人教九年级数学下册第三单元专题训练
- 格式:doc
- 大小:836.94 KB
- 文档页数:7
2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》解答题专题提升训练(附答案)1.如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若=,则tan∠BCF的值为.2.如图,在△ABC中,∠B=45°,CD是AB边上的中线,过点D作DE⊥BC,垂足为点E,若CD=5,sin∠BCD=.(1)求BC的长;(2)求∠ACB的正切值.3.如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分∠F AE,AC=8,tan∠DAC=,求四边形AFCE的面积.4.在△ABC中,AC=4,BC=6,∠C为锐角且tan C=1.(1)求△ABC的面积;(2)求AB的值;(3)求cos∠ABC的值.5.如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=.(1)求高CD的长;(2)求tan∠EAB的值.6.如图,在四边形ABCD中,∠B=∠DCB=90°,AB=6,CD=2,△ABP与△PCD全等.(1)求AD的长;(2)求tan∠DAC的值.7.如图,在△ABC中,点D是BC的中点,联结AD,AB=AD,BD=4,tan C=.(1)求AB的长;(2)求点C到直线AB的距离.8.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC=48,求△ABC的周长.9.如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan∠B=,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正弦值.10.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为39米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)11.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)12.某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B须经过C处才能到达.测得景点B在景点A的北偏东30°方向,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.当地政府为了方便游客浏览,打算修建一条从景区A到景区B的笔直的跨湖栈道AB.(1)求点C到直线AB的距离;(2)栈道修通后,从景点A到景点B走栈道比原路线少走多少米?(结果保留整数,参考数据:≈1.414,≈1.732)13.如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E 的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.解答过程中可直接选用表格中的数据哟!科学计算器按键顺序计算结果(已取近似值)0.1560.1580.2760.28714.如图,有一宽为AB的旗子,小明在点D处测得点B的仰角为60°,随后小明沿坡度为i=1:的斜坡DE走到点E处,又测得点A的仰角为45°.已知DC=6米,DE =4米,求(1)E点到地面DC的距离;(2)旗子的宽度AB.(测角器的高度忽略不计,结果保留根号)15.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα=.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:≈1.7)16.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B,P两点之间的距离为20海里.(1)求观测站A,B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B 测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:≈1.73)17.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)18.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)19.随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求坡面CB的坡度;(2)求基站塔AB的高.20.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB的坡度为1:,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).(参考数据:sin22°≈,cos22°≈,tan22°≈0.4)参考答案1.(1)证明:∵点D是AC的中点,∴AD=CD,∵DF=DE,∴四边形AECF是平行四边形,又∵DE⊥AC,∴平行四边形AECF是菱形;(2)解:∵=,∴CE=4BE,设BE=a,则CE=4a,由(1)可知,四边形AECF是菱形,∴AE=CE=4a,AE∥CF,∴∠BEA=∠BCF,∵∠ABC=90°,∴AB===a,∴tan∠BCF=tan∠BEA===,故答案为:.2.解:(1)设DE=3x,DE⊥BC,∵sin∠BCD=,∴,∴CD=5x,CE=4x,∵CD=5,∴x=1,∴CE=4,∵∠B=45°,∴DE=BE=3x,∴BC=BE+CE=7x=7.(2)过点A作AF⊥BC于点F,∴DE∥AF,∵D是AB的中点,∴DE是△ABF的中位线,∴AF=2DE,BF=2BE,由(1)可知:DE=BE=3,∴AF=6,BF=6,∴CF=BC﹣BF=1,∴tan∠ACB=6.3.(1)证明:∵在平行四边形ABCD中,AD=BC.AE∥FC,∵ED=BF,∴AD﹣ED=BC﹣BF,∴AE=FC,∴四边形AFCE是平行四边形;(2)解:∵AE∥FC,∴∠EAC=∠ACF,∴∠EAC=∠F AC,∴∠ACF=∠F AC,∴AF=FC,∵四边形AFCE是平行四边形,∴平行四边形AFCE是菱形,∴AO=AC=4,AC⊥EF,在Rt△AOE中,AO=4,tan∠DAC=,∴EO=3,∴S△AEO=AO•EO=6,S菱形=4S△AEO=24.4.解:(1)过点A作AD⊥BC,垂足为D.∴∠ADC=∠ADB=90°.∵∠C为锐角且tan C=1,∴∠C=45°=∠DAC.∴AD=DC.∵sin C=,AC=4,∴DC=AD=sin45°×AC=×4=4.∴S△ABC=BC×AD=×6×4=12.(2)∵DC=AD=4,BC=6,∴BD=BC﹣DC=2.在Rt△ABD中,AB===2.(3)在Rt△ABD中,cos∠ABC===.5.解:(1)在Rt△BCD中,∵cos∠ABC=,∴,∴BC=5,∴CD==3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF===,DF===2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB===.6.解:(1)∵△ABP≌△PCD,∴AB=CP=6,BP=CD=2,AP=PD,∠APB=∠CDP,∵∠PCD=90°,∴∠CPD+∠CDP=90°,∴∠APB+∠CPD=90°,∴∠APD=90°,∴PD===2,∴AD===4;(2)过点D作DH∠AC于点H.在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC===10.∵AB∥CD,∴∠CAB=∠DCH,∵∠B=∠CHD=90°,∴△ABC∽△CHD,∴==,∴==,∴CH=,DH=,∴AH=AC﹣CH=10﹣=,∴tan∠DAC===.7.解:(1)∵过点A作AH⊥BD,垂足为点H.∵AB=AD,∴BH=HD=BD=2.∵点D是BC的中点,∴BD=CD=4.∴HC=HD+CD=6.∵=,∴.∵==.(2)过点C作CG⊥BA,交BA的延长线于点G.∵,∴.∴.∴点C到直线AB的距离为.8.解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,∵S△ABC=48,∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.9.解:(1)∵CD⊥AB,∴△ACD、△BCD均为直角三角形.在Rt△CDB中,∵BD=6,tan∠B==,∴CD=4.在Rt△CDA中,AC===2.(2)过点E作EF⊥AB,垂足为F.∵CD⊥AB,EF⊥AB,∴CD∥EF.又∵点E是边BC的中点,∴EF是△BCD的中位线.∴DF=BF=3,EF=CD=2.∴AF=AD+DF=5.在Rt△AEF中,AE===.∴sin∠EAB===.10.解:(1)过点A作AH⊥PQ,垂足为点H,∵斜坡AP的坡度为1:2.4,∴,设AH=5a米,则PH=12a米,由勾股定理得,AP==13a(米),∴13a=39,解得a=3,∴AH=15米.答:坡顶A到地面PQ的距离为15米.(2)延长BC交PQ于点D,由题意得,CD=AH=15米,AC=DH,∵∠BPD=45°,∴PD=BD.设BC=x米,则BD=PD=(x+15)米,由(1)可得PH=12×3=36(米),∴AC=HD=PD﹣PH=x+15﹣36=(x﹣21)米,在Rt△ABC中,tan76°=≈4.01,解得x≈28,经检验,x≈28是原方程的解且符合题意.∴古塔BC的高度约为28米.11.解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.12.解:(1)过点C作CD⊥AB于点D,由题意得,∠CAD=30°,AC=600米,在Rt△ACD中,sin30°=,解得CD=300,∴点C到直线AB的距离为300米.(2)在Rt△ACD中,cos30°=,解得AD=,在Rt△BCD中,∠CBD=75°﹣30°=45°,CD=300米,∴BD=300米,BC=米,∴AB=AD+BD=(300+)米,AC+BC=(600+)米,∵600+﹣(300+)≈205(米),∴从景点A到景点B走栈道比原路线少走205米.13.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:由题意知,EG=BF=40米,EF=BG=12.88米,∠HAE=16°=∠AEG=16°,∠CAH =9°,在Rt△AEG中,tan∠AEG=,∴tan16°=,即0.287≈,∴AG=40×0.287=11.48(米),∴AB=AG+BG=11.48+12.88=24.36(米),∴HD=AB=24.36米,在Rt△ACH中,AH=BD=BF+FD=80米,tan∠CAH=,∴tan9°=,即0.158≈,∴CH=80×0.158=12.64(米),∴CD=CH+HD=12.64+24.36=37.00(米),答:综合楼的高度约是37.00米.14.解:(1)过点E作EF⊥地面DC,垂足为F,∵斜坡DE的坡度为i=1:,∴==,在Rt△EFD中,tan∠EDF==,∴∠EDF=30°,∴EF=ED=2(米),∴E点到地面DC的距离为2米;(2)过点E作EG⊥AC,垂足为G,则EF=GC=2米,EG=CF,∵=,∴DF=EF=2(米),∵DC=6米,∴EG=FC=DF+DC=(2+6)米,在Rt△AEG中,∠AEG=45°,∴AG=EG•tan45°=(2+6)米,在Rt△BDC中,∠BDC=60°,∴BC=CD•tan60°=6(米),∴AB=AG+GC﹣BC=2+6+2﹣6=(8﹣4)米,∴旗子的宽度AB为(8﹣4)米.15.解:(1)过点D作DE⊥BC,交BC的延长线于点E,∵在Rt△DCE中,cosα=,CD=15m,∴(m).∴(m).答:C,D两点的高度差为9m.(2)过点D作DF⊥AB于F,由题意可得BF=DE,DF=BE,设AF=xm,在Rt△ADF中,tan∠ADF=tan30°=,解得DF=x,在Rt△ABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE﹣CE=DF﹣CE=(x﹣12)m,tan60°==,解得,经检验,是原方程的解且符合题意,∴AB=++9≈24(m).答:居民楼的高度AB约为24m.16.解:(1)过点P作PD⊥AB于D点,∴∠BDP=∠ADP=90°,在Rt△PBD中,∠PBD=90°﹣45°=45°,BP=20海里,∴DP=BP•sin45°=20×=10(海里),BD=BP•cos45°=20×=10(海里),在Rt△P AD中,∠P AD=90°﹣60°=30°,∴AD===10(海里),∴AB=BD+AD=(10+10)海里,∴观测站A,B之间的距离为(10+10)海里;(2)补给船能在82分钟之内到达C处,理由:过点B作BF⊥AC,垂足为F,∴∠AFB=∠CFB=90°由题意得:∠ABC=90°+15°=105°,∠P AD=90°﹣60°=30°,∴∠C=180°﹣∠ABC﹣∠P AD=45°,在Rt△ABF中,∠BAF=30°,∴BF=AB=(5+5)海里,在Rt△BCF中,∠C=45°,∴BC===(10+10)海里,∴补给船从B到C处的航行时间=×60=30+30≈81.9(分钟)<83分钟,∴补给船能在83分钟之内到达C处.17.解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴,在Rt△BDE中,∴,∴(米),答:隧道AB的长为米.18.解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,∠AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.19.解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.由题意可知:CD=50米,DM=30米.在Rt△CDM中,由勾股定理得:CM2=CD2﹣DM2,∴CM=40米,∴斜坡CB的坡度=DM:CM=3:4;(2)设DF=4a米,则MN=4a米,BF=3a米,∵∠ACN=45°,∴∠CAN=∠ACN=45°,∴AN=CN=(40+4a)米,∴AF=AN﹣NF=AN﹣DM=40+4a﹣30=(10+4a)米.在Rt△ADF中,∵DF=4a米,AF=(10+4a)米,∠ADF=53°,∴tan∠ADF=,∴=,∴解得a=,∴AF=10+4a=10+30=40(米),∵BF=3a=米,∴AB=AF﹣BF=40﹣=(米).答:基站塔AB的高为米.20.解:(1)过点B作BF⊥AD于点F,如图:在Rt△ABF中,BF:AF=1:=3:4,AB=3米,设BF=3x米,则AF=4x米∴(3x)2+(4x)2=32,解得x=0.6,∴BF=3×0.6=1.8(米).答:真空管上端B到AD的距离约为1.8米;(2)在Rt△ABF中,cos∠BAF=,则AF=AB•cos∠BAF=3×cos37°≈2.4(米),∵BF⊥AD,CD⊥AD,BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=1.3米,在Rt△EAD中,tan∠EAD=,则AD=≈=3.25(米),∴BC=DF=AD﹣AF=3.25﹣2.4≈0.9(米),答:安装热水器的铁架水平横管BC的长度约为0.9米.。
人教版九年级下册数学解答题专题训练50题含答案(1)一、解答题∥.1.如图,⊙O中,弦AB CD(1)作图:作⊙O的直径EF,使得EF⊙AB;(要求尺规作图,保留作图痕迹,不写作法)(2)连接CE,DE,求证:CE=DE.⊙=CE DE .【点睛】本题考查垂径定理.熟练掌握垂径定理:“垂直弦的直径平分弦,并平分弦所对的弧”,中垂线的性质是解题的关键.2.某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下: (最高气温与需求量统计表)(1)求去年六月份最高气温不低于30⊙的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足2530T ≤<(单位:⊙),试估计这一天销售这种鲜奶所获得的利润为多少元?3.同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.4.在商场中,被称为“国货之星”某运动品牌的鞋子,每天可销售20双,每双可获利40元.为庆祝新年,对该鞋子进行促销活动,该鞋子每双每降价1元,平均每天可多售出2双.若设该鞋子每双降价x 元,请解答下列问题:(1)用含x 的代数式表示:降价x 元后,每售出一双该鞋子获得利润是 元,平均每天售出 双该鞋子;(2)在此次促销活动中,每双鞋子降价多少元,可使该品牌的鞋子每天的盈利为1250元?【答案】(1)(40-x ),()202x +;(2)15元【分析】(1)根据利用40 减去降价,可得每售出一双该鞋子获得利润,再用20加上多售出的数量,即可求解;(2)根据该品牌的鞋子每天的盈利为1250元,列出方程,即可求解.【详解】解:(1)根据题意得:每售出一双该鞋子获得利润是(40-x );平均每天售出()202x +双该鞋子;(2)由题意可列方程(40-x )(20+2x )=1250 x 2-30x +225=0, (x -15)2=0,解得x 1=x 2=15 ,答:每双鞋子降价15元,可使该品牌的鞋子每天的盈利为1250元.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.5.如图,AB 是O 的直径,PA 切O 于A ,OP 交O 于C ,连接BC . (1)如图⊙,若20P ∠=︒,求BCO ∠的度数;(2)如图⊙,过A 作弦AD OP ⊥于E ,连接DC ,若12OE CD =,求P ∠的度数.切O于A,,6.解方程:()2=2x-1-3607.已知:如图,⊙O的半径为5cm,在⊙O所在的平面内有A、B、C三点.(1)点A与⊙O的位置关系是______________.(2)线段OB的长等于_________cm.(3)线段OC与OB的大小关系是:OC______OB(填“<”、“>”或“=”).【答案】(1)点A在⊙O内;(2)点A在⊙O内;(3)>.【分析】根据点与圆的位置关系,结合图形解答即可.【详解】解:(1)由图可知点A 在⊙O 内; (2)由图可知点线段OB 的长等于5cm ; (3)由图可知OC>OB.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内. 8.黄山毛峰是中国十大名茶之一 ,产于安徽省黄山(徽州)一带,也称徽茶.有诗日:“未见黄山面,十里闻茶香”.某茶庄以600元/kg 的价格收购一批毛峰,物价部门规定销售单价不低于成本且不得超过成本的1.5倍,经试销过发现,日销量()y kg 与销售单价/()x kg 元的对应关系如下表:且y 与x 满足初中所学某种函数关系.(1)根据表格,求出y 关于x 的函数关系式;(2)在销售过程中,每日还需支付其他费用9000元,当销售单价为多少时,该茶庄日利润最大?最大利润是多少元?1-<10x<⊙当1100w随着x的增大而增大,x=⊙当900此时最大值为9.某班共30名同学参加了网络上第二课堂的禁毒知识竞赛(共20道选择题),学习委员对竞赛结果进行了统计,发现每个人答题正确题数都超过15题.通过统计制成了下表,结合表中信息,解答下列问题:(1)补统计表中数据:(2)求这30名同学答对题目的平均数、众数和中位数;(3)答题正确率为100%的4名同学中恰好是2名男同学和2名女同学,现从中随机抽取2名同学参加学校禁毒知识抢答大赛,问抽到1男1女的概率是多少?(2)平均数为()11631781891962041830⨯+⨯+⨯+⨯+⨯=, 答对18道的人数最多,所以众数为18,把数据从小到大排列,第1516、号数恰好在答对18道的人数中,所以中位数为1818182+=; (3)画树状图如下:所有等可能的情况有12种,其中一男一女有8种, ⊙恰好选到一男一女的概率82123==. 【点睛】本题考查利用统计图表获取信息的能力、列表法或树状图法求概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.小莉的爸爸一面利用墙(墙的最大可用长度为11m ),其余三面用长为40m 的塑料网围成矩形鸡圈(其俯视图如图所示矩形ABCD ),设鸡圈的一边AB 长为xm ,面积ym 2.(1)写出y 与x 的函数关系式;(2)如果要围成鸡圈的面积为192m 2的花圃,AB 的长是多少?【答案】(1) y=﹣2x 2+40x;(2)当AB 的长为8m 时,花圃的面积为192m 2【详解】分析:(1)、利用矩形面积公式建立面积与AB 的长的关系式;(2)、利用面积与AB 的长的关系式在已知面积的情况下,求AB 的长,由于是实际问题,AB 的值也要受到限制.详解:(1)、由题意得:矩形ABCD 的面积=x (40﹣2x ),即矩形ABCD 的面积y=﹣2x2+40x.(2)、当矩形ABCD的面积为192时,﹣2x2+40x=192.解此方程得x1=8,x2=12>11(不合题意,舍去).⊙当AB的长为8m时,花圃的面积为192m2.点睛:本题主要考查了二次函数的实际应用问题,属于基础题型.根据题目的条件,合理地建立函数关系式,会判别函数关系式的类别,从而利用这种函数的性质解题.11.解方程:⊙4x2-4x+1=0 ⊙x2+2=4x12.解方程:(1)x2﹣2x﹣2=0;(2)(x﹣2)2﹣3(x﹣2)=0.【答案】(1)x1=1+,x2=1﹣.(2)x1=2,x2=5.【详解】试题分析:观察各题特点,确定求解方法:(1)用配方法解方程,首先移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方式,右边是常数,即可求解;(2)用提公因式法解方程,方程左边可以提取公因式x﹣2,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解.解:(1)x2﹣2x+1=3(x﹣1)2=3x﹣1=±⊙x1=1+,x2=1﹣.(2)(x﹣2)(x﹣2﹣3)=0x﹣2=0或x﹣5=0⊙x1=2,x2=5.考点:解一元二次方程-配方法;解一元二次方程-因式分解法.13.如图.在方格纸上,有两个形状、大小一样的三角形,请指出如何将⊙ABC先用旋转、再用平移、最后用轴对称这三种图形变换,重合到⊙DEF上.【答案】见解析(答案不唯一)【分析】根据网格结构利用对应点的变化,即可得出答案.【详解】解:将⊙ABC绕点B逆时针旋转90°,再向上平移3单位长度,再向右平移10个单位长度,再把⊙ABC沿BC对折,即可重合到⊙DEF上.【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构与旋转的性质,准确找出对应点的位置.14.2(21)6(21)50x x+-++=(换元法)【答案】10x=,22x=【分析】设2x+1=a,原方程可化为2650a a-+=,解一元二次方程即可.【详解】解:设2x+1=a,原方程可化为2650a a-+=,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;⊙原方程的解为10x=,22x=.【点睛】本题主要考查换元法在解一元二次方程中的应用.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.15.先阅读下面的内容,再解决问题:例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.⊙m2+2mn+2n2﹣6n+9=0⊙m2+2mn+n2+n2﹣6n+9=0,⊙(m+n)2+(n﹣3)2=0⊙m+n=0,n﹣3=0⊙m=﹣3,n=3.根据你的观察,探究下面的问题:若x2+4x+4+y2﹣8y+16=0,求yx的值.16.我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm (锅口直径与锅盖直径视为相同),建立直角坐标系如图①所示(图②是备用图),如果把锅纵断面的抛物线记为1C,把锅盖纵断面的抛物线记为2C.()1求1C和2C的解析式;()2如果炒菜锅时的水位高度是1dm,求此时水面的直径;()3如果将一个底面直径为3dm,高度为3dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.数图象上点的坐标特征等,注意数形结合思想在解题中的应用.17.中秋节是我国传统佳节,圆圆同学带了4个月饼(除馅不同外,其它均相同),其中有两个火腿馅月饼、一个蛋黄馅和一个枣泥馅月饼.(1)请你根据上述描述,写出一个不可能事件.(2)圆圆准备从中任意拿出两个送给她的好朋友月月.⊙用树状图或列表的方法列出圆圆拿到两个月饼的所有可能结果;⊙请你计算圆圆拿到的两个月饼都是火腿馅的概率.由表可得共有12种情况;⊙由上表可知,圆圆拿到的两个月饼都是火腿馅的情况有2种情况,概率为P=21 126.【点睛】本题考核知识点:用列举法求概率.解题关键点:用树状图或列表的方法列出圆圆拿到两个月饼的所有可能结果.18.如图,四边形是正方形,BM=DF,AF垂直AM,点M、B、C在一条直线上,且⊙AEM与⊙AEF恰好关于所在直线成轴对称.已知EF=x,正方形边长为y.(1)图中⊙ADF可以绕点按时针方向旋转后能够与⊙ 重合;(2)写出图中所有形状、大小都相等的三角形;(3)用x 、y 的代数式表示⊙AME 与⊙EFC 的面积.【答案】(1)可以绕点A 按顺时针方向旋转90°后能够与⊙ABM 重合;(2)⊙AEM 与⊙AEF ,⊙ADF 与⊙ABM ;(3)A 、顺,90°,ABM ,;⊙AEM 与⊙AEF ,⊙ADF 与⊙ABM .【详解】试题分析:(1)利用旋转的定义求解;(2)利用轴对称性质可判断⊙AEM⊙⊙AEF ,利用旋转的性质得到⊙ADF⊙⊙ABM ; (3)由于⊙AEM⊙⊙AEF ,则EF=EM ,即x=BE+BM=DF+BE ,则根据三角形面积公式得到S △AME =xy ,然后利用S △CEF =S 正方形ABCD ﹣S △AEF ﹣S △ABE ﹣S △ADF 可表示出⊙EFC 的面积.解:(1)图中⊙ADF 可以绕点A 按顺时针方向旋转90°后能够与⊙ABM 重合; (2)⊙AEM 与⊙AEF ,⊙ADF 与⊙ABM ;(3)⊙⊙AEM 与⊙AEF 恰好关于所在直线成轴对称, ⊙EF=EM , 即x=BE+BM , ⊙BM=DF , ⊙x=DF+BE ,⊙S △AME =•AB•ME=xy ,S △CEF =S 正方形ABCD ﹣S △AEF ﹣S △ABE ﹣S △ADF =y 2﹣xy ﹣•y•BE ﹣•y•DF=y 2﹣xy ﹣•y (BE+DF )=y 2﹣xy ﹣•y•x=y 2﹣xy .故答案为A 、顺,90°,ABM ,;⊙AEM 与⊙AEF ,⊙ADF 与⊙ABM . 考点:旋转的性质.19.如图,四边形ABCD 内接于⊙O ,AB 为直径,点C 是BD 的中点,过点C 作⊙O 的切线交AD 的延长线于点H ,作CE AB ⊥,垂足为E .(1)求证:CH AD ⊥;(2)若5,4CD CE ==,求HD 的长. 【答案】(1)见解析 (2)HD 的长为3,然后证明(AAS)HDC EBC≌)证明:如图,连接,OC AC,和EBC中,90CEBBCB︒==∠,⊙(AAS)HDC EBC ≌, ⊙3HD BE ==. ⊙HD 的长为3.【点睛】本题考查了圆内角四边形,切线的性质,全等三角形的判定和性质,圆周角定理,平行线的判定,勾股定理等知识,熟练掌握圆的性质定理是解题的关键. 20.解方程: (1)()22 3 0x --= ; (2)2 3 10x x -+=; (3)2 5 6 =0x x -- ; (4)()()222 33 2x x +=+ . ⊙()23=--3521x ±=⨯ 该方程的解为(3)解:x()()61=0x x -+60,10x x -=+=所以该方程的解为126,1x x ==-. (4)解:()()222332x x +=+()()2223320x x +-+=()()233223320x x x x ++++--= ()()5510x x +-=550,10x x +=-=所以该方程的解为121,1x x =-=.【点睛】本题主要考查了一元二次方程的解法,灵活运用直接开平方法、公式法、因式分解法解一元二次方程成为解答本题的关键.21.已知抛物线y =ax 2+bx +c (a ≠0)经过O (0,0),A (n ,0)(n ≠0)和B (1,1)三点.(1)若该抛物线的顶点恰为点B ,求此时n 的值,并判断抛物线的开口方向; (2)当n =﹣2时,确定这个抛物线的解析式,并判断抛物线的开口方向;(3)由(1)(2)可知,n 的取值变化,会影响该抛物线的开口方向.请你求出n 满足什么条件时,抛物线的开口向下?经过22.某校现有10名志愿者准备参加周末科技馆志愿服务工作,其中男生4人,女生6人.(1)若从这10人中随机选取一人作为志愿者,选到女生的概率为;(2)若展厅引导工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23.某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系式;(2)若该经营部希望日均获利1350元,那么日均销售多少桶水?【答案】(1)p=﹣50x+850;(2)400【分析】(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x 2=13,根据条件7≤x ≤12确定合适的x 的值,然后代入解析式求出数量即可. 【详解】(1)设日均销售量p (桶)与销售单价x (元)的函数关系为:p =kx +b ,根据题意得750012250k b k b +=+=⎧⎨⎩,解得:k =﹣50,b =850,⊙日均销售量p (桶)与销售单价x (元)的函数关系为:p =﹣50x +850; (2)根据题意得一元二次方程:(x ﹣5)(﹣50x +850)﹣250=1350, 解得:x 1=9,x 2=13,⊙销售单价不得高于12元/桶,也不得低于7元/桶, ⊙x =13不合题意,舍去,将x =9代入p =﹣50x +850,得p =400,⊙若该经营部希望日均获利1350元,那么日均销售400桶水.【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.24.某果园准备修建如图所示的矩形温室种植某种蔬菜,要求矩形温室的长与宽之比为2:1,在温室内,沿左侧的内墙保留3米宽的通道,其它三侧沿内墙保留1米宽的通道,剩余灰色矩形为蔬菜种植区域.问:当矩形温室的长与宽各是多少时,蔬菜种植区域的面积为200平方米.【答案】矩形温室的长为24米,宽为12米【分析】设矩形温室的宽为x m ,则长为2x m ,根据矩形的面积计算公式即可列出方程求解.【详解】解:设宽为x 米,长为2x 米 由题意,可列式()()242200x x --= 解之,得12x =或-8(舍去) 则长为24米,宽为12米.答:矩形温室的长为24米,宽为12米.【点睛】本题考查一元二次方程的应用,运用含x 的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程是解题关键.25.如图,⊙ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出⊙ABC关于原点对称的⊙A1B1C1;通过作图,你发现了⊙ABC中任意一点(x,y)关于原点中心对称后的点坐标为.(2)已知点M坐标为(m,n),点P的坐标为(2,-3),则点M关于点P中心对称的点N的坐标为.【答案】(1)画图见解析,(-x,-y),(2)(-m +4,-n -6)【分析】(1)依据中心对称画图,即可得到⊙A1B1C1;根据关于原点对称的坐标变化规律,可得坐标;(2)将P点平移到原点,利用(1)的结论,求出N点坐标.【详解】解:(1)⊙ABC关于原点对称的⊙A1B1C1如图所示,(x,y)关于原点中心对称后的点坐标为(-x,-y)(2)将点P(2,-3)平移到原点,对应的点M坐标变为M1(m-2,n+3),M1(m-2,n+3)关于原点(即现在的点P)对称点M2的坐标为(-m+2,-n-3),再将点P平移回原来的位置,点M2的坐标变为(-m+4,-n-6),即点N的坐标为(-m+4,-n-6)【点睛】本题考查了中心对称的画法以及关于原点对称点的坐标变化规律,通过平移点P ,把关于任意一点成中心对称的问题转化为关于原点对称的问题是解决问题的关键,体现了数学的转化思想.26.已知关于x 的一元二次方程mx 2﹣(m +2)x +2=0. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根.27.已知二次函数()2621y x x m =-++与x 轴有交点.(1)求m 的取值范围;(2)如果该二次函数的图像与x 轴的交点分别为(x 1,0),(x 2,0),且2 x 1 x 2+ x 1+ x 2≥20,求m 的取值范围. 【答案】(1)m≤4;(2)3≤m≤4.【详解】试题分析:(1)由题意可知b 2-4ac≥0,代入相关数值计算即可得; (2)由根与系数的关系可得到关于m 的不等式,再结合(1)中的范围即可得.试题解析:(1)∵二次函数()2621y x x m =-++与x 轴有交点,⊙b 2-4ac≥0,即(-6)2-4(2m+1)≥0, ⊙m≤4;(2)由题意可:x 1+x 2=6,x 1x 2=2m+1, ∵2 x 1 x 2+ x 1+ x 2≥20, ∵2(2m+1)+6≥20, ∵m≥3, 又⊙m≤4, ⊙3≤m≤4.28.如图,在正方形ABCD 中,8cm BC =,动点P 分别从点B 点出发,以1cm/s 向点A 运动,动点Q 从点D 出发,以2cm/s 沿着AD 延长线运动,当点P 运动到A 点时,P ,Q 两点同时停止运动,设动点运动时间为()s t ,以AP ,AQ 为边的矩形APHQ 的面积为()2cm S .(1)写出S 与关于t 的函数表达式;(2)当t 时多少时,矩形APHQ 的面积最大?最大面积是多少? 【答案】(1)22864(08)S t t t =-++<≤(2)当t =2时,矩形APHQ 的面积最大,最大面积是72cm 2【分析】(1)利用两点运动的速度表示出AP ,AQ 的长,进而表示出矩形APHQ 的面积即可;(2)利用配方法求出函数的顶点坐标,即可得出答案. (1)解:由题意得PB t =cm ,2DQ t =cm ,(8)AP t ∴=-cm ,(82)AQ t =+cm ,2(8)(82)2864(08)S AP AQ t t t t t ∴=⋅=-+=-++<≤;(2)解:2228642(2)72S t t t =-++=--+,⊙当t =2时,矩形APHQ 的面积最大,最大面积是72cm 2.【点睛】此题是二次函数与矩形的综合题,主要考查了动点运动问题、矩形的面积、二次函数的应用,难度适中,正确表示出AP ,AQ 的长是解题的关键. 29.如图,已知△ABC 是直角三角形,DE⊙AC 于点E ,DF⊙BC 于点F. (1)请简述图⊙变换为图⊙的过程;(2)若AD=3,DB=4,则△ADE 与△BDF 的面积之和为________.【答案】(1)图⊙可以通过图形的变换得到图⊙,即把△ADE 绕点D 逆时针旋转90°得转中心的距离相等,对应点与旋转中心的连线的夹角等于旋转角”是解题的关键. 30.已知关于x 的方程2670x x k -++=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求方程的根. 【答案】(1)2k <;(2)12x =,24x =.【分析】(1)根据一元二次方程x 2-6x+k+7=0有两个不相等的实数根可得△=(-6)2-4(k+7)>0,求出k 的取值范围即可;(2)根据k 的取值范围,结合k 为正整数,得到k 的值,进而求出方程的根. 【详解】(1)⊙原方程有两个不相等的实数根, ⊙0∆>,即2(6)4(7)0k --+>, 解得2k <.(2)⊙2k <且k 为正整数, ⊙1k =, ⊙2680x x -+=, 解得12x =,24x =, 即方程的根为12x =,24x =.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.31.如图1,AB 是曲线,BC 是线段,点P 从点A 出发以不变的速度沿A ﹣B ﹣C 运动,到终点C 停止,过点P 分别作x 轴、y 轴的垂线分别交x 轴、y 轴于点M 、点N ,设矩形MONP 的面积为S 运动时间为(秒),S 与t 的函数关系如图2所示,(FD 为平行x 轴的线段)(1)直接写出k 、a 的值. (2)求曲线AB 的长l .(3)求当2≤t≤5时关于的函数解析式.32.利用公式法解方程:x2﹣x﹣3=0.33.小明、小林是实验中学九年级的同班同学.今年他俩都被枣阳一中录取,因成绩优异将被随机编入A 、B 、C 三个奥赛班,他俩希望能再次成为同班同学.请你用画树状图法或列表法求两人再次成为同班同学的概率. 【详解】34.用适当的方法解下列方程: (1)2310x x -+=(2)()231)1x x x -=--(【点睛】本题考查了解一元二次方程的应用,主要考查学生能否选择适当的方法解一元二次方程,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.35.(本题满分10分,其中第(1)4分、第(2)小题6分)某公司销售一种商品,这种商品一天的销量y(件)与售价x(元/件)之间存在着如图所示的一次函数关系,且40≤x≤70.(1)根据图像,求y与x之间的函数解析式;(2)设该销售公司一天销售这种商品的收入为w元.⊙试用含x的代数式表示w;⊙如果该商品的成本价为每件30元,试问当售价定为每件多少元时,该销售公司一天销售该商品的盈利为1万元?(收入=销量×售价)【答案】(1)y=-5x+600 (2)⊙-5x2+600x ⊙70【详解】试题分析:解:(1)设函数解析式为y=kx+b(k≠0) (1分)⊙函数图像过点(50,350),(60,300)⊙(1分)解得(1分)⊙y=-5x+600 (1分)(2)⊙w=(-5x+600)·x=-5x2+600x(3分)⊙(-5x2+600x)-(-5x+600)·30=10000 (1分)x2-150x+5600=0(x-70)(x-80)=0x1=70,x2=80(舍去) (1分)答:当售价定为每件70元时,该销售公司一天销售该商品的盈利为1万元. (1分)考点:一次函数的图像及性质,及销售问题.点评:学会看清一次函数的图像及其性质,由图像中有两个坐标点可设一次函数的解析式代入即可求出,这是常用的待定系数法.根据销售量与售价可求出收入,需要注意的售价的取值范围,本题是图形与文字结合的题,要从中读懂有关信息,就可解出,属于中档题,难度一般.36.已知关于x 的一元二次方程22(21)0x m x m m --+-= . (1)证明:不论m 取何值时,方程总有两个不相等的实数根; (2)若,设方程的两个实数根分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且,求y 与m 的函数解析式.m【详解】试题分析:(1)证明方程总有两个不相等的实数根,也就是证明判别式大于0;(2)解关于x 的一元二次方程22(21)0x m x m m --+-=可得1x m =,21x m =-,把1x ,2x 的值代入即可求得y 与m 的函数解析式.⊙.37.为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团,美术社团”活动.该校从全校600名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题(1)参加问卷调查的学生共有______人;(2)条形统计图中m的值为______,扇形统计图中α的度数为_______;(3)根据调查结果,可估计该校600名学生中最喜欢“音乐社团”的约有______人;(4)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.由上图或上表可知,共有12种等可能的结果,符合条件的结果有2种,故恰好选中甲、乙两名同学的概率为21126P ==. 【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,树状图或列表法求解概率等等,正确读懂统计图是解题的关键.38.如图,过F (0,-1)的直线y =kx +b (k ≠0)与抛物线214y x =-交于A (x 1,y 1),B (x 2,y 2)两点. (1)求b 值; (2)求x 1x 2的值;(3)若线段AB 的垂直平分线交y 轴于N (0,n ),求n 的取值范围.【答案】(1)-1;(2)-4;(3)n <-3.39.如图,等边△ABC的边长为3cm,点N在AC边上,AN=1cm.△ABC边上的动点M从点A出发,沿A→B→C运动,到达点C时停止.设点M运动的路程为x cm,MN 的长为y cm.小西根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小西的探究过程,请补充完整:(1)通过取点、画图、测量,得到了y与x的几组对应值;(2)在平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,画出该函数的图象;(3) 结合函数图象,解决问题:当MN=2cm时,点M运动的路程为cm.【答案】(1)1.73,2;(2)见解析;(3)2.3或4或6【分析】(1)根据表中x、y的对应值,可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可,图象见解析;(3)在所画的函数图象上找出函数值为2所对应的自变量的值即可.【详解】(1)通过取点、画图、测量可得x=-2时,y=1.73cm;x=4时,y=2 cm;故答案为1.73,2;(2)该函数的图象如图所示;(3)当y=2时所对应的点如图所示,x的值为2.3或4或6;【点睛】本题考查了函数值,函数的定义,对于函数概念的理解:有两个变量;一个变量的数值随另一个变量的数值的变化而变化;对于自变量的每一个确定的值,函数值有且只有一个值与之对应.40.如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊙AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD的形状,并说明理由.【答案】(1)证明见试题解析;(2)四边形AOCD是菱形;理由见试题解析【分析】(1)连接AC,由题意得AD CB DC==,⊙DAC=⊙CAB,即可证明AE⊙OC,从而得出⊙OCE=90°,即可证得结论;(2)四边形AOCD为菱形.由AD CB=,则⊙DCA=⊙CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);【详解】(1)连接AC,⊙点CD是半圆O的三等分点,⊙ AD CB DC==,⊙⊙DAC=⊙CAB,⊙OA=OC,⊙⊙CAB=⊙OCA,⊙⊙DAC=⊙OCA,⊙AE⊙OC(内错角相等,两直线平行)⊙⊙OCE+⊙E=180°,⊙CE⊙AD,⊙⊙OCE=90°,⊙OC⊙CE,⊙CE是⊙O的切线;(2)四边形AOCD为菱形.理由是:⊙AD CB=,⊙⊙DCA=⊙CAB,⊙CD⊙OA,又⊙AE⊙OC ,⊙四边形AOCD 是平行四边形, ⊙OA=OC ,⊙平行四边形AOCD 是菱形.41.已知∆ABC 的三个顶点的坐标分别为A (-5,0)、B (-2,3)、C (-1,0).(1)画出∆ABC 关于坐标原点O 成中心对称的A B C ''';(2)将∆ABC 绕坐标原点O 顺时针旋转90°,画出对应的A B C ''''''△;(3)若以A 、B 、C 、D 为顶点的四边形为平行四边形,则点D 坐标为 . 【答案】(1)见解析 (2)见解析(3)(2,3)、(-6,3)、(-4,-3)【分析】(1)根据关于原点对称的的点的横、纵坐标都变为相反数即可解答; (2)根据网格结构找出点A 、B 、C 绕原点顺时针旋转90度后的点,再顺次连接即可 (3)根据平行四边形的对边平行且相等即可解答 (1)如图A B C '''即为所求 (2)如图A B C ''''''△即为所求(3)以A 、B 、C 、D 为顶点的四边形为平行四边形,如图点D 的坐标为(2,3)、(-6,3)、(-4,-3) 故答案为(2,3)、(-6,3)、(-4,-3)【点睛】此题考查利用旋转变换作图,平行四边形的性质,平移变换作图,熟练掌握网格结构准确找出对应点的位置时解题关键. 42.已知二次函数23y (t 1)x 2(t 2)x 2=++++在x 0=和x 2=时的函数值相等. (1)求二次函数的解析式;(2)若一次函数y kx 6=+的图象与二次函数的图象都经过点A (3m)-,,求m 和k 的值;(3)设二次函数的图象与x 轴交于点B,C (点B 在点C 的左侧),将二次函数的图象在点B,C 间的部分(含点B 和点C )向左平移n(n 0)>个单位后得到的图象记为C ,同时将(2)中得到的直线y kx 6=+向上平移n 个单位.请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围.。
专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.数y =kx(x >0)的图象交于点C (6,m ).(1)求直线和反比例函数的表达式;(2)连接OC ,在x 轴上找一点P ,使S △POC =2S △AOC ,请求出点P 的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ≠)的图象与反比例函数2y x=(2k 为常数,且20k ≠)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.【答案】(1)8n =- (2)4m =或4-【分析】(1)由待定系数法求出反比例函数的解析式,再由B 点坐标计算求值即可; (2)根据函数图象交点的意义,利用一次函数和反比例函数构建一元二次方程,令0∆=,4.一次函数y =﹣12x +3的图象与反比例函数y =x的图象交于点A (4,1).(1)画出反比例函数y =m x 的图象,并写出﹣12x +3>m x的x 取值范围; (2)将y =﹣12x +3沿y 轴平移n 个单位后得到直线l ,当l 与反比例函数的图象只有一个交点时,求n 的值.1m则()26=--解得12n =-当l 与反比例函数的图像只有一个交点时,则【点睛】本题考查了反比例函数、一次函数的综合.解题的关键在于了解不等式的意义,一次函数平移后解析式的表达,将交点转化为二次方程根的个数.易错点在于求解集时落解.5.如图:一次函数的图象与反比例函数y x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值. )一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.47.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2my x=分别交于点C ,D ,作CE x ⊥轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式; (2)在y 轴上存在一点P ,使ABPCEOS S=,请求出P 的坐标.12ABPCEOSSCE ==243a ⨯-⨯=,解出S=CEOS=3ABPP(0,BP=S=ABPa-22解得:a=交于A,B两点,其中A的坐标为8.如图,在平面直角坐标系中,直线y= x与双曲线yx(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与∵C相切,求m的值(3)求线段OQ长度的最大值.(3)【点睛】本题主要考查了圆与函数综合,待定系数法求函数解析式,勾股定理,三角形中位9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(x<0)的x图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且∵OCB与∵OAB的面积比为1:2.(1)求k和b的值;(2)将∵OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.y x=-+y∴=时,(5,0)B∴OCB∆与C∴为AB(1,6)A-(2,3)C∴.如图,过点将OBC∆C'在第二象限,(3,2)C∴'-∴点C'是落在函数【点睛】本题考查了待定系数法求函数的解析式,三角形的面积,线段中点坐标公式,全等10.如图,一次函数y=-x+b与反比例函数y=x(x> 0)的图象交于点A(m,4)和B(4,1)(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD∵x轴于点D,连接OP,若∵POD的面积为S,求S的最大值和最小值.)一次函数)一次函数14n≤≤S12 =-1 2a=-11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数y x=.(1)当函数my x=的图象经过点Q 时,求m 的值并画出直线y =-x -m . (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x m ⎧>⎪⎨⎪<--⎩(m <0),求m 的取值范围.(2)12.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,2),B(﹣2,xn)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.A,(1,2)∴△的ACPACP的面积是13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(∵)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10∵时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20x小时,蔬菜才能避免受到伤害.本题考查一次函数和反比例函数的应用,.病人按规定的剂量服用某种药物,测得服药后值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题. (1)求当02x ≤≤时,y 与x 的函数关系式; (2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =8k , 与x 的函数关系式为第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x 时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?5100x 时,设经过点(5,0),(100,19)019b =+= 0.21k b =⎧⎨=-⎩解析式为0.2y x =经过点堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.空气中的含药量y(毫克)与药物点燃后的时间x(分)满足函数关系式y=2x,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?【答案】(1)见解析(2)温y (∵)与开机时间x (分)满足一次函数关系,当加热到100∵时自动停止加热,随后水温开始下降,此过程中水温y (∵)与开机时间x (分)成反比例关系,当水温降至20∵时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ≤≤时,求水温y (∵)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少∵?x时,20小丽散步70【点睛】本题考查了待定系数法求一次函数解析式、数值,解决本题的关键是熟练掌握待定系数法的应用.。
九年级数学下册 第一单元检测题 人教新课标版温馨提示:抛物线2(0)y ax bx c a =++≠的顶点坐标公式为(ab 2-,abac 442-)一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在答题卷中对应的位置.1.在0,-2,1,-3这四个数中,绝对值最小的数是 ( )A .-3B .1C .-2 D.0 2.计算2232x x -的结果是( )A .1B .xC .2x D .2x -3.下列图案中,既是轴对称图形又是中心对称图形的是( )4.如图,直线AB 、CD 交于点O ,OE ⊥AB ,//B E C D ,若∠COE =550, 则∠OBE 的度数是( )A .300B .350C .400D .450 5.下列调查中,适宜采用普查方式的是( )A .审查一本书稿有哪些科学性错误所做的调查B .为了了解我市小学生的身体肥胖问题的调查C .广电总局对各电视台电视节目收视率的调查D .为了了解某一地区市民对房地产价格认可度的调查6.如图所示,⊙O 是A B C ∆的外接圆.若︒=∠35ACB ,则O B A ∠ 的度数等于( )A .350B .550C .700D .1100 7.函数2-=x x y 的自变量x 的取值范围是( )A .x ≠2B .x ≠0 C.x ≠0 且x ≠2 D .x>28.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依此规律,第10个图形有小圆的个数是( )A .51个 B. 121个 C. 114个 D. 60个9.解放军某部队乘车..前往灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行..前往.若部队离开驻地的时间为t (小时),离开驻地行驶的路程为S (千米),则能反映S 与t 之间函数关系的大致图象是( )10.如图,二次函数2y ax bx c =++的图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴交于点C ,下面五个结论:①0abc <;②20a b +=; ③0a b c ++<;④3c a =-;⑤只有12a =时,ABD ∆是等腰直角三角形,其中正确的结论有( ) A.2个B.3个C.4个D.5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案的代号填入答题卷中对应的位置.11.《重庆市国民经济和社会发展第十二个五年规划纲要>提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为_________ 亿.12.业务员小王今年1月至6月的手机话费(单位:元)是:60,68,78,70,66,80,则这组数据的中位数是__________. 13.若△ABC∽△DEF,△ABC 与△DEF 的面积比为9∶25,则△ABC 与△DEF 的周长比为__________. 14.在半径为6的圆中,1200的圆心角所对的弧长等于_________.(结果保留π)15.从1,2,3,……,1 4,1 5这1 5个整数中任取一个数记作a ,那么关于x 的方程1524ax x =-的解为整数的概率为___________. 16.甲、乙、丙三人拿出同样多的钱,合伙订购同静规格的若干件商品,商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙_________元.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 17.计算:2201101(1)(53π-⎛⎫--+-⨯- ⎪⎝⎭-.18.解一元一次不等式: 2213x x +-≥,并把解集在数轴上表示出来.19.如图,在A B C ∆与ABD ∆中,,.BC BD ABC ABD =∠=∠点E 为BC 中点,点F 为BD 中点,连接AE ,AF .求证:AE=AF.4题图6题图22题图20.如图,在ABC ∆中,AD 是B C 边上的高,∠C=300 ,AC=6,AB=4,求BD 的长. (结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:1)1212(2-÷+--+a a a aa ,其中a 是方程121=--xx x 的解.22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 、y 轴交于点A 、B ,与反比例函数在第一象限内的图象交于点C ,CD ⊥x 轴于点D ,OD=3,点A 为OD 的中点,3tan 2O B D ∠=.(1)求直线AB 和该反比例函数的解析式; (2)求四边形O B D C 的面积.23.交警对“餐饮一条街”旁的一个路口在某一时段内来往车辆的车速情况进行了统计,并制成了如下两幅不完整的统计图:(1)这些车辆行驶速度的平均速度是 千米/时; (2)并将该条形统计图补充完整;(3)该路口限速60千米/时.经交警逐一排查,在超速的车辆中,车速为80千米/时的车辆中有2位驾驶员饮酒,车速为70千米/时的车辆中有1位驾驶员饮酒,若交警不是逐一排查,而是分别在车速为80千米/时和70千米/时的车辆中各随机拦下一位驾驶员询问,请你用列表法或画树状图的方法求出所选两辆车的驾驶员均饮酒的概率.24.已知:如图,四边形ABCD 中AC 、BD 相于点D ,AB=AC ,AB AC ⊥,BD 平分A B C ∠且B D C D ⊥OE BC⊥ 于E ,OA=1. (1)求OC 的长;(2)求证:BO=2CD .五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.我市某服装厂生产的服装供不应求,A 车间接到生产一批西服的紧急任务,要求必须在12天内完成。
29.1投影专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C 的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.(结果保留整数,参考数据:3 1.7)专题二灯光下的投影4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).6.如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.(1)当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.(2)当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.(3)上面(1)、(2)问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四 规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m 的小明(AB )的影子BC 的长是3 m ,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB =6 m .(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11n 到B n 处时,其影子B n C n 的长为 m (用含n 的代数式表示).【知识要点】1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点(点光源)发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【温馨提示】1.平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.区别联系光线 物体与投影面平行时的投影平行投影 平行的投影线 全等都是物体在光线的照射下,在某个平面内形成的影子(即都是投影)中心投影从一点出发的投影线放大(位似变换)3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化. 4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.【方法技巧】1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置. 3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.2.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6 m ,CH =3DH ≈2.7 m.由题意可知10.8DH HE =, ∴HE =0.8DH =1.28 m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵8.01=AE AB ,所以168.078.128.0≈==AE AB (m).4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.5.解:如图所示.(1)点P 就是所求的点;(2)EF 就是小华此时在路灯下的影子.6.解:(1)如图,线段AC 是小敏的影子.(2)过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ . 在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3(米). ∵tan55°=错误!未找到引用源。
相似三角形判定和性质专项训练1、如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.2、如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.3、如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F 为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.4、如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB 上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.5、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.6、在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.7、如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.8、如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.9、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.10、如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.11、如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.12、如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.13、如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.14、如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.15、四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE •CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.16如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M 顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.17、如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);18、已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC 边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.相似与圆1、如图,DB为半圆的直径,A为BD延长线上的一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知AC=12,BC=9,求AO的长.2、如图,在Rt△ACB中,∠ACB=90°,O是AC边上的一点,以O为圆心,OC 为半径的圆与AB相切于点D,连结OD.(1)求证:△ADO∽△ACB;(2)若⊙O的半径为1,求证:AC=AD·BC.3、如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE∶EB=1∶2,BC=6,求AE的长.4.如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD∶OC的值.5.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°.过点B作⊙O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=34,求DE的长;(3)连结EF,求证:EF是⊙O的切线.6.如图,AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F 在AE的延长线上,且BE=EF,线段CE交弦AB于点D.(1)求证:CE∥BF;(2)若BD=2,且EA∶EB∶EC=3∶1∶5,求△BCD的面积.7.如图,AB是⊙O的直径,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连结AC,BC,PB∶PC=1∶2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由.8.如图,AC是⊙O的直径,BC是⊙O的弦,P是⊙O外一点,连结PA,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连结OP,若OP∥BC,且OP=8,⊙O的半径为22,求BC的长.9.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连结BD,CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.10、如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.证明:(1)∠D=∠AEC;(2)OA2=OD·OF.相似三角形动点问题1.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.2.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒,t为何值时,DP⊥AC.3.如图,在平面直角坐标系内,已知点A(0,6),点B(8,0).动点P从A 开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似,并求出此时点P的坐标.4.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向终点B运动,速度为1cm/s,同时点Q从点B出发沿B﹣C﹣A方向向终点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC,BC的长.(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围.(3)x=5秒时,在直线PQ上是否存在一点M,使△BCM的周长最小,若存在,求出最小周长,若不存在,请说明理由.5.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C 重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.6.如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a=,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.7、如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.8、如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.。
三垂直模型相似三角形(教学设计)广州市东晓中学王智君一、学习目标1、掌握相似三角形的性质和判定,并能熟练运用三垂直模型解决问题。
2、经历运用相似三角形的基础知识解决的过程,体验图形的运动以及方程等数学思想。
二、授课(一)【导入新课】相似三角形在初中的应用非常广泛,用于线段、面积的计算;用于线段关系式、线段的数量关系、位置关系的证明。
前段时间我们学习了相似三角形的A字形、8字形等模型的应用,今天我们继续探索相似三角形的性质和应用。
(二)【探究活动】【探究1】构造格点三角形请在图1中画一个直角三角形ABC,满足条件:(1)以线段AC为斜边;(2)顶点B落在线段MT的格点上。
师问:怎样画出这样一个直角三角形?生答:用直角三角板,把直角顶点B放在线段MT的任一格点上,以点B为顶点旋转三角板,若使得两直角边与点A、点C同时重合,则三角形ABC为直角三角形了。
师问:你能确定你这个三角形一定是直角三角形吗?生答:利用格点图,易知AC=5,AB=5, BC=25,在利用勾股定理的逆定理,可以知道AB²+BC²=AC², 所以ΔABC必定为直角三角形。
师说:由于题目要求∠ABC恒为90°,由此我们还可以考虑直径所对的圆周角也恒为90°。
那么我们以线段AC为直径作圆,圆弧与线段MT交点,便为点B.师问:今天我们要研究不是ΔABC,而是ΔAMB与ΔBTC。
请问ΔAMB与ΔBTC相似吗?生答:相似。
因为夹角为直角,两边对应成比例。
【探究2】构造三垂直模型师问:我把图2中格线擦掉后,条件不变,依然在正方形中,且∠ABC=90°,请问图3中ΔAMB 与ΔBTC这两个三角形还相似吗?依据呢?生答:相似,由于∠1+∠2=90°且∠1+∠2=90°,所以∠1=∠3,又因为∠M =∠T = 90°,因此这两个三角形相似。
师说:很好。
我们利用同角的余角相等,易于得出这两个三角形有两组角相等,所以相似。
1 专题训练三:解直角三角形的运用
类型1:特殊角三角函数值
1.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为( C )
A. 13 B. 12 C.33 D.32
2.在△ABC中,若|sinA-12|+(33-tanB)2=0,则∠C的度数为( D ) A.30° B.60° C.90° D.120°
3.如图,在直角三角形ABC中,∠C=90°,AC=53 ,AB=10,则∠A= 30 度.
4.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)> tanα+tanβ.(填“>”“=”“<”)
5.计算:sin604cos452tan60tan45
解:原式=3253242322122 6.计算:(2016·鄂州)01132(20151)2sin452cos30()2015 解:原式=(3-2)+1+2×22-2×23+2015 =3-2+1+2-3+2015 =2016
类型2:三角函数的应用举例:仰角、俯角问题、方位角问题 7.(2016•济南)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为
60°,若学生的身高忽略不计,3 ≈1.7,结果精确到1m,则该楼的高度CD为( B )
第3题图 第4题图 2
A.47m B.51m C.53m D.54m 8.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为( A )
A.302海里 B.303 海里 C.60海里 D.306海里 9.(2016•重庆B)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( D )(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45) A.30.6 B.32.1 C.37.9 D.39.4 10.(2016•阜新)如图,在高出海平面120m的悬崖顶A处,观测海面上的一艘小船B,并测得它的俯角为
30°,那么船与观测者之间的水平距离为 1203 米.(结果用根号表示)
11. 如图,一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处,上午12时行到C处,测得灯塔恰好在它的北偏西60°, 9 时轮船离灯塔距离最近. 12.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为 18 m.
13.(2016·茂名)如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,
观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°,已知教学楼AB高4米. (1)求教学楼与旗杆的水平距离AD;(结果保留根号) (2)求旗杆CD的高度. 解:(1)∵教学楼B点处观测到旗杆底端D的俯角是30°,
第8题图 第11题图 第7题图
第13题图 第9题图
第10题图 第12题图 3
∴∠ADB=30°, 在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m, ∴AD===4(m), 答:教学楼与旗杆的水平距离是4m; (2)∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4m, ∴CD=AD•tan60°=4×=12(m), 答:旗杆CD的高度是12m. 14.(2016·绍兴)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2. (1)求∠CBA的度数. (2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).
解:(1)由题意得,∠BAD=45°,∠BCA=30°, ∴∠CBA=∠BAD﹣∠BCA=15°; (2)作BD⊥CA交CA的延长线于D, 设BD=xm, ∵∠BCA=30°,
∴CD==x, ∵∠BAD=45°, ∴AD=BD=x, 则x﹣x=60,
解得x=≈82, 答:这段河的宽约为82m.
15.(2016·重庆一中)如图,斜坡AB长130米,坡度1i︰2.4,BCAC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE. (1)若修建的斜坡BE的坡角为30,求平台DE的长;(结果保留根号)
第15题答图 HGF53°26.5°BDPMQECNA
第15题图 53°26.5°BDP
M
QEC
N
A
第14题答图 4
(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M的仰角为26.5,他沿坡面DA走到坡脚A处,然后向大楼方向继续行走10米来到P处,测得广告底部N的仰角为53,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、
Q在同一条直线上,求广告MN的长度.
(参考数据:sin26.50.45,cos26.50.89,tan26.50.50, sin530.80,cos530.60,tan531.33)
解:(1)过D作DFBC,垂足为F ∵ACBC ∴//DFAC ∵D为AB中点 ∴F为BC中点
在RtABC△,1tan2.4BCiBACAC 设5BCx,12ACx,则 2213130ABACBCx
∴10x 即 50BC,120AC ∴1602DFAC,1252BFBC ∵在RtBEF△中,30BEF ∴253tanBFEFBEF
∴60253DEDFEF ∴平台DE的长为(60253)米 (2)过D作DGCQ、DHMQ,垂足分别为G、H ∴四边形DGQH为矩形
∴1252DGHQCFBC ∵ACBC,DGCQ ∴//DGBC ∵D为AB中点 ∴G为AC中点即60AG ∴100DHGQAGAPPQ ∵在RtDHM△中,tan26.550MHDH 在RtNPQ△中,tan5339.9NQPQ ∴502539.935.1MNMHHQNQ ∴广告MN的长度约为35.1米.
类型3:三角函数与函数的综合运用(反比例) 16.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴
第16题图 5
交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2). (1)求△AHO的周长; (2)求该反比例函数和一次函数的解析式.
解:(1)由OH=3,tan∠AOH=,得 AH=4.即A(﹣4,3). 由勾股定理,得
AO==5, △AHO的周长=AO+AH+OH=3+4+5=12; (2)将A点坐标代入y=(k≠0),得 k=﹣4×3=﹣12, 反比例函数的解析式为y=;
当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2). 将A、B点坐标代入y=ax+b,得
,
解得, 一次函数的解析式为y=﹣x+1. 17.(2016·攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3, (1)求反比例函数y=的解析式; (2)求cos∠OAB的值; (3)求经过C、D两点的一次函数解析式. 解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m), ∵点C为线段AO的中点, ∴点C的坐标为(2,). ∵点C、点D均在反比例函数y=的函数图象上,
第17题图 6
∴,解得:. ∴反比例函数的解析式为y=. (2)∵m=1, ∴点A的坐标为(4,4), ∴OB=4,AB=4. 在Rt△ABO中,OB=4,AB=4,∠ABO=90°, ∴OA==4,cos∠OAB===. (3))∵m=1, ∴点C的坐标为(2,2),点D的坐标为(4,1). 设经过点C、D的一次函数的解析式为y=ax+b,
则有,解得:. ∴经过C、D两点的一次函数解析式为y=﹣x+3. 类型4:三角函数与方程、不等式的综合运用 18.关于x的一元二次方程2x2-4xsinα+1=0有两个相等的实数根,求锐角α的度数. 解:∵关于x的一元二次方程2x2-4xsinα+1=0有两个相等的实数根, ∴△=(-4sinα)2-4×2×1=0,
∴21sin2,即2sin2 ∴锐角α=45°. 19.(2016•下城区)为积极响应“喜迎G20峰会,当好东道主”号召,交管部分准备在一条60米长,11.8米宽的道路边规划停车位,按每辆车长5米,宽2.5米设计,停车后道路仍有不少于7米的路宽保证两车可以双向通过,如图设计方案1:车位长边与路边夹角为45°,方案2:车位长边与路边夹角为30°.() (1)请计算说明,两种方案是否都能保证通行要求? (2)计算符合通行要求的方案中最多可以划出几个这样的停车位? (3)若车位长边与路边夹角为α,能否设计一个满足通行要求且停车位更多的新方案?若能,写处此时α满足的一个关系式;若不能,请说明理由.
解:(1)方案1:在直角△ADE中,DE=AD•cos45°=2.5×=(米),