初等模型 数学建模
- 格式:ppt
- 大小:3.83 MB
- 文档页数:48
数学模型与数学建模1、数学模型的概念数学模型其实是每个人都十分熟悉的.早在学习初等代数的时候我们就已经用建立数学模型的方法来解决实际问题了.当然其中许多问题是老师为了教会学生知识而人为设置的.例如所谓“航行问题”:甲乙两地相距750公里,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各若干?用x、y分别代表船速和水速,可以列出方程(x+y)*30=750,(x-y)*50=750实际上,这组方程就是上述航行问题的数学模型.列出方程,原问题已转化为纯粹的数学问题.方程的解x=20(公里/小时),v=5(公里/小时),最终给出了航行问题的答案.当然,真正实际问题的数学模型通常要复杂得多,但是数学模型的基本内容已经包含在解这个代数应用题的过程中了,那就是:根据建立数学模型的目的和问题的背景作出必要的简化假设(航行中设船速和水速为常数);用字母表示待求的未知量(x、y代表船速和水速);利用相应的物理或其它规律(匀速运动的距离等于速度乘以时间),列出数学式子(二元一次方程);求出数学上的解答(x=20,y=5);用这个答案解释原问题(船速和水速分别为20公里/小时和5公里/小时;最后还要用实际现象来验证上述结果.一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构.2、数学建模的概念需要指出,问题的重点往往不在于一个数学模型(Mathematical Model)是什么样子,而在于建立这个数学模型(MathematicalModelling)的全过程.数学模型和建立数学模型常简称为模型和建模.建立数学模型的全过程前面的航行问题大致描述了用建模方法解决实际问题的途径.一般说来这一过程可以分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如图1—1所示.图1—1表述(Fomulation) 是指根据建模的目的和掌握的信息(如数据、现象),将实际问题翻译成数学问题,用数学语言确切地表述出来。
数学建模到底是学什么?数学学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
该学科通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。
学会进行科学研究的一般过程,并能进入一个实际操作的状态。
通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
学习数学建模需要具备的基础知识:高等数学、线性代数、概率论与数理统计。
学习内容简述:数学建模的概述、初等模型、简单优化模型、微分方程模型、离散模型、线性规划模型、概率模型等模型的基本建模方法及求解方法。
学习内容详述:以建立不同的数学模型作为教学项目载体,每个项目分解为若干个学习任务:下面是整合两个版本的内容,供参考。
教学项目一:建立数学模型学习内容:(1)数学建模的历史和现状;(2)高职院校开设数学建模课的现实意义;(3)数学模型的基本概念;(4)数学模型的特点和分类;(5)数学建模的方法及基本步骤。
教学项目二:初等数学建模学习内容:(1)初等函数建模法:基本初等函数数学模型;常用的经济函数模型;(2)集合建模法:鸽笼原理;“奇偶效验”法;相识问题;(3)比例与函数建模法:动物体型模型;双重玻璃的功效模型;席位分配模型。
教学项目三:微分方程建模学习内容:(1)微分方程建模方法;(2)熟悉微分方程建模案例:Malthus模型;Logistic模型;具有收获的单种群模型;(3)经济增长模型;资金与劳动力的最佳分配;劳动生产率增长;(4)人口的预测和控制;(5)微分方程稳定性理论简介。
教学项目四:数学规划建模学习内容:(1)想行规划模型原理与案例:运输模型;食谱模型;河流污染与净化模型;合理下料模型;(2)非线性规划模型原理与案例:投资决策模型;武器分配模型;防洪优化问题;森林救火费用最小模型;(3)0-1规划模型原理与案例:饮料厂的生产与检修计划模型;指派问题模型;投资决策问题模型。
1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。
例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。
模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。
――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。
―――适用于卫星的发射。
二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。
上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。
《数学建模与实验》练习题专题一 初等模型1、如图,矿物局拟自地平面上A 掘出一管道至地面下一点C 。
设AB 长m 600,BC 长m 240,地平面AB 是粘土,掘进费用m /5元,地平面以下是岩石,掘进费用是m /13元。
(1)建立掘进费用的数学模型; (2)采用什么掘法费用最省?2、某罐装饮料厂为降低成本要将制罐材料减少到最小,假设罐装饮料筒为正圆柱体(视上、下底为平面),上下底半径为r ,高为h 。
若体积为V ,上下底厚度分别是侧面厚度的2倍。
(1)建立用料A 的数学模型;(2)试问当r 与h 之比是多少时,用料最少?3、某大城市出租汽车行程不足km 4,车费11元;行程不足km 15,大于等于km 4部分时,每公里车费5.1元;行程大于等于km 15部分,每公里车费5.2元。
计程器每km 5.0计一次价。
例如:当行驶路程x (km )满足5.1212<≤x 时,按km 5.12计价;当135.12<≤x 时,按km 13计价;途中因红灯等原因停车等候,等候的时间每min 5.2计一次价,收费1元。
例如:等候时间t (min )满足55.2<≤t 时,按min 5.2计价;当5.75<≤t 时,按min 5计价。
(1)建立出租车行驶收费的数学模型;(2)若行驶km 13,停车min 4,应付多少车费? (3)若行驶km 28,停车min 8,应付多少车费?4、设某商店以每件10元的进价购进一批衬衫,并设此种商品的需求函数p Q 280-=(其中,Q为需求量,单位为件;p 为销售价格,单位为元)。
问该商店应将售价定为多少元卖出,才能获得最大利润?最大利润是多少?5、某公司在生产中使用A 和B 两种原料,已知A 和B 两种原料分别使用x 单位和y 单位可生产U 单位的产品,这里226440328),(y x y x xy y x U --++=,并且A 种原料每单位的价值为10美元,B 种原料每单位的价值为4美元,产品每单位的价值为40美元,求:(1) 生产公司利润的模型; (2) 该公司的最大利润。
《数学建模》课程标准一、课程性质与目的要求数学建模课程是各专业的选修课,是数学科学联系实际的主要途径之一。
通 过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法, 培养和训练学生的数学建模素质;要求学生具有熟练的计算推导能力,逻辑推理 能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为使学生 适应现代社会奠定必要的基础。
要求掌握:(一)理论知识方面1. 根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。
2. 基本掌握的内容: 初等模型、数学规划模型、微分方程模型、稳定性模型、 图论与网络模型、离散模型、概率统计模型、随机模拟等理论。
(二)实践技能方面要求学生重点掌握数据处理的一些基本方法,能够使用 Lindo/Lingo 求解各 种规划问题,使用 matlab 求解方程(组)、微分方程(组),进行数据拟合,参 数估计、假设检验、回归分析(特别是多项式回归)等概率问题。
二、学习用书教材:《数学建模与数学实验》(校本教材),谢珊主编,2010年,主要参考书:《数学模型》(第三版),姜启源等编,高等教育出版社,2004年,张珠宝主编,高等教育出版社,2005年《数学建模与数学实验》三、课程内容与考核标准(一)数学建模简介1, 教学目的与要求了解数学模型的概念。
掌握数学建模的一般步骤。
掌握人口增长模型的建立。
掌握 matlab函数拟合的方法。
2,教学内容(1)数学模型的概念及数学建模意义。
(2)介绍全国大学生数学建模竞赛。
(3)数学建模示例:人口增长模型。
3,考核要求l了解数学模型的概念及数学建模意义l会建立人口增长模型,并且能够用 matlab进行函数拟合,确定人口增长 模型中的参数。
(二)matlab入门1,教学目的与要求了解 matlab 的数组、矩阵、函数的定义与使用。
掌握 matlab 程序设计的基 本方法。
2,教学内容(1)介绍 matlab变量、数组、矩阵、表达式、流程控制、函数。
数学建模算法与应用第3版摘要:一、数学建模概述1.数学建模的基本概念2.数学建模的步骤与方法二、数学建模算法与应用1.初等模型2.微分方程模型3.种群生态学模型4.线性规划模型5.非线性规划模型6.层次分析模型7.随机模型8.动态规划模型9.图论模型10.最短路模型11.网络流模型三、支持向量机与偏最小二乘回归分析1.支持向量机原理与应用2.偏最小二乘回归分析方法四、现代优化算法与应用1.现代优化算法概述2.优化算法在实际问题中的应用五、数字图像处理与应用1.数字图像处理基本概念2.图像处理算法与应用六、综合评价与决策方法1.综合评价方法2.决策方法与应用七、预测方法与应用1.预测方法概述2.预测方法在实际问题中的应用八、数学建模经典算法与应用1.数学建模经典算法概述2.经典算法在实际问题中的应用正文:一、数学建模概述数学建模是将实际问题抽象为数学问题,并通过数学方法求解实际问题的过程。
数学建模的过程通常包括以下几个步骤:问题分析、建立数学模型、求解数学模型、检验与修正模型、应用与优化模型。
在数学建模中,各种数学方法都发挥着重要作用。
二、数学建模算法与应用1.初等模型:初等模型主要包括线性回归模型、多项式回归模型等。
这些模型可以应用于股价预测、房价分析等领域。
2.微分方程模型:微分方程模型可以描述种群数量变化、物质传输等问题。
例如,利用微分方程模型研究病毒传播规律。
3.种群生态学模型:种群生态学模型主要用于研究生物种群数量的变化,如Logistic模型、Ricker模型等。
4.线性规划模型:线性规划模型是一种求解最优化问题的方法,广泛应用于资源分配、生产计划等领域。
5.非线性规划模型:非线性规划模型主要用于解决非线性优化问题,如二次规划、凸优化等。
6.层次分析模型:层次分析模型是一种多准则决策方法,可以用于评估各种方案的优劣。
7.随机模型:随机模型用于描述随机现象,如马尔可夫链、泊松过程等。
8.动态规划模型:动态规划模型是一种求解多阶段决策问题的方法,如背包问题、最长公共子序列等。