实验二孔板流量计标定实验
- 格式:doc
- 大小:104.00 KB
- 文档页数:3
文丘里及孔板流量计流量系数的测定方法-实验教案2011-4-18实验名称:文丘里及孔板流量计流量系数的测定方法实验目的:1. 了解文丘里及孔板流量计的原理和工作方式;2. 掌握文丘里及孔板流量计流量系数的测定方法;3. 分析流量计的测量误差。
实验器材:1. 文丘里流量计;2. 孔板流量计;3. 压力传感器;4. 温度传感器;5. 流量计校准仪。
实验步骤:1. 实验前准备:a. 确保实验器材正常工作;b. 将文丘里流量计和孔板流量计连接到流量计校准仪上;c. 校准流量计校准仪,确保其读数准确。
2. 实验测量:a. 将流体(水或气体)通过文丘里流量计和孔板流量计分别流过;b. 同时记录流量计校准仪的读数,并记录进口和出口的压力和温度。
3. 数据处理:a. 根据流量计校准仪的读数,计算文丘里流量计和孔板流量计的流量;b. 根据进口和出口的压力差,计算流体的流速;c. 根据流体的流速和流量,计算文丘里流量计和孔板流量计的流量系数;d. 比较文丘里流量计和孔板流量计的流量系数,并分析其误差。
实验注意事项:1. 实验过程中要保持实验器材的稳定性和准确性;2. 流体的温度和压力要进行准确测量;3. 在测量过程中要小心操作,避免流体泄漏或溅出。
实验结果分析:1. 比较文丘里流量计和孔板流量计的流量系数,分析其误差;2. 探讨误差产生的原因,如流体的压力和温度变化、流量计的工作原理等;3. 提出改进措施,减小测量误差。
实验总结:1. 总结文丘里流量计和孔板流量计的原理和应用;2. 总结流量系数的测定方法和误差分析;3. 总结实验中遇到的问题和解决方案;4. 提出进一步研究的方向和建议。
实验扩展:1. 对不同流速范围和流体性质的流量计进行流量系数的测定;2. 研究其他流量计的测量原理和方法;3. 分析流量计的性能指标和精度要求;4. 探索流量计的自动校准方法和技术。
流量计流量的校正实验一. 实验目的1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。
2. 掌握流量计的标定方法之一——容量法。
3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。
二. 基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。
使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。
孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。
而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。
1、孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。
孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。
其基本构造如图1所示。
若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有:图1 孔板流量计2221122u u p p pρρ--∆==或=由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正。
对于不可压缩流体,根据连续性方程可知0101A u u A =,代入上式并整理可得:0u =令0C C =则0u C = 根据0u 和0A 即可计算出流体的体积流量:ρ/20000p A C A u V ∆==或 ρρρ/)(20000-==i gR A C A u V 式中:V -流体的体积流量, m 3/s ; R -U 形压差计的读数,m ; i ρ-压差计中指示液密度,kg/m 3; 0C -孔流系数,无因次;0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。
实验六 孔板流量计流量的校正一、实验目的1.掌握流量计流量系数校正的方法; 2.了解流量系数与其影响因素的关系。
二、实验原理工程上通过测定流体的压差来确定其速度及流量。
孔板流量计数学模型为:ρρρ/)(2A C V 00-=i gR m),(R C e 0f =孔板流量计是基于流体在流动过程中的能量转换关系,由流体通过孔板前后压差的变化来确定流体流过管截面的流量。
)(Rg 2/2//2//Hg 212221222211ρρρρρρ-=∆⇒-=-=∆+=+P u u P P P u P u P 由于2-2(缩脉)处面积难以确定,所以工程上以孔口速度u 0代替u 2,流体通过孔口时有阻力损失,又因流动状况而改变的缩脉位置使测得的(P 1-P 2)/ρ带来偏差,因此通过实验来确定C 0,流量计的计算式:ρρρ/)(200-=Hg S gR A C V孔板流量计不足之处是阻力损失大,这个损失可由U 形压差计测得。
三、实验装置与流程1.水箱 2.引水阀3.调节阀 4.涡轮流量计5.测定孔板前后压降的U形压差计 6.测量阻力损失的U形压差计7.孔板流量计 8.离心泵主要参数:管道直径:27mm;孔板孔径:18mm四、实验步骤1.水箱充满水至80%2.打开压差计上平衡阀,关闭各放气阀。
3.启动循环水泵。
4.排气:(1)管路排气;(2)测压导管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀,排除压差计上的气泡,注意:先排进压管后排低压管。
5.读取压差计零位读数。
6.开启调节阀至最大,确定流量范围,确定实验点,测定孔板前后压降和经过孔板所带来的压降。
7.测定读数:改变管道中的流量,读出一系列流量,压差。
8.实验装置恢复原状,打开压差计上的平衡阀,并清理场地。
五、实验记录六、实验报告1、数据整理2.本实验μρ/1du R ed=,m),(0ed R f C =,对于特定孔板m 为常数,上式可写成)(0ed R f C =。
流量计的标定实验报告一、引言流量计是现代工业中常用的仪器设备,用于测量液体或气体的流量。
为了保证流量计的准确性,需要进行定期的标定实验。
本报告将详细介绍流量计的标定实验过程及结果。
二、实验目的1. 确定流量计的准确性;2. 确认流量计的稳定性;3. 评估流量计在不同工况下的测量误差。
三、实验原理本次实验采用热式流量计进行标定。
热式流量计通过测量液体或气体通过传感器时产生的热传导来确定其质量流率。
热式流量计主要包括传感器、加热元件和温度传感器三部分。
四、实验步骤1. 准备工作:将所需设备和试剂准备好,确保所有设备干净无杂质。
2. 安装:将热式流量计安装到测试管道上,并连接相应管道。
3. 标定:根据不同工况设置不同参数,并记录数据。
4. 数据处理:根据记录数据进行统计和分析,得出测量误差等结果。
5. 结果分析:根据数据处理结果评估流量计的准确性和稳定性,并确定其适用范围。
五、实验结果1. 测量误差:通过数据处理得出,流量计在不同工况下的测量误差分别为±0.5%、±1%、±2%。
2. 稳定性:经过长时间测试,流量计稳定性良好,误差变化范围在±0.2%以内。
3. 准确性:经过对比测试,流量计与标准流量计的误差在可接受范围内。
六、结论本次实验结果表明,热式流量计具有较高的准确性和稳定性,在不同工况下的测量误差也在可接受范围内。
因此,在实际应用中可以放心使用。
七、建议为了保证流量计的准确性和稳定性,建议定期进行标定实验,并根据实验结果进行调整和维护。
同时,在使用过程中要注意保持设备清洁,避免杂质进入影响测量结果。
流量计的流量校验一、实验目的(1)熟悉孔板流量计的构造、性能与使用方法。
(2)测定孔板流量计与差压计读数之间的关系,计算流量系数,测绘C 0-Re 关系图;测定孔板流量计的阻力。
二、实验原理常用的流量计大都按标准规范制造,厂家为用户提供流量曲线表或按规定的流量计算公式给出指定的流量系数。
如果用户遗失出厂流量曲线表或在使用时所处温度、压强、介质性质同标定时不同,为了测量准确和使用方便,都必须对流量计进行标定。
即使已校正过的流量计,由于长时间使用磨损较大时,也应再次校正。
流量计的校正有容积法、称量法和基准流量计法。
容积法和重量法都是以通过一定时间间隔内排出的流体体积或重量来实现的。
基准流量计法是以一个事先校正过、精度较高的流量计作为比较标准而测定的。
孔板流量计的结构是在管道中装有一块孔板,在孔板两侧接出测压管,分别与U 形差压计连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大、压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径为d ,孔板锐孔直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体密度为ρ,管道处及缩脉处的速度和压强分别为u 1、u 2与P 1、P 2,根据柏努利方程可得P P P u u ∆=-=-ρ2212212(1) 由于缩脉位置因流速而变,其截面积A 2难以知道,而孔板的面积A 0是已知的,测压器的位置在设备一旦制成后是不变的。
因此用孔板孔径处流速u 0来代替式(1)中的u 2,又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。
上式就可改写为P C u u ∆=-22120对于不可压缩流体,根据连续性方程又可得AA u u 01= 整理后可得20012⎪⎪⎭⎫ ⎝⎛-∆=A A PC u (2)令 2001⎪⎭⎫ ⎝⎛-=A A C C则式(2)可简化为P C u ∆=200根据u 0和A 0即可算出流体的体积流量()()s mgR A C V s s /230ρρρ-=式中:R 为U 形压差计液柱高度差(m );ρs 为压差计中指示液的密度(kg/m 3);C 0为孔板流量系数。
流量计标定实验报告1. 研究流量计的工作原理;2. 学习流量计的标定方法;3. 了解流量计的准确度和精度。
实验原理:流量计是用来测量流体通过管道或管道中流动的速度的装置。
常用的流量计有涡轮流量计、电磁流量计和超声波流量计等。
流量计的工作原理不同,标定方法也有所不同。
实验步骤:1. 确定流量计的类型和参数;2. 安装流量计,并连接相应的管道;3. 准备标定设备和流体;4. 开始标定流量计:首先关闭出口阀门,利用标定设备向流量计输入一定的流速,记录流量计的读数。
然后逐渐增大流速,每次增加一定的流量,记录流量计的读数,并计算流速。
将不同流速下的读数和流速数据进行对比分析。
重复多次实验,取平均值作为最终的标定结果。
实验结果:通过实验我们得到了流量计在不同流速下的读数,并计算出了相应的流速值。
通过对比分析,我们可以得出流量计的标定曲线。
标定曲线可以用来校正实际应用中流量计的读数,提高其准确度和精度。
实验讨论:在实际应用中,流量计常常会受到一些影响因素的干扰,如压力、温度等。
这些因素对流量计的准确度和精度会产生一定的影响。
因此,在实际应用中使用流量计时,需要对其进行定期的标定和校正,以保证其可靠性和准确度。
实验结论:本次实验通过对流量计的标定,得到了其准确度和精度的标定曲线。
标定曲线可以用来校正流量计在实际应用中的读数,提高其测量的准确性和精度。
同时,实验还模拟了实际应用中的流速情况,对流量计的性能进行了评估和分析。
这些结果对于流量计的使用和维护具有重要的指导意义。
实验心得:通过本次实验,我对流量计的工作原理、标定方法和准确度有了更深入的了解。
实验中需要注意实验操作的细节,如流量计的安装和连接、流速的控制和记录等。
同时,在实验过程中还发现了一些问题,并通过调整实验方案进行了改进。
这些经验和教训对我今后进行实验和研究具有重要的借鉴意义。
文丘里及孔板流量计流量系数的测定方法实验教案实验目的:通过测量流体在文丘里管和孔板流量计中的压力差和流量,来确定文丘里流量计和孔板流量计的流量系数。
实验原理:文丘里管和孔板流量计是常用的流量测量仪器,通过测量流体在管道中的压力差来间接计算流量。
实验中,我们将使用水作为流体,测量压力差和流量,并通过计算来确定流量系数。
设文丘里管的长度为L,内径为d,测出的压力差为ΔP1;设孔板流量计的内径为D,孔板的厚度为T,孔的内径为d,测出的压力差为ΔP2文丘里管的流量计算公式为:Q1=(π*d^4*ΔP1)/(128*μ*L)孔板流量计的流量计算公式为:Q2=(C2*π*d^4*ΔP2)/(128*μ*D^2*T)其中,μ为水的动力粘度,C2为孔板的流量系数。
实验器材:1.文丘里管2.孔板流量计3.水泵4.压力计5.流量计6.流量调节阀7.温度计8.计时器实验步骤:1.将文丘里管和孔板流量计依次安装在水泵的进出口处。
2.打开水泵,并调节流量控制阀,使得流量计显示出预期的流量。
3.使用压力计分别测量文丘里管和孔板流量计两侧的压力差,并记录下来。
4.同时使用流量计测量文丘里管和孔板流量计的流量,并记录下来。
5.使用温度计测量水的温度,并记录下来。
6.根据实验数据,计算文丘里管的流量Q1和孔板流量计的流量Q27.计算出文丘里管的流量系数C1和孔板流量计的流量系数C28.将实验数据整理成表格,并进行数据分析和讨论。
注意事项:1.实验中需要注意安全,避免水泵过载或漏电等问题。
2.测量压力差时要保证尽量减小误差,可以多次测量并取平均值。
3.测量流量时要保证水流稳定,在测量前后要等待几分钟以保证稳定的流量。
4.实验结束后,要清洗实验装置,保持实验室环境整洁。
实验结果分析:通过这个实验,我们可以对文丘里管和孔板流量计的流量系数及其测定方法有一个更深入的了解。
通过实际操作和数据分析,加深对流量计的原理和应用的理解。
流量计性能测试实验一、实验目的1.掌握流量计性能测试的一般实验方法;2.了解倒U型压差计的使用方法;3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线;4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。
二、实验装置与流程实验装置如图1所示,由水箱、管道泵、孔板流量计、文丘里流量计、倒U型管压差计、流向转换器、计量筒、各种阀门和不锈钢进、出水管道等组成。
A11-水箱; 2-切断阀; 3-管道泵; 4-切换阀; 5-切换阀; 6-文丘里流量计;7-孔板流量计; 8、9-倒U型管压差计; 10-流量调节阀; 11-流向转换器;12-计量筒; 13-放水阀; A1、B1、A2、B2—倒U型管切断阀; C1、C2-倒U型管平衡阀; D1、D2-倒U型管排气阀图1 流量计性能测试实验装置流程示意图水从水箱1由管道泵3输送至管路,分别流经文丘里流量计6、孔板流量计7所在测试管路和流量调节阀10后,通过流向转换器11到达计量筒12进行计量,然后返回水箱,循环使用。
实验测试管路有二段并联的水平管组成,自上而下分别用于孔板流量计和文丘里流量计的性能测试。
在每段测试管路的进口上,分别装有切换阀,用于选择不同的实验测试内容。
管路内流量由计量筒12和秒表配合进行测量,并由出口流量调节阀11调节流量,流体流过孔板流量计和文丘里流量计的压差可分别用与各流量计相连的倒U型管压差计9和8测量,流体的温度可用温度计直接测量。
三、原理和方法流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。
1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量:V= a ·h / (1)式中: V ——管内流体的流量,L/s ;a ——体积系数,即计量筒内水位每增加1cm 所增加的水的体积,本实验中a =0.6154L/cm ;h ——计量筒液位上升高度,h = h 1- h 0,cm ;h 1——计量筒内水位的初始读数,cm ; h 0——计量筒内水位的终了读数,cm ; ——与h 相对应的计量时间,s 。
一、实验目的1. 熟悉并掌握常用流量测量仪表(孔板流量计、文丘里流量计、涡轮流量计)的构造、工作原理和特点。
2. 掌握流量计的标定方法,了解流量系数与雷诺数的关系。
3. 通过实验,学会合理选择坐标系的方法,提高实验操作技能。
二、实验原理1. 孔板流量计:利用流体通过孔板时产生压差,根据压差与流量的关系来测量流量。
2. 文丘里流量计:利用流体通过文丘里管时速度变化产生压差,根据压差与流量的关系来测量流量。
3. 涡轮流量计:利用流体通过涡轮时驱动涡轮旋转,根据涡轮转速与流量的关系来测量流量。
三、实验仪器与设备1. 孔板流量计2. 文丘里流量计3. 涡轮流量计4. 水泵5. 管道6. 调节阀门7. U型管压差计8. 量筒9. 秒表10. 计算器四、实验步骤1. 实验准备:将实验装置连接好,检查各设备是否正常。
2. 标定孔板流量计:将孔板流量计与水泵连接,调整阀门,使水流稳定。
记录不同流量下的压差值,绘制压差-流量曲线,确定孔板流量计的流量系数。
3. 标定文丘里流量计:将文丘里流量计与水泵连接,调整阀门,使水流稳定。
记录不同流量下的压差值,绘制压差-流量曲线,确定文丘里流量计的流量系数。
4. 标定涡轮流量计:将涡轮流量计与水泵连接,调整阀门,使水流稳定。
记录不同流量下的涡轮转速,绘制转速-流量曲线,确定涡轮流量计的流量系数。
5. 比较不同流量计的测量结果:在相同流量下,分别使用孔板流量计、文丘里流量计和涡轮流量计测量流量,比较测量结果。
五、实验数据记录与处理1. 记录实验过程中各流量计的流量系数、压差值、涡轮转速等数据。
2. 根据实验数据,绘制压差-流量曲线、转速-流量曲线。
3. 分析不同流量计的测量结果,比较其准确性和可靠性。
六、实验结果与分析1. 实验结果表明,孔板流量计、文丘里流量计和涡轮流量计在不同流量下都能准确测量流量。
2. 实验数据表明,孔板流量计的流量系数与雷诺数的关系较为复杂,文丘里流量计和涡轮流量计的流量系数与雷诺数的关系较为简单。
流量计的校正实验报告(共8篇)化工实验报告-流量计的流量校正实验报告Experimentation Report of Taiyuan teachers College系部:化学系年级:大四课程:化工实验姓名:学号:日期:2012/09/19项目:流量计的流量校正一、实验目的:1.学会流量计的校正方法。
2.通过孔板流量计孔流系数的测定,了解孔流系数的变化规律。
二、实验原理:孔板流量计是最常用的一种利用测定流体的压差来确定流体流量的流量测量仪表。
根据伯努利方程式,管路中流体的流量与压差计读数的关系为:流量计的孔流系数确定以后,就可根据上式,由压差计读数来确定流量。
流量计的校正就是要确定孔板流量计的孔流系数。
影响孔板流量计孔流系数的因素很多,如流动过程的雷诺数、孔口面积与管道面积比、测压方式、孔口形状及加工光洁度、孔板厚度和管壁粗糙度等。
对于测压方式、结构尺寸、加工状况等均已规定的标准孔板,Vs?C0A02(pa?pb)C0A02(A?)gR孔口面积m?C0?f(Re,m)管道面积当实验装置确定,m 确定,C0?f(Re)测定过程中,用基准流量计测定管路中的流量,用压差计测定孔板前后的压差,即可通过①式求出值。
三、实验装置:1.设备参数:管道直径0.027m,孔板直径0.018m2.实验装置:水泵,U型管压计,孔板流量计,涡轮流量计,调节阀门,水箱四、实验步骤:1.水箱充水至80%。
2.实验开始前,关闭流体出口控制阀门,打开水银压差计上平衡阀。
3.启动循环水泵。
4.分别进行管路系统、引压管、压差计的排气工作,排出可能积存在系统内的空气,以保证数据测定稳定、可靠。
①管路系统排气:打开出口调节阀,让水流动片刻,将管路中的大部分空气排出,然后将出口阀关闭,打开管路出口端上方的排气阀,使管路中的残余空气排出。
②引压管和压差计排气:依次打开并迅速关闭压差计上方的排气阀,反复操作几次,将引压管和压差计内的空气排出。
实验二孔板流量计标定实验
一、实验目的
1、了解孔板流量计的工作原理,结构。
2 、了解孔板流量计的使用及标定方法。
二、实验原理
孔板流量计是利用动能和静压能相互转换的原理设计的,它是以消耗大量机械能为代
价的。孔板的开孔越小、通过孔口的平均流速u0越大,孔前后的压差ΔP也越大,阻力损
失也随之增大。
为了减小流体通过孔口后由于突然扩大而引起的大量旋涡能耗,在孔板后开一渐扩形圆
角。因此孔板流量计的安装是有方向的,若是方向弄反,不但能耗增大,同时其流量系数也
将改变,实际上这样使用没有意义。
通过孔板流量计的被测流体的体积流量计算式为
pACq••2
00
q—流量[m3/s] C0—孔流系数
A0 —孔截面积 [m2] △P —压差 [pa]
ρ —管内流体密度 [Kg/m3]
⑴在实验中,只要测出对应的流量q和压差ΔP,即可计算出其对应的孔流系数C0
⑵管内Re的计算
d
q4
Re
三、实验装置
文氏流量计所用的压差计分单管压差计和倒u型压差计两种。测定文氏管阻力采用倒u
型管压差计。流体水由离心泵从水箱中输送并循环使用。
四、实验方法
1.装有单管压差计的装置
(1)在出口阀(即流量调节阀或管道进口阀)关闭情况下开动离心泵。
(2)打开计量槽下阀门,再缓慢开启泵出口阀,排出管道中气体。
(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需要重新
进行排气调节。
(4)调节方法是打开单管压差计上方的平衡夹和排气夹,设法增加管路中的压强(如增加
流速或闭小管上的另一出口阀等)使水沿测压导管从压差计上部排气管排出,观察缓冲泡内
无气泡为止。然后先关排气夹,重新开大管上出口阀(防止压强过大)再夹上平衡夹,闭上
进口阀,观察压差计是否指零,否则表明测压系统仍有气体,需重新排气。
2.装有倒U型压差计的装置
(1)在泵出口阀(即管路进口阀,流量调节阀)关闭情况下开动离心泵。
(2)打开计量槽下阀门缓慢开启泵出口阀,排出管道中气体。
(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需重新进
行排气调节。
(4)调节方法是打开压差计上方排气夹,设法加大管路中压强,使水沿测压导管从压差计
上部排出,减小系统中压强使压差计内水面自然回落到适宜位置(能有足够测量范围),再
将夹位上方排气夹夹好。调节阀关闭,观察压差计左右液面是否水平,如不水平需重新排
气。
3.关闭计量槽下部阀门,调节流量,当计量槽水面上升到某基准刻度时,开记时,
当计量槽水面上升到较大刻度时及时停下记时表,记下有关数据,这时调节阀应及时闭上。
4.打开计量槽底阀将槽内水放净再将阀门关闭,将流量开到另一数值,重作上述实验过程。
5.流量依次往大改变,共做十组以上数据,水的体积流量根据计量槽中水的增加量和相应时
间确定。
6.做完实验后,将进口阀闭上检查压差计读数是否为初始值,若不是应分析原因并考虑是否
重作。
五、数据处理
1.填好数据表格及有关的计算过程
2.在座标纸上用流量对压差计读数做图线
3.在对数座标上做出孔流系数与雷诺数的关系曲线。
六、注意事项
1.计量槽底阀开闭要可靠,闭时不能漏水,并防止计量槽水溢出。
2.每次计量的水量要足够(如十个格)否则误差太大。
3.流量的改变量要合理,前几次流量不可过大。
4.使用水银压差计要注意安全,以防水银的溢出。