC.
求证:∠A=∠C.
证明:∵AB//CD(已知), ∴∠A+∠D=180°(两直线平行,同旁内角互补). ∵AD//BC(已知), ∴∠C+∠D=180°(两直线平行,同旁内角互补). ∴∠A=∠C(同角的补角相等).
1
【巩固练习】性质3:两直线平行,同旁内角互补
∵ AB∥CD (已知) 8
2
∴∠1=∠2(两直线平行,同位角相等)
53 A7
D
1B F
1
【例题讲解】性质1:两直线平行,同位角相等
【例1】小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度
数为( )
B
A. 38° B. 42°
C. 48° D. 52°
1. 如图,直线a//b,直线c与直线a,b相交,
∵ b⊥c(已知)
∴∠1=90°(垂直的定义)
∴∠2=90°(等量代换)
∴a⊥c(垂直的定义)
内
2
角b
c
已知 a//b
结论 ∠1=∠2
依据
两直线平行 同位角相等
两直线平行 a//b ∠3=∠2 内错角相等
a//b
∠2+∠4=180°两直线平行 同旁内角互补