用向量法证明与动点有关的几何问题
- 格式:pdf
- 大小:163.41 KB
- 文档页数:3
2020年高考数学(理)重难点03 空间向量与立体几何【高考考试趋势】立体几何在高考数学是一个必考知识点,一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.前面的重点专题已经对立体几何进行了一系列详细的说明,本专题继续加强对高考中立体几何出现的习题以及对应的题目类型进行必要的加强.本专题包含了高考中几乎所有题型,学完本专题以后,对以后所有的立体几何你将有一个更加清晰的认识.【知识点分析以及满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·遵义航天高级中学高考模拟(理))一个几何体的三视图如图所示,则该几何体的体积为()A.83B.163C.203D.8【答案】B 【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V =⨯⨯= 故选B【点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 2.(2019·天津高考模拟(理))已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .3πB .C .D .12π【答案】D 【解析】 【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果. 【详解】2BD CD ==Q 且BCD ∆为直角三角形 BD CD ∴⊥又AB ⊥平面BCD ,CD ⊂平面BCD CD AB ∴⊥CD \^平面ABD由此可将四面体ABCD 放入边长为2的正方体中,如下图所示:∴正方体的外接球即为该四面体的外接球O正方体外接球半径为体对角线的一半,即12R == ∴球O 的表面积:2412S R ππ==本题正确选项:D 【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.3.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.(2019·贵州高考模拟(理))设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列四个命题:∴若m α⊂,αβ⊥,则m β⊥; ∴若//a β,m β⊂,则//m α; ∴若m α⊥,//m n ,//αβ,则n β⊥; ∴若//m α,//n β,//m n ,则//αβ其中正确命题的序号是( ) A .∴∴ B .∴∴C .∴∴D .∴∴【答案】C 【解析】∴两个面垂直,推不出面中任意直线和另一个面垂直,错误;故排除A 、B 选项,对于∴,两个平行平面,其中一个平面内的任意直线都和另一个平面平行,故正确,所以选C.5.(2019·福建高考模拟(理))在三棱锥P ABC -中,3PA PB ==,BC =8AC =,AB BC ⊥,平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为( ).A B C D .2【答案】A 【解析】 【分析】取AB 中点D ,AC 中点E ,连PD ,ED ,得E 为∴ABC 外接圆的圆心,且OE∴平面PAB ,然后求出∴PAB 的外接圆半径r 和球心O 到平面PAB 的距离等于d ,由勾股定理得R .【详解】解:取AB 中点D ,AC 中点E ,连PD ,ED 因为AB BC ⊥,所以E 为∴ABC 外接圆的圆心因为OE∴PD ,OE 不包含于平面PAB ,所以OE∴平面PAB 因为平面PAB ⊥平面ABC ,3PA PB ==,得PD ⊥AB ,ED ⊥AB 所以PD ⊥平面ABC ,ED ⊥平面PAB且AB ==PD 1=所以球心O 到平面PAB 的距离等于ED d ==在∴PAB 中,3PA PB ==,AB =1sin 3PAB ∠=, 所以∴PAB 得外接圆半径2r 9sin PB PAB ∠==,即9r 2=由勾股定理可得球O 的半径R ==故选:A. 【点睛】本题考查了三棱锥的外接球问题,经常用球中勾股定理R =R 是外接球半径,d 是球心到截面距离,r 是截面外接圆半径.二、解答题6.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,//AB AD AB CD ⊥,224AB AD CD ===,4PC =.(1)证明:当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC ; (2)求锐二而角A PB C --的余弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)由PC ⊥底面ABCD ,证得AC PC ⊥,又由勾股定理,得AC CB ⊥,利用线面垂直的判定定理,得到AC ⊥平面PBC ,再由面面垂直的判定定理,可得平面EAC ⊥平面PBC ,即可得到结论;(2)分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,求得平面PBC 和平面PAB 的法向量,利用向量的夹角公式,即可求解. 【详解】(1)由题意,因为PC ⊥底面ABCD ,AC ⊂平面ABCD ,所以AC PC ⊥,又因为224AB AD CD ===,所以4AB =,2AD CD ==,所以AC BC ==,所以222AC BC AB +=,从而得到AC CB ⊥.又BC ⊂Q 平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=,所以AC ⊥平面PBC , 又AC ⊂Q 平面ACE ,所以平面EAC ⊥平面PBC , 所以当点E 在PB 上运动时,始终有平面EAC ⊥平面PBC. (2)由条件知PC ⊥底面ABCD ,且AB AD ⊥, AB C D ∥所以过点C 作CF CD ⊥交AB 于点F ,分别以CD ,CF ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图所示),所以(0,0,0)C ,(2,2,0)A ,(2,2,0)B -,(0,0,4)P .由(1)知CA u u u r为平面PBC 的一个法向量,因为(2,2,0)CA =u u u r,(2,2,4)PA =-u u u r (2,2,4)PB =--u u u r ,设平面P AB 的一个法向量为(,,)n=x y z r,则(,,)(2,2,4)00(,,)(2,2,4)00x y z n PA x y z n PB ⎧⋅-=⎧⋅=⇒⎨⎨⋅--=⋅=⎩⎩u uu v r u u u v r ,即02x y z=⎧⎨=⎩,令1z =,则2y =,所以(0,2,1)n =r,所以|||cos ,|5||||CA n CA n CA n ⋅〈〉===uu r ruu r r uu r r ,故锐二面角A PB C --的余弦值5.【点睛】本题考查了线面垂直与面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.7(2017·广东高考模拟(理))如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒, PA ⊥平面ABCD ,2,1PA AB ==.(1)设点E 为PD 的中点,求证: //CE 平面PAB ;(2)线段PD 上是否存在一点N ,使得直线CN 与平面PAC 所成的角θ的正弦值为5?若存在,试确定点N 的位置;若不存在,请说明理由. 8.(2019·天津市新华中学高考模拟(理))如图所示的几何体中,PD 垂直于梯形ABCD所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,112PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【答案】(1)见解析(23)在线段EF 上存在一点Q 满足题意,且FQ =【解析】 【分析】(1)由题意结合线面平行的判定定理即可证得题中的结论;(2)建立空间直角坐标系,利用两个半平面的法向量可得二面角的余弦值,然后利用同角三角函数基本关系可得二面角的正弦值;(3)假设点Q 存在,利用直线的方向向量和平面的法向量计算可得点Q 的存在性和位置. 【详解】(1)因为四边形PDCE 为矩形,所以N 为PC 的中点.连接FN ,在PAC V 中,,F N 分别为,PA PC 的中点,所以FN AC ∥, 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC P 平面DEF .(2)易知,,DA DC DP 两两垂直,如图以D 为原点,分别以,,DA DC DP 所在直线为,,x y z 轴,建立空间直角坐标系.则(1,0,0),(1,1,0),(0,2,0)P A B C,所以(1,1,,(1,1,0)PB BC ==-u u u r u u u r.设平面PBC 的法向量为(,,)m x y z =r,则(,,)(1,1,0(,,)(1,1,0)0m PB x y z m BC x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u u v r u u u v r即0,0,x y x y ⎧+=⎪⎨-+=⎪⎩解得,,y x z =⎧⎪⎨=⎪⎩令1x =,得1,y z =⎧⎪⎨=⎪⎩所以平面PBC的一个法向量为m =r. 设平面ABP 的法向量为(,,)n x y z =r,(,,)(0,1,0)0(,,)(1,1,0n AB x y z n PB x y z ⎧⋅=⋅=⎪⎨⋅=⋅-=⎪⎩u u uv r u u uv r ,据此可得01x y z ⎧=⎪=⎨⎪=⎩, 则平面ABP的一个法向量为)n =r,cos ,3m n <>==u r r,于是sin ,3m n 〈〉=r r. 故二面角A PB C --(3)设存在点Q 满足条件.由1,0,,(0,22F E ⎛⎫ ⎪ ⎪⎝⎭, 设(01)FQ FE λλ=u u u r u u u r &剟,整理得1),2,22Q λλλ⎛⎫-+ ⎪ ⎪⎝⎭,则1,22BQ λλ⎛+=-- ⎝⎭u u u r . 因为直线BQ 与平面BCP 所成角的大小为6π,所以1sin |cos ,|||62||||BQ m BQ m BQ m π⋅====⋅u u u r u ru u u r u r u u ur u r 解得21λ=,由知1λ=,即点Q 与E 重合.故在线段EF 上存在一点Q,且FQ EF ==. 【点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n u r r 分别为平面α,β的法向量,则二面角θ与,m n <>u r r互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.9.(2019·山东高考模拟(理))如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值 为5.(∴)证明://BC 平面PAD ;(∴)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(∴)见解析.(∴ 【解析】 【分析】(∴)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得//BC AD ,再根据线面平行的性质可得所证结论. (∴) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值. 【详解】(∴)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥又AC CD ⊥,CA PA A =I , 所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角. 在Rt PCD V中,PC ==所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒. 又60BCA ∠=︒,所以在底面ABCD 中,//BC AD , 又AD ⊂平面PAD ,BC ⊄平面PAD , 所以//BC 平面PAD .(∴)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(∴)知//BC AD , 所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,02C ⎫⎪⎪⎝⎭,(0,2,0)D,1,14M ⎫-⎪⎪⎝⎭所以3,,022CD ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-u u ur,9,,144DM ⎛⎫=- ⎪ ⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =u r,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u vu u u v,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩,令11y =,则1,1)n =u r.设平面CDM 的一个法向量为()2222,,n x y z =u ur,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y =,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u ru r u u r u r u u r 由图形可得二面角P CD M --为锐角, 所以二面角P CD M --【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论. 10.(2018·吉林高考模拟(理))如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)12λ=±.【解析】以D 为原点,射线DA , DC , 1DD 分别为x , y , z 轴的正半轴建立如图所示的空间直角坐标系D xyz -.由已知得()2,2,0B , ()10,2,2C ,()2,1,0E ,()1,0,0F , ()0,0,P λ, ()1,0,2N , ()2,1,2M ,则()12,0,2BC =-u u u u r, ()1,0,FP λ=-u u u r , ()1,1,0FE =u u u r , ()1,1,0NM =u u u u r , ()1,0,2NP λ=--u u u r.(1)当1λ=时, ()1,0,1FP =-u u u r ,因为()12,0,2BC =-u u u u r ,所以12BC FP =u u u u r u u u r,即1//BC FP ,又FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . (2)设平面EFPQ 的一个法向量为(),,n x y z =r,则由0{0FE n FP n ⋅=⋅=u u u r ru u u r r,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-r . 设平面MNPQ 的一个法向量为()',','m x y z =r,由0{0NM m NP m ⋅=⋅=u u u u r ru u u r r,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--r. 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=r r,即()()2210λλλλ---+=,解得1λ=±,显然满足02λ<<.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.点睛:立体几何的有关证明题,首先要熟悉各种证明的判定定理,然后在进行证明,要多总结题型,对于二面角问题一般直接建立空间直角坐标系,求出法向量然后根据向量夹角公式求解二面角,要注意每一个坐标的准确性。
几何动点的知识点几何动点是几何学中的一个重要概念,它指的是在空间中运动的点。
几何动点的运动可以是直线运动、曲线运动或者复杂的轨迹运动。
在几何学中,我们可以通过研究动点的运动规律来探索几何问题的解决方法。
本文将介绍几何动点的相关知识点。
一、动点的运动方式动点的运动方式可以分为直线运动和曲线运动两种。
1.直线运动:动点在空间中按照一定的速度和方向沿着直线运动。
直线运动可以是匀速直线运动或者变速直线运动。
在几何学中,我们通常用直线方程和向量表示动点的直线运动。
2.曲线运动:动点在空间中按照一定的速度和方向沿着曲线运动。
曲线运动可以是圆周运动、椭圆运动或者其他复杂的曲线运动。
在几何学中,我们可以通过曲线方程和参数方程来描述动点的轨迹。
二、动点的运动轨迹动点的运动轨迹是指动点在空间中运动过程中所形成的路径。
根据动点的运动方式的不同,动点的运动轨迹也不同。
1.直线运动的轨迹:根据直线方程和向量,我们可以确定动点的直线运动轨迹。
直线运动的轨迹可以是一条直线,也可以是平行或垂直于坐标轴的直线。
2.曲线运动的轨迹:根据曲线方程和参数方程,我们可以确定动点的曲线运动轨迹。
曲线运动的轨迹可以是圆周、椭圆、抛物线、双曲线等各种形状的曲线。
三、动点的位置与速度关系动点的位置与速度之间存在一定的关系。
在几何学中,我们可以通过研究动点的位置与速度的关系来解决一些几何问题。
1.位置与速度的方向关系:动点的速度方向可以与动点的位置方向相同、相反或者垂直。
根据动点的位置与速度方向的关系,我们可以判断动点的加速度和运动状态。
2.位置与速度的大小关系:动点的速度大小可以与动点的位置大小成正比或者不成正比。
根据动点的位置与速度大小的关系,我们可以判断动点的运动速度和加速度的大小。
四、动点的运动规律动点的运动规律是指动点在空间中运动过程中遵循的数学规律。
根据动点的运动规律,我们可以推导出动点的位置、速度和加速度的函数关系。
1.直线运动的规律:根据动点的直线方程和向量,我们可以推导出动点的位置、速度和加速度的函数关系。
初二数学动点问题解题技巧初二数学中的动点问题是一个常见的考点,在考试中往往占据一定比例。
在解决这类问题时,需要掌握一些技巧和方法,下面是一些常见的解题技巧:1. 确定坐标系在解决动点问题时,首先需要确定直角坐标系,以方便分析和计算。
我们需要确定两个坐标轴,一般情况下可以选取x轴和y轴。
确定坐标系后,可以将物体的位置表示为一个点的坐标。
2. 分析物体的运动轨迹在动点问题中,物体的运动轨迹是一个关键的概念。
我们需要分析物体的运动,找出它的运动规律,从而确定它的轨迹。
在确定运动规律时,可以注意物体在不同时间的位置、速度和加速度等参数。
3. 确定物体运动的起点和方向在解决动点问题时,需要确定物体的起点和方向。
起点通常是物体的初始位置,方向则是物体运动的方向。
通常情况下,我们可以将起点作为坐标系的原点,方向则可以根据物体的运动方向确定。
4. 利用向量分析物体的运动在解决动点问题中,向量是一个非常有用的工具。
我们可以用向量表示物体的运动,从而更方便地分析和计算。
可以用向量表示物体的位移、速度、加速度等物理量。
向量计算可以用向量加减法和向量点乘等运算法则。
5. 利用几何图形分析物体的运动在解决动点问题时,几何图形也可以提供有用的信息。
特别是对于平面内的运动,可以用几何图形分析物体的位置和运动。
可以利用几何图形分析物体的速率、方向和加速度等物理量。
总之,在解决初二数学中的动点问题时,需要掌握一些基本的解题技巧和方法。
需要注意的是,解题过程中需要细心、认真,尤其是在涉及到向量和几何图形的计算时,需要注意计算细节,以免出现错误。
高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析1.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是().A.B.C.D.【答案】C【解析】建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),C1(0,1,2),设点P的坐标为(0,λ,2λ),λ∈[0,1],点Q的坐标为(1-μ,μ,0),μ∈[0,1],∴PQ==,当且仅当λ=,μ=时,线段PQ的长度取得最小值.2.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是________.【答案】【解析】以C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),则=(-1,1,-2),=(-1,0,0),cos〈,〉===.3.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是________.【答案】45°【解析】设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n=(1,0,0),D,A0,-a,0,P,M,=,所以cos 〈,n〉==,所以DM与平面PAC所成角为45°.4.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成的角的余弦值等于 ().A.B.C.D.【答案】D【解析】建立如图所示的空间直角坐标系,则O(1,1,0),E(0,2,1),D1(0,0,2),F(1,0,0),=(-1,1,1),=(-1,0,2),∴·=3,||=,||=,∴cos〈,〉==.即OE与FD1所成的角的余弦值为.5.在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.【答案】【解析】如图,建立空间直角坐标系Dxyz,则D1(0,0,1),C1(0,2,1),A1(1,0,1),B(1,2,0),∴=(0,2,0),设平面A1BC1的一个法向量为n=(x,y,z),由得,令y=1,得n=(2,1,2),设D1C1与平面A1BC1所成角为θ,则sin θ=|cos〈,n〉|===.6.平行四边形中,且以为折线,把折起,使平面平面,连接(1)求证:;(2)求二面角的余弦值.【答案】(1)参考解析;(2)【解析】(1)直线与直线垂直的证明通过转化为证明直线与平面垂直,由于通过翻折为两个垂直的平面所以只需证明直线AB垂直与两个平面的交线BD即可,通过已知条件利用余弦定理即可得到直角.(2)求二面角的问题通常就是建立空间直角坐标系,根据BD与DC垂直来建立.通过写出相应点的坐标,以及相应的平面内的向量,确定两平面的法向量,并求出法向量的夹角,再判断法向量的夹角与二面角的大小是相等还是互补,即可得到结论.试题解析:(1)在中,所以所以,因为平面平面,所以平面,所以;…3分(2)在四面体ABCD中,以D为原点,DB为轴,DC为轴,过D垂直于平面BDC的射线为轴,建立如图的空间直角坐标系.则D(0,0,0),B(,0,0),C(0,1,0),A(,0,1)设平面ABC的法向量为,而由得:取再设平面DAC的法向量为而由得:取所以即二面角B-AC-D的余弦值是【考点】1.线线垂直的判定.2.面面垂直性质.3.二面角的求法.4.空间坐标系的应用.5.法向量的求法.7.如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值的大小;(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.【答案】(1)见解析(2)存在【解析】(1)证明:PB⊥底面ABCD,∴PD⊥CD,又∵CD⊥PD,PD∩PB=P,PD,PB⊂平面PBD.∴CD⊥平面PBD,又CD⊂平面PCD,∴平面PCD⊥平面PBD.(2)如图,以B为原点,BA,BC,BP所在直线分别为x,y,z轴,建立空间直角坐标系,设BC=a,BP=b,则B(0,0,0),A(2,0,0),C(0,a,0),D(2,2,0),P(0,0,b).∵=(2,2,-b),=(2,2-a,0),CD⊥PD,∴·=0,∴4+4-2a=0,a=4,又=(2,0,-b),=(2,-2,0),异面直线PA和CD所成角等于60°,∴=,即=,解得b=2,=(0,4,-2),=(0,2,0),=(2,0,-2).设平面PAD的一个法向量为n1=(x1,y1,z1),则由得取n1=(1,0,1),∵sin θ===,∴直线PC和平面PAD所成角的正弦值为.(3)解假设存在,设=λ,且E(x,y,z),则(x,y,z-2)=λ(2,0,-2),E(2λ,0,2-2λ),设平面DEB的一个法向量为n2=(x2,y2,z2),则由得取n2=(λ-1,1-λ,λ),又平面ABE的法向量n3=(0,1,0),由cos θ==,得=,解得λ=或λ=2(不合题意).∴存在这样的E点,E为棱PA上的靠近A的三等分点.8.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.【答案】(1)见解析(2)∶2【解析】(1)证明因为PD⊥平面ABCD,∴PD⊥AC,又ABCD是菱形,∴BD⊥AC,又BD∩PD=D,故AC⊥平面PBD,又AC⊂平面EAC.所以平面EAC⊥平面PBD.(2)解连接OE,因为PD∥平面EAC,所以PD∥OE,所以OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,以点O为坐标原点,射线OA,OB,OE所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz.设OB=m,OE=h,则OA=m,A,B(0,m,0),E(0,0,h),=(-m,m,0),=(0,-m,h),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(x,y,z)则n2·=0,且n2·=0,即-mx+my=0且-my+hz=0.取x=1,则y=,z=,则n2=,∴cos 45°=|cos〈n1,n2〉|===,解得=,故PD∶AD=2h∶2m=h∶m=∶2.9.如图,四边形ABCD为矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.(1)求证:平面PQC⊥平面DCQ;(2)若二面角Q-BP-C的余弦值为-,求的值.【答案】(1)见解析(2)1【解析】(1)证明:设AD=1,则DQ=,DP=2,又∵PD∥QA,∴∠PDQ=∠AQD=45°,在△DPQ中,由余弦定理可得PQ=.∴DQ2+PQ2=DP2,∴PQ⊥DQ,又∵PD⊥平面ABCD,∴PD⊥DC,∵CD⊥DA,DA∩PD=D,∴CD⊥平面ADPQ.∵PQ⊂平面ADPQ,∴CD⊥PQ,又∵CD∩DQ=D,∴PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解如图,以D为坐标原点,DA,DP,DC所在直线为x轴,y轴,z轴,建立空间直角坐标系D-xyz.设AD=1,AB=m(m>0).依题意有D(0,0,0),C(0,0,m),P(0,2,0),Q(1,1,0),B(1,0,m),则=(1,0,0),=(-1,2,-m),=(1,-1,0),设n1=(x1,y1,z1)是平面PBC的法向量,则即因此可取n1=(0,m,2).设n2=(x2,y2,z2)是平面PBQ的法向量,则即可取n2=(m,m,1).又∵二面角Q-BP-C的余弦值为-,∴|cos 〈n1,n2〉|=|-|.∴=,整理得m4+7m2-8=0.又∵m>0,解得m=1.因此,所求的值为110.在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点,将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).(1)求证:AC⊥平面ABC′;(2)求证:C′N∥平面ADD′;(3)求二面角A-C′N-C的余弦值.【答案】(1)见解析(2)见解析(3)-【解析】(1)证明∵AD=BC,N是BC的中点,∴AD=NC,又AD∥BC,∴四边形ANCD 是平行四边形,∴AN=DC,又∠ABC=60°,∴AB=BN=AD,∴四边形ANCD是菱形,∴∠ACB=∠DCB=30°,∴∠BAC=90°,即AC⊥AB,又平面C′BA⊥平面ABC,平面C′BA∩平面ABC=AB,∴AC⊥平面ABC′.(2)证明:∵AD∥BC,AD′∥BC′,AD∩AD′=A,BC∩BC′=B,∴平面ADD′∥平面BCC′,又C′N⊂平面BCC′,∴C′N∥平面ADD′.(3)解:∵AC⊥平面ABC′,AC′⊥平面ABC.如图建立空间直角坐标系,设AB=1,则B(1,0,0),C(0,,0),C′(0,0,),N,∴′=(-1,0,),′=(0,-,),设平面C′NC的法向量为n=(x,y,z),则即取z=1,则x=,y=1,∴n=(,1,1).∵AC′⊥平面ABC,∴平面C′AN⊥平面ABC,又BD⊥AN,平面C′AN∩平面ABC=AN,∴BD⊥平面C′AN,BD与AN交于点O,O则为AN的中点,O,∴平面C′AN的法向量=.∴cos〈n,〉==,由图形可知二面角A-C′N-C为钝角,所以二面角A-C′N-C的余弦值为-11.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是 ().A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【答案】D【解析】∵AC⊥平面BB1D1D,又BE⊂平面BB1,D1D.∴AC⊥BE,故A正确.∵B1D1∥平面ABCD,又E、F在直线D1B1上运动,∴EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故VA-BEF为定值.当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,∴=(0,-1,1),=,∴·=.又||=,||=,∴cos〈,〉==. ∴此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1),∴=,=(0,0,1),∴·=1,||=,∴cos〈,〉===≠,故选D.12.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.13.如图所示,四棱锥S ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P AC D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.【答案】(1)证明详见解析;(2)30°;(3)存在 SE∶EC=2∶1【解析】(1)设AC交BD于O,以、、分别为S,D,C,x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,求出,的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,为平面DAC的一个法向量,向量与的夹角等于二面角P AC D的平面角,根据向量的夹角公式计算出与的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则= +=+t,因为·=0,可建立关于t的等式,解之即可.试题解析:(1)证明:连接BD,设AC交BD于O,由题意知SO⊥平面ABCD,以O为坐标原点,、、分别为x轴、y轴、z轴的正方向,建立空间直角坐标系.设底面边长为a,,则高SO= a.于是S,D,C,=,=,·=0,故OC⊥SD,从而AC⊥SD. 4分(2)解:由题设知,平面PAC的一个法向量为=,平面DAC的一个法向量为=,则cos<,>==,故所求二面角的大小为30°. 8分(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,且=,=, 设=t(0≤t≤1),=+=+t=,而·=0t=,即当SE∶EC=2∶1时,BE∥平面PAC. 12分【考点】1.空间两向量垂直的充要条件;2.二面角;3.直线与平面平行判定.14.如图在四棱锥中,底面是边长为的正方形,侧面底面,且.(1)求证:面平面;(2)求二面角的余弦值.【答案】(1)证明过程详见解析;(2).【解析】本题主要以四棱锥为几何背景考查线面垂直、面面垂直的判定以及二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,法一,先利用面面垂直的性质判断出,从而平面,所以垂直于面内的任意的线,由,判断是等腰直角三角形,所以且,所以面,利用面面垂直的判定定理得面面垂直,法二,利用空间向量法,通过证明,其它过程与法一相同;第二问,由第一问得到平面的法向量为,而平面的法向量需要计算求出,,所以,最后用夹角公式求夹角余弦值.试题解析:(1)解法一:因为面面平面面为正方形,,平面所以平面∴ 2分又,所以是等腰直角三角形,且,即,,且、面,面又面,∴面面. 6分解法二:如图,取的中点, 连结,.∵, ∴.∵侧面底面,平面平面,∴平面,而分别为的中点,∴,又是正方形,故.∵,∴,.以为原点,向量为轴建立空间直线坐标系,则有,,,,,.∵为的中点, ∴ 2分(1)∵,,∴,∴,从而,又,,∴平面,而平面,∴平面平面. 6分(2)由(1)知平面的法向量为,设平面的法向量为,∵,∴由,,可得取,则故.∴,即二面角的余弦值为, 12分【考点】1.线面垂直;2.空间向量法;3.面面垂直;4.夹角公式.15.斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.【答案】(Ⅰ),;(Ⅱ);(Ⅲ)与所成的角的余弦值.【解析】(Ⅰ)把向量用向量表示出来,像这一类题,先找以A为始点,以M为终点的封闭图形,因为向量是用向量表示出来,而,可在平面找,然后转化为与共线的向量,可求得,求,求向量的模,往往转化为模的平方来解,由,故,利用数量积展开,由,之间的夹角均为,可求得的值;(Ⅱ)把向量用表示,和(Ⅰ)解题思想一样,只是他在空间中找;(Ⅲ)求与所成角的余弦值,利用,分别求出,即可.试题解析:(Ⅰ),所以,因为,所以(Ⅱ),(Ⅲ),,,COS=即为与所成的角的余弦值.【考点】向量加法与减法的几何意义,向量的夹角.16.已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.(1)若PA=AD,求PB与平面PAD的所成角大小;(2)问多大时,AM⊥平面PDB可能成立?【答案】(1)(2)AM⊥平面PDB不可能成立.【解析】解:(1)以AD中点O为坐标原点,建立如图所示空间直角坐标系,设AB=2则 2分平面PAD的法向量就是4分设所求夹角为,则 5分(2)设, 7分若AM⊥平面PDB,则 8分得不可能同时成立,AM⊥平面PDB不可能成立. 10分【考点】空间中垂直问题以及线面角点评:主要是考查了线面角的求解,以及线面垂直的证明,属于中档题。
专题6 平⾯向量及其应⽤1.如图,O 是平⾏四边形ABCD 外⼀点,⽤表示.【答案】【解析】【详解】由,,,即可得到结论.解:.向量的线性运算向量运算定义法则(或⼏何意义)运算律加法求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λ a |=|λ||a |,当λ>0时,λa 与a 的⽅向相同;当λ<0时,λa 与a 的⽅向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb平⾯向量线性运算问题的求解策略:(1)进⾏向量运算时,要尽可能地将它们转化到三⻆形或平⾏四边形中,充分利⽤相等向量、相反向量,三⻆形的中位线及相似三⻆形对应边成⽐例等性质,把未知向量⽤已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形⼿段在线性运算中同样适⽤.(3)⽤⼏个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三⻆形或多边形;③运⽤法则找关系;④化简结果.(2022·新⾼考Ⅰ卷T3),,OA −⇀OB −⇀OC −⇀−OD −⇀−=−+OD −⇀−OA −⇀OB −⇀OC−⇀−=+OD −→−OA −→−AD −→−=AD −→−BC −→−=−BC −→−OC −→−OB −→−=+=+=+−=−+OD −→−OA −→−AD −→−OA −→−BC −→−OA −→−OC −→−OB −→−OA −→−OB −→−OC −→−在中,点D 在边AB 上,.记,则( )A .B .C .D .【⼀题多变4】7.已知是两个不共线的向量,,e 1⇀e 2⇀⇀A .1B .在平⾏四边形中,分别,则的值为______.【⼀题多变4】13.已知,,(1);(2).解:(1)由平⾯向量的数量积运算=1∣∣a ⇀∣∣=2∣∣b ⇀∣∣|c |=(⋅)a⇀b ⇀c ⇀(⋅)a ⇀b⇀c ⇀A .B .如图,在中,,的⾯积为,的最⼩A.2【⼀题多变4】已知O为坐标原点,点A.C.−→−26.已知中,【分析】利⽤勾股定理判的夹⻆的取值的最⼤值.解:如图,作,垂△ABC AC ,CM −→−CN −→−∵AC =1,BC =∴A +B =A C 2C 2B CD ⊥AB A .C .若E 为线段AD 的中点【⼀题多变2】在中,在某海滨城市O附近海⾯有⼀台⻛,据监测,当前台⻛中⼼位于城市O(如图所示)的东偏南θ,cos θ=,θ∈(0°,90°)⽅向300 km的海⾯P处,并以20 km/h的速度向⻄偏北45°⽅向移动.台⻛侵袭的范围为圆形区域,当前半径为60 km,并以10 km/h的速度不断增⼤.问⼏⼩时后该城市开始受到台⻛的侵袭?注:cos(θ-45°)=A.的最⼩值为B.的范围为C.当时,D.当时,【⼀题多变3】骑⾏是⽬前很流⾏的⼀种绿⾊健身和环保它带给⼈们的不仅是简单的身体上的运动(前轮),圆(后轮)的半径均为,A.B【⼀题多变4】38.已知点H 在所在的平⾯内,且满⾜,求证:点H 是的垂⼼(即三条⾼的交点).【答案】证明⻅解析.【解析】【详解】解:由数量积运算的性质可整理得到,由此得到;同理可证得,,由此可证得结论.解:由得:由同理可得:由同理可得:是的垂⼼三⻆形“四⼼”常⻅的向量表示形式:(1)重⼼.若点G 是的重⼼,则或 (其中P 为平⾯内任意⼀点).反之,若,则点G 是的重⼼.(2)垂⼼.若H 是的垂⼼,则.反之,若,则点H 是的垂⼼.(3)内⼼.若点I 是的内⼼,则.反之,若,则点I 是的内⼼.(4)外⼼.若点O 是的外⼼,则或.反之,若,则点O 是的外⼼.结合“四⼼”性质与向量运算进⾏推演,得出结论.【⼀题多变1】ΔABC ⋅=⋅=⋅HA −⇀−HB −⇀−HB −⇀−HC −⇀−HC −⇀−HA −⇀−ΔABC ⋅=⋅HA −→−HB −→−HB −→−HC −→−⋅=0HB −→−CA −→−HB ⊥CA HC ⊥AB HA ⊥CB ⋅=⋅HA −→−HB −→−HB −→−HC −→−⋅−⋅=⋅(−)=⋅=0HA −→−HB −→−HB −→−HC −→−HB −→−HA −→−HC −→−HB −→−CA −→−∴HB ⊥CA⋅=⋅HB −→−HC−→−HC −→−HA −→−HC ⊥AB ⋅=⋅HA −→−HB −→−HC −→−HA −→−HA ⊥CB∴H ΔABC △ABC ++=0GA −→−GB −→−GC −→−=(++)PG −→−13PA −→PB −→PC −→−++=0GA −→−GB −→−GC −→−△ABC △ABC ⋅=⋅=⋅HA −→−HB −→−HB −→−HC −→−HC −→−HA −→−⋅=⋅=HA −→−HB −→−HB −→−HC −→−⋅HC −→−HA −→−△ABC △ABC ⋅+⋅+⋅=0∣∣∣BC −→−∣∣∣IA−→∣∣∣CA −→−∣∣∣IB −→∣∣∣AB −→∣∣∣IC −→⋅+⋅∣∣∣BC −→−∣∣∣IA −→∣∣∣CA −→−∣∣∣+⋅=0IB −→∣∣∣AB −→∣∣∣IC −→△ABC △ABC (+)⋅=(+)⋅=(+)⋅=0OA −→−OB −→−BA −→OB −→−OC −→−CB −→−OC −→−OA −→−AC −→−==∣∣∣OA −→−∣∣∣∣∣∣OB −→−∣∣∣∣∣∣OC −→−∣∣∣==∣∣∣OA −→−∣∣∣∣∣∣OB −→−∣∣∣∣∣∣OC −→−∣∣∣△ABC 已知正⽅形,边⻓为,动点⾃点出发沿运动,动点⾃点出发沿运动,且动点的速度是动点的2倍,若⼆者同时出发,且到达时停⽌,另⼀个点也停⽌,则该过程中的最⼤值是______.瑞⼠数学家欧拉在1765年发表的《三⻆形的⼏何学》⼀书中有这样⼀个定理:“三⻆形的外⼼、垂⼼和重⼼都在同⼀直线上,⽽且外⼼和重⼼的距离是垂⼼和重⼼距离之半,”这就是著名的欧拉线定理.设中,点O 、H 、G 分别是外⼼、垂⼼和重⼼,下列四个选项中结论正确的是( )A .B .C .D .。
向量方法在高中数学教学中的应用摘 要:向量作为一种既有大小又有方向的量,它既具有数的特性,又有形的特性,因而它成为连结数和形的有力纽带。
根据向量的数形特性,作者尝试将几何图形数量化,并通过运算来解决立体几何中的平行、垂直、求距离、求角度等问题;尝试利用向量方法来解决代数中的不等式证明、等式证明、求函数最值、求变量取值范围等问题,这种尝试为作者的高中数学教学活动注入了新活力。
关键词:向量方法、几何、数形结合一、向量方法在几何中的应用在目前的中学数学立体几何教学中,传统的综合方法仍占主导地位,绝大多数学生仍用着这种方法处理立体几何问题,实际上利用向量的方法处理立体几何的空间问题比传统的综合方法有着明显的优势,特别是垂直的证明,角度与长度的计算问题,可以避免构图和推理的复杂过程,减少了解题琐碎的技巧,降低了题目的难度。
(一)利用向量证明平行问题1.设 a 、b 为两条不重合的直线,a 、b 分别为直线a 、b 的一个方向向量,那么 a ∥ b ⇔ a ∥b 根据实数与向量的积的定义a ∥b ⇔a =k b (k ∈R ,k ≠ 0)例1 已知直线 L 1: 0153=+-y x , L 2: 05106=+-y x , L 1 与 L 2 不重合证明:L 1∥L 2 。
证明:∵L 1:0153=+-y x , L 2: 05106=+-y x ∴ L 1 的方向向量1V =(5,3) L 2 的方向向量2V =(10,6) ∴ 1V =22V∴ L 1∥L 2 。
2.平面与平面平行可转化为两个平面法向量的平行例2 长方体ABCD —A 1B 1C 1D 1中,证明:面 ABCD ∥面A 1B 1C 1D 1。
证明:如图1所示: ∵ 长方体 ABCD —A 1B 1C 1D 1∴ 1AA 为面 A 1B 1C 1D 1的一个法向量D∵ 1BB ⊥面 ABCD∴ 1BB 是面 ABCD 的一个法向量,又因为1AA ∥1BB ∴ 面 ABCD ∥面A 1B 1C 1D 1。
平面几何中常见结论的向量证法第一篇:平面几何中常见结论的向量证法平面几何中常见结论的向量证法例1.证明直径所对的圆周角是直角.如图所示,已知⊙O,AB为直径,C为⊙O上任意一点.求证∠ACB=90°.证明:设AO=a,OC=b,由已知得|a|=|b|, 则AC⋅BC=(a+b)⋅(a-b)=a-b=0, ∴AC⊥BC,即∠ACB=900.22B例2.(任意三角形中的射影定理):在三角形ABC中,设AB=c,AC=b,BC=a,求证:b=a·cosC+c·cosA①c=a·cosB+b·cosA② aa=c·cosB+b·cosC③ A证明:如图:设=,=,=.则+=, ⇒(+)⋅=,⇒⋅+⋅=,⇒||||cosA+||||cosC=||2,⇒||cosA+||cosC=||,⇒b=a·cosC+c·cosA.①类似地可得c=a·cosB+b·cosA.②a=c·cosB+b·cosC.③说明:此问题的证明方法较多,比喻可用正弦定理,也可以用余弦定理,还可以用直角三角形中三角函数的定义来证明.例3.(直角三角形中的射影定理):在Rt△ACB中,∠ACB=90°,CD⊥AB于D,求证:AC2=AD·AB①BC2=BD·AB ②证明:∵ =-,(1)=+.(2)22图2 图3又∵∠ACB=90°,CD⊥AB ⇒⋅=0,⋅=0,2∴ 由(1),(2)得:=(-)⋅(+)=⋅(+)-⋅=BC⋅AC-|BA|⋅|AD|cosπ=|BA||AD|.即:AC2=AD·AB.①类似地可得: BC2=BD·AB.②想一想①:用向量方法证明勾股定理.例4.已知PT是圆O的切线,PAB是圆的割线,求证:PT2=PA·PB.(圆幂定理)证明:设圆O的半径为R,P是平面上任意一点,过P引射线交圆O于A、B,为上的单位向量,λ1,λ2分别表示B、的长度,则=+λ1,=+λ2.1 P 图4 O设M是PB上的一动点,||为x,则=+x.∵ 点M在圆O上的充要条件是=R2 , 即(+x)2=R2.∴ x2+2(OP⋅e)x+|OP|2-R2=0.(1)当点M与A重合时,得到的长度λ1是方程(1)的根,当点M与B重合时,得到P的长度也λ2是方程(1)的根.由一元二次方程根与系数的关系知:λ1⋅λ2=||2—R2.当P在圆外时,过P引切线PT(T为切点),则由勾股定理易得:PT2=||2—R2 ∴ PT2=λ1⋅λ2=PA⋅PB.说明:换一个角度看:如果A与B重合,PA即切线,此时PA2也应等于||2—R2,从而得到圆幂定理;随即由勾股定理之逆便可得到:过切点的半径垂直于切线这一结论.想一想②:你能否用例4证明相交弦及垂径定理.例5.设P、Q、R分别是三角形ABC三边(异于顶点)上的点,若AR=xRB,BP=yPC,CQ=zQA,求证:AP、BQ、CR三线共点的充要条件是:xyz=1.证明:1°必要性:设AP、BQ、CR交于点G,∵ A、G、P三点共线,∴ =(1-α)+α=(1-α)+又∵B、G、Q三点共线,α1+y(0<α<1).BP图5Czβ∴ CG=(1-β)CB+βCQ=(1-β)CB+CA(0<β<1).1+z另外可令:=r=r(+)=r(+=11)=r(+(+))1+x1+xxrxrCA+CB.1+x1+xrxαr, 且1-β==1+z1+x1+y1+x⇒y=α+β-1,z=1-α,x=α+r-1=1-β,1-βα+β-11-αβ+r-1=由平面向量基本定理知:1-α=βz由关于x的两个等式⇒r(α+β+r-2)=0,⇒α+β+r=2,⇒x=1-β⇒xyz=1.1-α2°充分性:设xyz=1 ,设AP与BQ交于G,连CG并延长交AB于R1, 又设AR1=x1R1B.由必要性知x1yz=1, ⇒ x=x1 , ⇒R与R1重合.∴AP、BQ、CR三线共点.由1°、2°知命题成立.想一想③:由例5的结论,你能否给出三角形的三中线、三内角的平分线都是交于一点的.例6.在锐角三角形P1P2P3内找一点P,使P1P+P2P+P2P的长度最短.解:设在锐角三角形P1P2P3内有一点P使得:∠P1P P2=∠P3P P2=∠P3P P1=1200.令:i=αii,i是单位向量,αi是i的长度(i=1,2,3)易知ε1+ε2+ε3=0,又设Q是任意一点,P32图6|QPi|=|QP+PPi|=|QP+αiεi|=|εi||QP+αiεi|≥εi⋅(QP+αiεi),三式相加得:|QP1|+|QP2|+|QP3|≥(ε1+ε2+ε3)+α1ε1+α2ε2+α3ε3=α1+α2+α3=|P1P|+|P2P|+|P2P|.由此可知点P是使P1P+P2P+P2P的长度最短的点.为了找到这样的点P,可在三角形P1P2P3外分别以P1P2与P2P3为边作两个正三角形P1P2A,P2P3B,再分别作正三角形P1P2A,P2P3B的外接圆,两圆除P2外的另一个交点即为所求的点P,这是因为∠P1P P2=∠P3P P2=120°.【练习】 F1.证明三角形ABC三边的中垂线交于一点.2.如图:以AB、AC为边向外作正方形ACDE和正方形ABGF,DM是BC的中点,求证:AM⊥EF.图7 【参考答案】想一想①:设∠ACB=90.由+=⇒(+)2=⇒+2⋅+=因为∠ACB=90.所以⋅=0.则可得 a+b=c.2222222想一想②:当P在圆内时,由例4的结论知:λ1⋅λ2=R2-|OP|2易得相交弦定理;当P是弦AB的中点时,λ1λ2=PA2(或PB2)也易得结论成立.想一想③:对于三中线易知x=y=z=1;对于三内角平分线,可利用内角平分线的性质得到x.y.z=1.【练习】1.证明:如图:设边BC、AC的中垂线交于点O,则OA=OB=OC,以OA、OB为邻边作平行四边形OAFB,由向量加法的平行四边形法则知OF=OA+OB.图8又∵ ||=||,∴四边形OAFB是菱形,则OF垂直平分AB.即边AB的中垂线也过点O.∴三角形ABC三边的中垂线交于一点.2.证明:∵ ⋅=1(+)⋅(+)=1(⋅+⋅+⋅+⋅)22=1(⋅+⋅)=1[-||⋅||cos(900+∠BAC)+||||cos(900+∠BAC)]=0 ,∴AM⊥EF.第二篇:平面向量结论向量的有关结论1.相等向量的模一定相等,模相等的向量不一定是相等向量。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
2009年第39期(上卷)考试周刊
用向量法证明与动点有关的几何问题
娄祖安
(河池学院数学系,广西宜州546300)
摘要:随着向量知识进入高中教材.用向量法解几何
问题已经成为教师关注的热点问题。本文从与动点有关的几
何问题入手,略举数例,探讨直接用向量基本性质和运算律的
简便方法证明几何问题的思路和技巧。
关键词:向量法动点
几何问题思路
近几年来.随着向量知识进入高中教材,用向量法解几何
问题已经成为教师关注的热点问题。然而。张景中教授指出:
“目前许多老师还不了解用向量法解几何问题的基本途径,所
用的方法偏于繁琐,远不及综合几何的初等方法,体现不出向
量解题平易简捷的优势。一些参考书上谈到向量法解躁,也只
是介绍坐标法.对于直接用向量基本性质和运算俸的简便方
法则语焉不详。”…本文从与动点有关的几何问题人手。略举
数例.更具体地探讨用向最法证明几何问题的思路和技巧。
1.用向量法证明几何中与动点有关的垂直问题
将几何问题中的垂直关系转化为向量的垂直关系。利用
一一_+一
两个非零向量a与b互相垂直的充要条件a·b=0,可有效地解
决与动点有关的垂直问题。
例1.如图1.已知M是Rt△ABC的斜边之中点,动点P、q分
别在BC、AC上,且满足PM上QM,求证:PQ‘=PB。+QA‘。
图1
分析:把题中的垂直关系AC上BC及PM_I_QM转化为向量
的垂直关系窳上菇及两上面,再把结论式PQ2=PB2+QA2改
写为向量式圃‘:两‘+砸‘,利用两非零向量a与b互相垂直的
叶_._2_.2
充要条件a.b=O,可以得到平方关系a+b=(a+b)。,充分利用
这个关系,问题可迎刃而解。
证明:·.·醒上商,
.·.砖‘+碑2:(商+醇)2。
·.·两上01il,
.·丽‘痢‘:(葡+耐)2。
·.‘M是AB的中点。
旆=-i9ff;。
砖+积
_-(p--g+Q醒)2
=(两+窳+商+谳)2
=(丽l+确)2
:两+砷。
交
即PQ‘=PB‘+QA‘。
例2.如图2.P是正方形ABCD的
边CD卜的任一点.过D作AP的垂线分
别交AP、BC于Q、R,O是正方形的中
心。求证:OP上OR。
分析:连结OA、0C、0D,把OA上
OD及AP上DR转化为向量的垂直关
图2
系窳上碲及静上赢.同样把结论oP上0R转化为碲上碾,
利用向量垂直的充要条件即可证明。
证明:连结OA、OC、OD。OC与DR交于点E,OD与AP交于点
F。易知商上积。商上砣,诔一砣,
于是蕊.茄=0。
·.·商上武
.·.A--P.武=o。
根据正方形的条件,易得I商I-l武I,
AED=L_AFO-=et。
于是商.o-g:(谳+夺).(商+武)
:积.商+积.商+商.确埘.赢
当碾.赢+夺.碲
=二石苞.D---g+7淬.茄
一I碗|.I碌lcos0【+17萍|.1商Ico鳅
=0
故确上酿,[100P上OR。
2.用向量法证明几何中与动点有关的平行问题
利用两个非零向量a与b共线的充要条件a=kb(其中入是
实数)。可顺利解决与动点有关的平行(或共线)的几何问题。
例3.如图3.已知在AABC中.D是BC的中点.P为AD上任
一点,延长PB、Pc分别交AC、AB于E、F,求证:EF∥BC。
E
图3
分析:用向量法证明EF//BC.即证藤x配(入为实数)。利
用中点巧妙构造共线(平行)向量,再用向量的“首尾相连法
则”,便可轻松地得出结论。
证明:延长PD,使DH=PD,即D--fl=P-fi。
连结BH、HC。
·.·D--d:百亩.
.·.碗+茹:鄙+D---f1.即宄:荫。
而诧与B--fl不共线,于是诧//B--fl。
设,i良n商(n为实数),贝tJ6"对=—商。
同理。磕:n砘。即赢:n稼。
万方数据
考试周刊2009年第39期(上卷)
于是亩矗+百茌n积+n蕊:n(积+盈)=n商。
显然嚣与配不共线.
故钟∥配,B[IEF//BC。
3.用向径证明几何中与圆有关的动点定值问题
所谓向径是指以圆的圆心为起点,以圆周上的点为终点
的向量。利用向径可以方便有效地解决与圆有关的动点定值
问题。
例4.证明正方形外接圆上任一点到正方形各顶点的距离
的平方和为定值。
已知:P为圆O上任一点,四边形ABCD为圆内接正方形,
边长为a。
求证:PA‘+pB'+PC'+PD‘为定值(图4)。
图4图5
探求定值:因为P是网O上的动点。而正方形ABCD是圆的内
接四边形.也就是说A、B、C、D四点都在圆上,所以当P与A点重合
时(如图5),pA2+PB2+pc2+pD刍m■、/虿如:珥a‘为定值。
证明:如图4。设正方形对角线AC、BD交于O,O亦是其外
接圆圆心,由于O是图形的对称中心。故可设A、B、C、D对于O
的向径分别为rl,r2,一r。,一rz,P是外接圆上的任一点,设其对于
O的向径为r,则
PA‘+邝.+Pc‘+PD.
:(ji)2+(j乏)2+(ji)2+(蠢)2
●_+2_+2
=2(2r+rl+r2).
0一z。2
因为不论P在外揍圆的任何位置都有r=r.--'=f2,
I)J,pA2+pB2+pc2+pD2:8(—L)2=4a2。
、/虿
注:此题可推广到任意正多边形的情形,即正n边形外接
圆上任一点到正n边形各顶点的距离的平方和为定值。
例5:如图6.已知正三角形ABC,P为它的内切圆上任意一点,
求证:PA‘+PB‘+PC‘为定值。
图6图7
探求定值:如图7,若点P恰好位于一个切点上,设正三角
形的边长为2a,则有PA=PB=a,PC=、/了a。于是PA‘+PB‘+PC。=
f+f+(、/了a)名5f为定值。
证明:如图7,设O是正三角形ABC的中心。连结OP、OA、
OB、Oc,令硪r,谳=r。,磕=r2,砣=r3,若正三角形ABc的边长
4..
mIlI_+.、/3._+..-.。....2、/3
为2a,则IrI_二}a,Ir.1rI=Ir2I=叫=兰竿a。
·.·武=茹相真一r+r.,
麻:葡+商--r+h.
诧莉相嗣二一r+L,
...弃+蠢疵2:(i‘)2+(乏一,)2+(r3一:)2
o._.-+-+
=■+r2+r3+3r一2r(rl+r2+r3)
易知rt+r;十h=o,
T是pA2+PB2+嘣2竿a)2+(竿a)2+(半a)2
+3(!生a)2=5a2,
3
故PA‘+PB‘+Pc‘_5a.。
注:此题也可推广到正多边形的情形.即正边形内切圆上
任一点到正边形各顶点的距离的平方和为定值。
随着人们新型知识体系的构建和形成.新的教育理念
正在向传统的教育模式发起挑战.促使其必须进行重大革
命.以适应高度发展起来的新型知识体系。直到19世纪末
20世纪初才发展起来的“向量数学”。以其在物理学、空间
物质结构中的广泛应用而备受人们所关注,进而很快形成
了一套具有优良运算通法的数学体系。现已被纳人中学数
学基础教程中,成为数学新教材改革的一大闪光点。与动
点有关的几何问题的向嚣证法是一种新颖的、颇具特色的
证题方法。它不但能使解决问题简单化,而且能在证题过
程中使各类知识融会贯通。有利于综合运用能力的培养和
智力的发展。
参考文献:
[1]张景中,彭翕成.论向量法解几何问题的基本思路[J].
数学通报,2008,(2),(3).
[2]祝本初.平面几何证题手册【M].南宁:广西民族出版
社.1991.
’[3]桂本祥.向量方法在平面几何中的应用[J].数学教学
通讯,2004,(1o).
[4]贾朝彬,王玉霞.证明几何定值问题的研究[J].安阳师
范学院学报。2000,(2).
[5]卢思珠.平面向量的应用[J].数学教学通讯,2003,(1).
河池学院应用数学重点学科建设项目(院科研[200712
号);河池学院2007年度教改课题(编号:2007E002)o
万方数据
用向量法证明与动点有关的几何问题
作者:娄祖安
作者单位:河池学院数学系,广西,宜州,546300
刊名:
考试周刊
英文刊名:KAOSHI ZHOUKAN
年,卷(期):2009,""(39)
被引用次数:0次
1.张景中.彭翕成 论向量法解几何问题的基本思路[期刊论文]-数学通报 2008(2-3)
2.祝本初 平面几何证题手册 1991
3.桂本祥 向量方法在平面几何中的应用[期刊论文]-数学教学通讯 2004(10)
4.贾朝彬.王玉霞 证明几何定值问题的研究 2000(02)
5.卢思珠 平面向量的应用[期刊论文]-数学教学通讯 2003(01)
本文链接:http://d.wanfangdata.com.cn/Periodical_kszk200939067.aspx
授权使用:中共汕尾市委党校(zgsw),授权号:f2490435-ac31-4686-8014-9dc900afcea5
下载时间:2010年8月5日