ε-聚赖氨酸的用途及研究进展
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
ε-聚赖氨酸分子式随着人类对生命科学的探索深入,越来越多的高分子生物材料被发掘出来,其中包括许多具有神奇性能的生物大分子,这些生物大分子天然存在于生物体内,具有高度的可生物降解性和生物相容性,成为高分子生物材料研究中的热点。
欧莱雅公司的研发团队在研究高分子生物材料时,发现了一类具有优异性能的生物大分子,它就是ε-聚赖氨酸。
这种生物大分子在世界范围内引起了广泛的关注,成为了研究生物大分子的热点之一,因此笔者就来简单介绍一下ε-聚赖氨酸的分子式、结构和性质。
一、ε-聚赖氨酸的分子式ε-聚赖氨酸也被称为聚α-氨基六亚甲基环己酸酯,其分子式为(NH(CH2)5CO)n。
其中,n代表聚合度,表示分子中重复单元的数量。
二、ε-聚赖氨酸的结构ε-聚赖氨酸的结构非常特殊,它是由一种称为ε-氨基酸的单体构成的。
ε-氨基酸的分子结构与赖氨酸相似,但是多了一个环己烷二酸酯基团。
ε-氨基酸的分子式为C6H10O4N,该单体中的环己烷二酸酯基团使其不仅具有空间不对称性,还形成了一种类似于β-折叠的二级结构。
这种股票二级结构是其具有生物学功能的重要基础。
在ε-聚赖氨酸分子链中,ε-氨基酸单体通过酰胺键形成了线性链状的高分子分子,同时,由于ε-氨基酸的特殊结构,ε-聚赖氨酸分子链也能在一定程度上形成类似于螺旋或β折叠的高阶结构。
三、ε-聚赖氨酸的性质1. 生物相容性ε-聚赖氨酸作为生物大分子,具有优异的生物相容性。
它不会引起明显的免疫排斥反应,并且能够逐渐被人体组织所降解,所以在生物医学领域有着广泛的应用前景。
2. 可溶性ε-聚赖氨酸具有良好的水溶性和有机溶剂溶解性,在制备ε-聚赖氨酸高分子材料时可通过合适的溶解剂将其制成所需形状。
3. 物理化学性质由于ε-聚赖氨酸分子结构的特殊性,使得其具有极强的多功能性,其中包括自组装性、合成性、电化学性质和光学性质等,这些性质使其广泛地应用于生物医学和纳米科技等领域。
综上所述,ε-聚赖氨酸这种生物大分子具有很强的生物相容性和可降解性,其特殊的分子结构也赋予了其很多独特的性质。
聚赖氨酸是一种天然的生物代谢产品。
具有很好的杀菌能力和热稳定性及优良的防腐性能和巨大商业潜力的生物防腐剂。
现广泛用于方便米饭、湿熟面条、熟菜、海产品、酱类、酱油、鱼片和饼干的保鲜防腐中。
那么聚赖氨酸具体有什么作用及用途呢?
一、主要用途
一般都是以50%的有效成分配合成商品出售。
如:酒精制剂:以含质量分数50%聚赖氨酸的糊精粉末为基础原料,添加体积分数30%~70%的酒精的制剂,主要用于各种蛋制品。
醋酸制剂:添加体积分数O.5%~5.0%的醋酸,主要用于米饭,色拉等食品;甘油制剂:添加量为体积分数O.01%~5%,主要用于含有动物性蛋白乳蛋白较多的食品;甘氨酸制剂:添加量为质量分数0.01%一10%,和聚赖氨酸复合使用,协同抑菌效果更佳。
二、用途
1、保鲜防腐方面
(1)ε-聚赖氨酸和甘氨酸混合能延长牛奶保质期。
(2)对方便米饭和快餐食品等提高保存期。
(3)聚赖氨酸与大蒜为主要原料混合制成食品防腐剂。
这种食品防腐剂使用时加入食品中或喷淋到食品表面,均具有显著的抗菌防腐作用,能杀死或抑制食品内部或表面的致病微生物。
2、医学方面
聚赖氨酸富含阳离子,与带有阴离子的物质有强的静电作用力并且对生物膜有良好的穿透力,基于这一特性多聚赖氨酸可用于某些药物的载体,因此在医疗和制药方面得到广泛应用。
另外由于聚赖氨酸是作为高吸水性聚合物,所以也可用于妇女卫生巾、婴儿尿片和其他各种工业产品中。
以上就是有关聚赖氨酸作用及用途的一些相关介绍,希望对您进一步的认识了解有所帮助。
食品科技ε-聚赖氨酸在肉制品保鲜中的应用吴晨奇1,高以任1,2,宋京城1,高 岳1,韩宇鹏1,崔保威1(1.苏州农业职业技术学院,江苏苏州 215000;2.苏州科技大学,江苏苏州 215000)摘 要:肉制品富含营养,肉质易受其他因素的影响而改变,传统保鲜剂添加过量会残留人体内引发食品安全问题,现需环保、抑菌效果佳的生物保鲜制剂。
ε-聚赖氨酸是一种抑菌效果好、安全性高、热稳定性好,生物发酵产生的天然氨基酸聚合物,在食品保鲜和防腐领域有广阔前景。
本文综述了ε-聚赖氨酸防腐保鲜的特性、抑菌机制及其目前在肉制品中的相关研究成果,旨在为对ε-聚赖氨酸的进一步研究与开发提供一定的理论基础。
关键词:ε-聚赖氨酸;肉制品;保鲜Application of ε-polylysine in Preservation of Meat ProductsWU Chenqi1, GAO Yiren1,2, SONG Jingcheng1, GAO Yue1, HAN Yupeng1, CUI Baowei1(1.Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China; 2. Suzhou University of Science andTechnology, Suzhou 215000, China)Abstract: Meat products are rich in nutrition, and meat quality is easy to change by other factors. Excessive addition of traditional preservative will cause food safety problems in the human body, and now environmental protection and biological preservation preparations with good antibacterial effect are needed.-Pollysine is a natural amino acid polymer produced by good antibacterial effect, high safety, good thermal stability and biological fermentation, which has broad prospects in the field of food preservation and anticorrosion preservation.This paper reviews the properties of-polylysine corrosion preservation and its current research results in meat products, aiming to provide some theoretical basis for further research and development of-polylysine.Keywords:ε-polylysine; meat products; preservation传统肉类保鲜主要是使用化学试剂,然而ε-聚赖氨酸(ε-PL)作为氨基酸聚合物,具相同保鲜作用的同时,安全无毒、绿色环保、热稳定性好,可被人体降解吸收。
2021年第1期广东化工第48卷总第435期 · 25 · 聚赖氨酸在化妆品中的防腐效能研究郑中博,丛远华,冯春波*(上海家化联合股份有限公司科创中心,上海200082)[摘要]化学合成来源的防腐剂虽然在化妆品中应用广泛,但是其往往具有潜在的安全性风险和刺激性。
相比而言,天然来源的具有防腐性能的原料因为安全性更好,往往更受研发人员和消费者的喜爱。
聚赖氨酸作为天然的具有防腐性能的原料,可以作为化妆品中的防腐功效成分。
研究表明,基于化妆水产品的防腐挑战测试结果,说明聚赖氨酸在产品中的添加可以显著的提升防腐效果。
[关键词]防腐剂;天然;聚赖氨酸;化妆品[中图分类号]TQ [文献标识码]A[文章编号]1007-1865(2021)01-0025-02Study on a Naturally Derived Preservative: ε-PolylysineZheng Zhongbo, Cong Yuanhua, Feng Chunbo*(R&D Center, Shanghai Jahwa United Co., Ltd., Shanghai 200082, China)Abstract: There is a growing recognition that the continuous use of chemical synthetic preservatives in cosmetics industry may cause various hazards to human being health. Safe natural preservatives had become the priority in cosmetics industry to improve the safety of food products for decades. Our research indicated that ε-polylysine has good potential to be as a natural preservative. Based on the findings of challenge test results, the proposed use of ε-polylysine as a preservative in cosmetics industry is considered to be effective.Keywords: preservatives;natural;polylysine;cosmetic1 背景介绍产品的安全性在各个行业都非常重要,例如保健品、药品、化妆品。
白色链霉菌发酵生产ε—聚赖氨酸工艺的优化摘要:采用白色链霉菌N31-69菌株发酵制备ε-聚赖氨酸,考察碳源、氮源等因素对ε-聚赖氨酸产量的影响,优化发酵培养基。
结果表明,优化的培养基为葡萄糖、(NH4)2SO4和酵母浸出粉的浓度分别为30、7、7 g/L,ε-聚赖氨酸摇瓶发酵产量达1.519 g/L,比优化前的产量提高了28.0%。
进一步对N31-69菌株在5 L 发酵罐内的发酵工艺进行优化,发现发酵48 h后采用流加补糖方式控制还原糖浓度为10~15 g/L,从72 h开始控制pH为4.3,发酵168 h后ε-聚赖氨酸的产量可达15.60 g/L。
关键词:白色链霉菌(Streptomyces albus);ε-聚赖氨酸;培养基;发酵工艺ε-聚赖氨酸由25~30个赖氨酸残基聚合而成,有很强的抑菌能力[1],被FDA 批准为安全的天然生物防腐剂,具有巨大的商业潜力[2]。
日本窒素公司已实现ε-聚赖氨酸微生物发酵的工业化生产,发酵罐产量达48.30 g/L[3,4]。
而国内ε-聚赖氨酸的研究还处于实验室水平,发酵产量与国外差距很大。
刘长江等[5]优化了发酵培养基和培养条件,ε-聚赖氨酸摇瓶产量为1.50 g/L;陈玮玮等[6]对北里孢菌Kitasatospora MY5-36发酵产ε-聚赖氨酸的条件进行优化,摇瓶发酵产量达1.17 g/L,在5 L发酵罐内批式发酵产量达7.72 g/L;黄国昌等[7]在50 L自控式发酵罐中对ε-聚赖氨酸的发酵条件进行研究,发酵产量最高达7.36 g/L。
本研究采用白色链霉菌(Streptomyces albus)N31-16菌株发酵制备ε-聚赖氨酸,考察碳源、氮源、无机盐等因素对发酵的影响,以提高ε-聚赖氨酸产量,为促进ε-聚赖氨酸的工业化生产提供依据。
1 材料与方法1.1 菌种来源白色链霉菌N31-16菌株,赣南医学院微生物实验室筛选保藏[8]。
1.2 白色链霉菌发酵生产ε-聚赖氨酸流程1.2.1 斜面培养斜面培养基包括酵母浸出粉4 g/L、麦芽浸出粉10 g/L、葡萄糖 4 g/L,pH 7.3。
聚赖氨酸
ε-聚赖氨酸(ε-PL)是由赖氨酸的α-羧基与ε-氨基通过肽键
结合成的同型聚合物。
结构式如图所示:
ε-PL 的结构式
ε-聚赖氨酸具有抑菌谱广、水溶性好、安全性高、热稳定性好、抑菌pH范围广等特点,微溶于乙醇,略有苦味。
其理化性质稳定,对热(120℃,20min或100℃,30min)稳定。
目前工业上一般采用白色链霉菌Streptomyces albulus作为发酵生产菌株。
ε-PL具有广谱抑菌性,对革兰氏阳性和阴性菌如大肠杆菌、枯草杆菌、酵母菌、乳酸菌、金黄色葡萄糖球菌等的繁殖有抑制作用,而对霉菌的抑制作用较小。
应用:食品保鲜剂、防腐剂,药物缓释和靶向载体,高吸水树脂。
ε-聚赖氨酸的用途及研究进展
摘要:本文从ε-聚赖氨酸的发现、性质和用途、ε-聚赖氨酸产生菌的筛选和生物合成机理的研究、改造以及发酵生产做了简单介绍,让读者从以上几方面综合了解了ε-聚赖氨酸的各个用途和国内研究发展现状。
关键字:ε-聚赖氨酸、生物合成、用途、食品防腐、研究进展
1 引言
ε-聚赖氨酸的用途很广泛,例如可以作为广谱食品防腐剂,作为药物载体、作为细胞融合中的促融剂、作为人工合成抗原的载体、化妆品中的增白剂等。
ε-聚赖氨酸作为食品防腐剂,具有广谱、高效、无毒、受pH值影响小等特点,这些特点是目前普遍使用的各种防腐剂所欠缺的,符合食品防腐剂的发展要求。
目前使用的食品防腐剂主要是人工合成防腐剂,找到一种抗菌谱广、高效、无毒、不受pH值影响的防腐剂是食品工业迫切需要解决的一个问题。
2 ε-聚赖氨酸的发现
1977年日本学者S.Shima和H.Sakai在从微生物中筛选Dragendo~Positive(简写为DP)物质的过程中,发现一株放线菌No.346能产生大量而稳定的DP物质,通过对酸水解产物的分析及结构分析,证实该DP物质是一种含有25—30个赖氨酸残基的同型单体聚合物,称为ε-多聚赖氨酸(ε- PL)。
ε-聚赖氨酸由赖氨酸单体组成,进入人体后可以完全被消化吸,不但没有任何毒副作用,而且可以作为一种赖氨酸的来源;另外,ε-聚赖氨酸的抗菌谱广,对革兰阳性和革兰阴性细菌、酵母、霉菌&、病毒等都有明显的杀灭作用;抑菌效率高,在浓度很低时就起作用;它还不受食品pH值的影响。
ε-聚赖氨酸在日本已经作为食品防腐剂广泛使用,而在世界范围内也只有日本才有这种产品。
研究开发这种新型食品防腐剂具有十分重要的理论意义和应用价值。
但是,从1977年发现ε-聚赖氨酸开始直到2002年为止对于菌种的筛选和生物合成机理的研究一直没有取得突破,尽管通过对菌种的诱变以及控制发酵条件,目前已经可以获得较高的ε-聚赖氨酸产量,但是这些研究都不是定向的。
直到2002年以后,有关ε-聚赖氨酸产生菌的筛选,以及生物合成机理的研究才取得突破。
3 ε-聚赖氨酸的性质和用途
ε-聚赖氨酸在日本已经作为食品防腐剂广泛使用,它抗菌作用强,低浓度就有明显的抗菌作用;抗菌谱广,对革兰阳性和革兰阴性细菌、酵母、霉菌、病毒等都有明显的杀灭作用;同时聚赖氨酸也具有一定的抗噬菌体的能力,刘慧等利用圆滤纸片抑菌试验法研究了聚赖氨酸单独作用及其与醋酸混合使用时对微生物的抑制效果,表明,聚赖氨酸对革兰阳性的微球菌,保加利亚乳杆菌、嗜热链球菌,革兰阴性的大肠杆菌、沙门氏菌以及酵母菌的生长有明显抑制效果;聚赖氨酸与醋酸复合试剂对枯草芽胞杆菌有明显抑制作用。
ε-聚赖氨酸的热稳定性高,聚赖氨酸的水溶液在80℃处理60min、100℃处理30min、120℃处理20min对大肠杆菌的最小抑制浓度不变;刘慧等的实验也表明经高温处理后的聚赖氨酸对微球菌仍有抑菌活性。
ε-聚赖氨酸抑菌的最适pH为5~8,pH范围正是其他常见食品防腐剂如苯甲酸、山梨酸等不起作用的范围,也是多数食品的pH范围。
ε-聚赖氨酸无毒,Hiraki J等以老鼠为实验对象研究了,ε-聚赖氨酸的药物动力学和代谢途径,摄入高达5g/kg时无死亡;在细菌回复突变实验中,也没有发现,ε-聚赖氨酸有诱变作用。
因此他们认为,ε-聚赖氨酸作为食品防腐剂是安全的。
聚赖氨酸由于其抗菌性和安全性已广泛应用到食品工业的各个领域,但是,ε-聚赖氨酸易于与食品中的蛋白质、酸性多糖等成分相互作用,导致抗菌活性丧失,因此,ε-聚赖氨酸目前主要用于淀粉含量较高的食品的防腐中。
ε-聚赖氨酸用于食品防腐时,可单独使用或与其他食品添加剂配合使用。
常用的食品添加剂有甘氨酸、酒精、醋、磺酸月桂脂。
复配使用可大大提高ε-PL 的防腐性能。
例如,当ε-聚赖氨酸与甘氨酸复配用于浓缩牛奶的防腐时,可观察到协同抑菌效果,使添加到食品中的防腐剂的总量得以降低。
ε-聚赖氨酸在工业食品应用中的一个实际问题是ε-聚赖氨酸与蛋白或酸性多糖相互作用,可能导致其抗菌活性的丧失。
而且,其乳化能力较差,其应用基本局限于淀粉类食品。
近来,利用美拉德反应将ε-聚赖氨酸与葡聚糖共价结合以提高其乳化能力,所得到的PL-葡聚糖优于那些商业化的乳化剂葡萄糖-脂肪酸酯和聚甘油酯,特别是在中性pH值范围内其乳化能力极佳,在高盐浓度下(1.0M NaCl)、pH>7时其乳化能力不受影响。
而且,PL-葡聚糖几乎完全保留
了ε-聚赖氨酸的初始抗菌能力,因此,PL-葡聚糖在食品加工可用作功能食品添加剂,即乳化剂和抗菌剂。
ε-聚赖氨酸还可以作为化妆品的增白剂药物载体等。
、
4 ε-聚赖氨酸产生菌的筛选和生物合成机理的研究
ε-聚赖氨酸产生菌的筛选和生成合成机理的直到2003年以前,有关生物合成ε-聚赖氨酸的研究,一直有两个问题没有很好地得到解决:(1)对于ε-聚赖氨酸产生菌的筛选一直没有理想的方法,所以一直不能进行大规模筛选;对于ε-聚赖氨酸的生物合成机理一直没有搞清楚。
直到2002年,日本学者Masanobu Nishikaw找到了一种颇为有效的筛选方法,通过在培养基中加入一种酸性染料PolyR-478,可以在ε-聚赖氨酸产生菌的菌落周围看到明显的颜色变化,因而可以进行大规模筛选,克服了盲目性。
Masanobu Nishikaw采用这种方法,对各地土壤样品进行了大规模的筛选,获得了许多可以产生,ε-聚赖氨酸的菌株,并且发现这些菌株大部分属于链霉菌。
2002年,Mitsuaki Kito等人发现在Streptomyces albulus以及另外一些产生ε-聚赖氨酸的菌株中,如Streptomyces virginiae IFO 12827和Streptomyces norsei IFO15452等,它们的细胞膜上紧密吸附着一种降解ε-聚赖氨酸的酶,该酶是一种外切酶,由N-末端依次切下一个赖氨酸残基。
这一现象提示细胞膜上存在的降解ε-聚赖氨酸的酶与细胞产生ε-聚赖氨酸的活性之间存在着相关关系。
在2003年,对于ε-聚赖氨酸生物合成机理的研究取得突破,Takahiro Kawai 等将Streptomyces albulus的细胞破碎后离心去除细胞碎片,上清液经先后2次高速离心分级,和一次离子交换柱层析后,得到了催化活性较强的组分,这一组分可以在细胞外以赖氨酸为底物催化合成ε-聚赖氨酸。
这一研究表明,ε-聚赖氨酸不是在DNA指导下转录出mRNA,再以mRNA为模版通过核糖体的翻译作用合成的,而是通过细胞内的某一种或者某几种酶催化合成。
该研究还阐明了催化合成,ε-聚赖氨酸的酶促反应条件,发现合成作用需要ATP参与,并且需要以Mg2+为辅助因子,但是,该研究没有得到纯化的酶。
5 ε-聚赖氨酸的产生菌的改造以及发酵生产
后来,一些学者又通过各种方法对Streptomyces albulus进行改造,并通过控制pH等发酵条件,显著提高了ε-聚赖氨酸的产量,达到48.3g/L。
通过发酵的方法生产ε-聚赖氨酸,只需采用普通的糖类(麦芽糖、淀粉糖浆、蔗糖、葡萄糖、糖蜜等)、无机氮源和一些盐类作培养基即可,不需要添加任何昂贵的成分;提取分离也较为简便,因此,生产成本较低。
目前在日本,ε-聚赖氨酸作为防腐剂已经在食品中广泛使用,而在世界范围内也只有日本才有这种产品。
6 ε-聚赖氨酸的国内研究现状
目前在国内关于生物合成ε-聚赖氨酸的研究才刚刚起步,天津科技大学的贾士儒等,采用5L自控式发酵罐研究了发酵过程中搅拌转速和pH对菌体细胞形态以及ε-聚赖氨酸产量的影响,发现搅拌转350r/min和控制pH4.0时可获得最大的ε-聚赖氨酸产量 2.95g/L,菌体量9.33g/L。
但是目前国内还没有产品,关于ε-聚赖氨酸的合成机理的研究也是空白的。
如果能够筛选得到一株ε-聚赖氨酸的产生菌,并找到催化合成ε-聚赖氨酸的酶,进一步阐明它的生物合成机理,就可以运用基因工程手段对菌种进行定向改造,大幅度地提高产量,其理论和应用价值都将是十分显著的。
参考文献
1王晓丹,杨玉红,李云雷,陈红漫.多聚赖氨酸产生菌的分离鉴定及其生物活性的研究[J];食品与发酵工业;2007年01期
2 朱宏阳,徐虹,吴群,陈玮玮.ε-聚赖氨酸生产菌株的筛选和鉴定[J];微生物学通报;2005年05期
3 王明明,张慧莉,王军节.ε-聚赖氨酸产生菌菌种选育的研究进展[J];北京农业;2011年03期
4 史应武,娄恺,李春.ε-聚赖氨酸的生物合成与降解及其应用研究进展[J];中国农业科学;2009年03期。