小半径曲线桥梁设计论文
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
摘要目前二级及二级以下的公路建设量比较大,其所经过的地形比较复杂多样,受到的约束比较多,因此线形多样且施工复杂。
本文主要阐述了小半径桥梁上部施工的一些注意事项,分别从线形要求、梁的预制和架桥机的运用几个角度进行说明,文中使用的施工方法都是当今比较常用的工艺,具有普遍性。
关键词:小半径;超高横坡;梁长调整;翼板曲线化目录第一章工程概况 (4)第二章线形要求 (5)2.1平曲线 (5)2.1.1设计图纸架梁方式 (5)2.1.2优化后的架梁方案 (7)2.1.2.1运梁车的行走方便与安全 (7)2.1.2.2墩顶连续段主筋的布设 (8)2.2曲线内超高横坡的设置与形成 (8)2.2.1双向横坡向单向横坡过渡 (8)2.2.2桥面横坡的形成 (9)2.2.2.1通过调整支座垫石的高度来实现 (9)2.2.2.2调整T梁翼板 (11)2.2.2.3对桥面铺装的厚度增减 (10)第三章曲线段T梁的预制 (12)3.1梁长的调整 (12)3.2翼缘板平弯调整 (12)3.3T梁预应力张拉 (12)第四章T梁的安装及架桥机的运用 (13)4.1预制梁的吊装 (13)4.1.1梁顶标高的控制 (13)4.1.2梁底标高的控制 (13)4.1.3T梁垂直度与轴线的控制 (13)4.2架桥机的运用 (13)结论 (15)致谢 (16)参考文献 (17)引言近些年来,随着国家经济的发展,交通事业也取得了长足的进步。
国家主要干线、省际快速通道基本已经建设完成,目前更多的投资放在了与干线公路连接的支线及连接线上。
这些支线或连接线一般都分布与干线两侧,受地形和人文环境的影响较大,加之其等级一般都低于或等于二级,因此很容易出现小半径曲线路段,特别是很多桥梁正好处在曲线段,这就给桥梁的施工,尤其是桥梁上部构造的施工带来了很多的问题。
本文就小半径曲线段上桥梁上部构造施工中的一些体会和大家进行一些探讨。
从线形要求、梁的预制、架桥机的运用三个方面进行阐述。
小半径曲线桥梁设计分析摘要:在进行市政桥梁工程建设时,小半径曲线桥梁经常会出现病害问题,导致桥梁工程应用寿命不断缩减。
以我国某一市政桥梁建设为例,在对病害问题进行分析时可以发现,这一项目原设计方案存在较多缺陷问题,因为桥梁设置形式与地理条件存在冲突,导致项目建设完成之后,内部缺陷问题比较严重,但未得到及时发现和解决,影响了桥梁项目运营效果。
企业也未对其进行及时维护,导致问题变得更加严重,因此需要做好桥梁改造处理。
本文就小半径曲线桥梁设计进行相关分析和探讨。
关键词:小半径;曲线;桥梁;设计分析近阶段我国在进行市政桥梁工程建设时,施工规模正在不断扩大,建设范围也在不断增加,这对桥梁设计工作开展提出了更高要求。
设计人员在对各种桥梁工程进行设计时,需要对区域内情况进行全面了解,在此基础上制作最优设计方案。
尤其是在对小半径曲线桥梁进行设计时,需要引进更加先进设计思维和技术,才能提高设计方案应用可行性和经济性。
设计人员还要做好传统小半径曲线桥梁设计改造,确保所有桥梁工程在运用时都能发挥更好效果,为我国居民出行提供更加优质服务[1]。
一、项目案例以我国某一市政小半径曲线桥梁项目设计为例,项目施工区域跨越山区小河沟,设计车道为三车道,荷载为公路一级,安全等级为二级,设计基准期为100年,桥面宽度为11.5米,环境类别为一级,结构重要性系数为1.0,桥梁位于平曲线上,圆曲线半径60米。
在对项目进行实际设计时,采用了重力式桥台和桩基承台基础,上部结构设计为16米左右,钢筋混凝土连续箱梁采用了现浇作业方式,桥梁长度为74米,使用了梁格法计算方式,各项参数验算均满足项目规定要求[2]。
二、小半径曲线桥梁设计方法(一)明确桥梁受力特点在对本项目进行设计时,会受到离心力作用影响,导致结构受力不均匀,因为桥梁支座外侧与内侧反力相差比较大,不同墩柱竖向力存在较大差异,桥梁墩顶不仅会受到与直线桥相同内力有效,还会因为运用力张拉和离心力作用影响,引发径向力。
小半径曲线上的预制小箱梁设计施工技术研究摘要:位于小半径曲线上的预制装配式小箱梁,在设计施工中均有比较大的困难,本文以实际工程为例,在设计中通过调整悬臂长度、在施工中通过吊模后浇变化段的悬臂及护栏,可以实现节约工期,在类似工程中具有一定的借鉴意义。
关键词:小半径曲线桥;预制小箱梁中图分类号:文献标志码:文章编号:0 引言在城市桥梁建设过程中,由于受到城市建设的制约,平面线形无法完全保证直线或较大的曲线半径。
位于小半径曲线上的桥梁,若采用现浇方案,则结构不受限制,但很多地方由于工期、施工场地等影响,无法采用现浇方案,只能采用预制装配方案。
简支变连续梁箱梁桥是使用范围较多、技术成熟的桥梁形式选择。
但由于预制小箱梁需要在预制场台座上批量预制,所以一般采用直线形,梁长、外形、悬臂长度均一致才容易批量生产。
但若桥梁位于小半径曲线上,桥梁外形难以做到采用直线,悬臂长度也随着曲线变化。
本文以车站南路桥梁为例,从小半径曲线预制小箱梁的设计、施工方面进行研究,提出针对性的设计及施工措施,以期对类似桥梁的设计、施工具有一定的借鉴意义。
1 工程概况车站南路位于长沙市雨花区,北起劳动路,南至桔园立交,道路全长1.77km,其中劳动路~洞井路以西为新建路段,洞井路以西~桔园立交为提质改造路段。
道路等级为城市次干道,设计速度为40km/h。
车站南路的建设对拉通城市断头路具有重要的意义。
本项目新建桥梁全长540m,跨径布置为:3-4×30m+2-3×30m,全桥共五联,受拆迁影响,桥位范围内拆迁不连续,致使作业面不能连续,上部结构梁体无法采取现浇方式,故采用装配式预应力混凝土简支变连续小箱梁结构,下部采用盖梁柱式墩、端承桩基础。
桥型横断面见图1。
2 桥梁情况介绍桥梁东临京广铁路,西侧为住宅小区,平面条件受限,部分桥梁处于R=350m的小半径右偏曲线上(图2),给设计和施工均带来较大的挑战。
桥梁标准宽度为28m,分两幅设计。
小半径曲线梁桥的设计选型与结构分析随着社会经济的发展和人们对景观的要求不断提升,城市中大量涌现出具有景观要求的桥梁。
但在受到城市交通功能和地形条件的限制时,时常会出现小半径的曲线桥梁。
这种小半径的曲线桥梁具有斜、弯、异形等特点,给桥梁设计和构造处理造成很大困难。
文章结合中山小榄镇某小区内车辆专用桥的设计,对小半径曲线梁桥的设计选型及结构分析进行探讨。
标签:Midas/Civil;小半径曲线梁桥;设计选型;结构分析1 工程概述本工程位于中山市小榄镇一新建小区内,供小区车辆进出车库专用,沿线跨越三条河涌。
由于前期建设方已委托进行景观专业设计,按照景观设计要求,进行桥梁结构设计。
同时根据现场地形条件、施工技术拟定桥梁方案。
桥梁全长219m,跨径多处于20m左右,全桥4联(21.088+18.521)+(17.994+17.225)+(环岛:16.062+7.172+9.671+9.335+12.379)+(20.387+19.980)m。
共桥梁全宽8.5m,其中环岛处最小曲线半径R=15.7m。
桥梁上部结构采用现浇钢筋混凝土,下部采用桩柱式桥墩、埋置式桥台、钻孔灌注桩基础。
全桥平面图如下所示。
上部结构箱梁横断面采用单箱双室,梁高140cm,箱梁顶宽830cm,两端悬臂各设10cm后浇段同护栏一起浇筑,底宽730cm,翼缘板悬臂长度100cm。
顶板等厚20cm。
底板厚度为40cm~20cm,腹板厚度60~40cm,横断面如下图所示:2 计算参数2.1 设计标准设计荷载:城-B级;温度荷载:结构体系温差±25度,梯度温度按照规范沥青铺装指标加载。
桥面净宽:7.5m。
设计车速:40km/h2.2 主要材料及计算参数3 结构选型与计算分析运用Midas/Civil软件,对结构各联均建立模型进行分析,尤其是第3联环岛,最小半径仅有17.5m,常规做法很难满足抗扭承载力要求,必须通过计算通过一系列构造措施进行调整。
144研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2023.03 (下)由于曲线桥预应力、温度效应、活荷载效应等因素的影响,与常规的线性、半径桥相比,其受弯扭耦合、翘曲等因素影响较大,对其上、下结构的构造和加固处理产生了较大的难度,而弯曲桥的特殊力学现象是由桥长、跨、半径、墩台、支座等因素综合影响的结果。
1 小半径曲线桥梁设计的力学特性曲线梁桥的受力性能,其弯曲半径对梁体的弯曲有一定的影响,从而使其发生弯曲,从而使其既受到弯矩的作用,又受到扭力的作用,这就是弯扭耦合。
弯曲扭转耦合的结果是,弯曲箱梁桥的受力性能主要表现在下列方面。
(1)外梁外力不均匀因外梁外力过大、内梁卸载等原因,导致梁桥外缘的弯曲应力比内缘大,外缘的变形比内缘大,内梁和外梁的内力分布不均匀,内梁和外梁的受力不均匀,在箱梁上引起内腹筋和外腹板的受力不均。
在动载荷作用下,梁的支承部分会产生负向反作用力,严重时会导致梁与支撑分离。
(2)箱梁桥的挠曲变形曲线通常大于同直径的弯桥,其弯曲变形是由弯矩和扭力叠加而成。
(3)横向水平力车辆在曲线梁桥上行驶时,会对桥面产生水平的离心力,这是一种很好的方法。
预应力、混凝土收缩徐变和温度的改变,不仅会引起桥面的纵向水平力,而且还会引起横向的水平力。
由于外部载荷作用于桥梁,其横向水平力将导致梁身的截面力矩和桥墩的弯矩增加,从而导致桥面的侧向位移和侧向偏移。
(4)弯曲变形和变形对弯箱式桥梁来说,在弯曲和扭耦合作用下,其整体截面应力比直线桥梁要大,尤其是在弯曲和变形的影响下,这种问题更严重。
但其计算结果一般仅占基础弯矩和纯扭剪应力的5%~10%,经初步估计,在设计时可采用加横梁的方法,尽量减少断面的变形。
2 工程案例以江苏省常州市金坛区金坛高铁为例,采用3×25m 的连续梁桥作为研究对象。
项目地处江苏省金坛城区西南部、小桥村以南、金坛高铁枢纽金坛高铁站附近,地处常州市北部G233,S241东侧,金龙路以南,万嘉路以西。
小半径曲线梁桥设计浅析摘要:结合四川成安渝高速公路某枢纽互通中的桥梁设计的一些对比计算,浅析小半径曲线梁桥在构造上需要注意的细节;关键词:小半径曲线预应力混凝土连续箱梁一、概述随着现代经济的发展和城市的扩张,城市中大量的立交桥开始兴建,但由于城市规划和地形条件的限制,立交桥的结构形式多采用曲线桥梁。
这些桥梁线型变化万千,结构受力复杂,特别是小半径曲线梁桥,除承受弯矩、剪力外,还有较大扭矩和翘曲的作用。
据统计,南方某市的多座立交桥中,大都存在大小不同的问题:有的曲线连续梁内侧端支座脱空;有的曲线梁体向曲线外侧径向整体侧移;有的墩梁固结处在立柱顶部产生环形裂缝等等危及桥梁正常使用的现象。
这些现象的产生原因是多方面的,包括施工过程中的不当细节,但总的来说存在有设计过程中认识方面的失误,因此小半径曲线梁桥的设计越来越引起人们的重视,尤其是我国现行相关技术规范和设计计算理论有待进一步研究和完善。
本文结合笔者参与的四川成安渝高速公路某枢纽互通中的桥梁设计,浅谈小半径曲线梁桥的设计体会。
二、总体设计2.1设计标准1.设计荷载:公路-Ⅰ级;汽车荷载冲击系数1.05;总体计算时,弯矩偏载系数取1.15,剪力偏载系数根据各上部结构实际受力,采用不同的系数。
2.温度荷载:整体温差:升温20℃,整体降温25℃。
梯度温差:根据《公路桥涵设计通用规范》(JTGD60-2004)4.3.10条取用。
3.桥面净宽:8.5m。
4.设计车速:40km/h。
5.抗震等级:按地震烈度-Ⅷ度设防(桥址区域地震基本裂度为Ⅶ度)。
6.二期恒载包括桥面铺装、泄水管、护栏等,以均荷载计入。
2.2设计要点1.桥梁上部结构为三跨一联预应力砼连续曲线箱梁,位于在圆曲线和缓和曲线上,曲线半径R=55m,设计线距外弧翼缘3.25m。
分跨布置为:25+25+25=75m。
箱梁高1.6m,单箱单室斜腹板断面,采用整联现浇,一次张拉钢束的施工工艺。
顶板宽8.5m,底板宽3.4m,箱梁翼板悬臂2.25m,腹板厚45cm,顶、底板厚25cm。
小半径连续曲线箱梁桥设计要点摘要:直线梁桥复杂,为保证结构安全,其设计时需验算的内容较直线桥多,尤其是箱梁剪扭组合验算及腹板束防崩设计,应引起设计人员足够的重视。
本文结合某小半径连续曲线箱梁桥的工程例子,按梁格法进行建模计算,并且总结了结构构造的处理措施。
关键词:小半径;弯梁桥;梁格法;空间分析;1 前言曲线梁桥在公路和城市立交桥的设计中,因为适应的方向线具有良好的能力,减少障碍,改变人力和材料成本,再加上曲率半径小,造型美观等优点,是一种广泛使用的桥型。
由于地形条件和线性约束,对曲线梁桥小半径曲线的出现是必然的,曲线梁桥与直梁桥的几何特性相比,具有更复杂的几何特性、决定了期更复杂的受力和变形特点。
小半径曲线梁桥不仅具有弯矩,扭矩,曲线梁桥的耦合作用,而且还有弯矩、扭矩的耦合作用,这给弯梁桥的结构设计及计算分析带来较多的困难和不便。
在本文中,结合小半径连续曲线箱箱梁匝道桥的工程实例的半径,通过计算和分析梁格法建模,结了结构构造的处理措施。
2 工程概况某匝道桥跨径组成为4 ×25m,桥宽为16m。
桥面铺装采用10cm 厚的水泥混凝土。
桥梁平面位于R =58m 的圆曲线及 A =40m 的缓和曲线上。
纵断面位于纵坡为1. 42% 和- 3. 96% ,半径为1500m 的竖曲线上。
桥梁设计荷载等级为公路-Ⅰ级。
以此为背景,通过结构计算分析,总结曲线箱梁受力特征,探讨其受力特点及构造处理。
3曲线梁上部结构受力特点立交匝道桥受多种因素的限制,桥面宽度窄且多为小半径曲线桥,而且设置较大超高值;为了与两侧衔接,匝道桥往往设置较大纵坡且长度较大,因此匝道桥具有斜、弯、坡、异形等特点,给桥梁的线型设计和构造处理带来很大困难。
弯扭耦合效应是曲线梁桥力学性质的最大特点,曲梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直梁桥大得多,这是曲梁独有的受力特点。
桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。
曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。
本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。
关键词:桥梁工程;小半径曲线梁桥;设计要点Abstract: Along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the Bridges take the form of a curve type structure. The structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder Bridges is more. This paper is small radius of the problem of the curved girder Bridges related instructions, and these problems thoroughly discussed and the focus on the design to the main points of attention.Key Words: Bridge engineering; Small radius curve beam bridge; Design key points of the小半径曲线梁桥,虽说在现实生活中有了很广泛的应用,但是由于其承载量,预应力及温差引起的弯矩、扭矩等作用力的受力较复杂,因此很容易产生设计考虑不全面,支座脱空、移位甚至崩塌的问题,给人民生命财产安全带来了极大的隐患。
小半径曲线桥梁设计方法分析摘要本文结合多年工作实践,主要介绍小半径曲线桥梁的力学特性,分析曲线桥梁存在的病害及成因,提出了小半径曲线桥梁设计应该注意事项。
关键词曲线桥梁;设计方法;特性;成因近年来,随着经济的快速增长,城市交通的发展也越来越迅猛,由于受原有地物或地形的限制,以及城市交通功能的需要,小半径曲线桥梁在城市立交中应用越来越广泛。
因曲线桥梁受力复杂,设计及施工难度大,很多建成后的曲线桥梁在运营的过程中也逐渐出现了很多病害。
本文结合多年的设计经验,提出小半径曲线桥梁设计中应该注意的几点事项。
1曲线桥梁受力特性1)梁体的弯扭耦合作用。
曲线梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直线梁桥大得多,这是曲梁独有的受力特点。
曲线梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。
2)内梁和外梁受力不均匀。
在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载,尤其在宽桥情况下内、外梁的差异更大。
由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离,即“支座脱空”现象。
3)离心力作用。
由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。
曲线梁桥下部结构墩顶水平力,除了与直线桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。
因预应力钢束所具有的空间曲率,使得预应力束对于梁体将有水平径向力,这种径向力将对梁体的剪切中心产生扭转,而该扭转的存在又会使得曲线梁中产生附加的弯矩和扭矩,即在曲线梁中产生更显著的“弯、剪、扭”效应。
2现实中曲线桥梁存在的病害及成因1)曲线梁体向曲线外侧径向整体侧移。
支座布置不合理。
浅论小半径曲线桥梁的设计摘要:随着我国现代化建设及交通事业的蓬勃发展,高速公路、山区公路、城市立交等的兴建,曲线桥梁得到了广泛的应用。
其结构线条平顺、流畅、明快,给人以美的享受。
在公路建设中,除特大桥梁外,一般要求桥梁的平面布置服从公路线形,在进行平、纵、横三方面综合设计时,应做到平面流畅、纵坡均衡、横断面合理,并避免长直线设计,此时,小半径曲线梁桥往往成为最优方案。
另外在山区公路展线、套沟,城市桥梁避开管线、文物,节省拆迁费用,减小建筑用地等方面有直接可观的经济效益。
文中将重点介绍曲线桥梁的受力特点以及设计过程中应注意的一些问题,并提出一些相应的措施。
关键词:小半径;曲线桥梁;偏心;翘曲1、概述小半径曲线桥梁的设计非常复杂,它的预应力效应、温度效应以及活载效应的影响面加载都不同于传统直线桥梁或者大半径桥,除受弯矩、剪力外,还存在弯扭耦合、翘曲现象的作用,给上下部结构的构造及配筋处理带来很大困难,并且曲线桥梁的特殊力学现象是由桥长、桥跨、半径、墩台、支座等多方面共同决定的,2、小半径曲线桥梁的结构受力特点2.1小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式:a.全部采用抗扭支承,b.两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。
近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。
其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能力,扭矩将全部转移到梁端造成曲线内侧支座脱空,主梁发生倾覆。
所以此类支座布置的形式在工程应用中已不多见。
对于小半径的曲线箱梁,通常全部采用抗扭支承。
通过内、外支座横桥向偏心的设置,来抵消主梁恒载因外弧半桥大于内弧半桥而产生的扭矩(如下图)。
即支座的偏心相当于将支座放在主梁的实际荷载重心线上。
通工程中,并且取得了很好的使用效果。
再者,由于钢箱梁自重较轻,同等跨径时可采用较小的梁高,梁体外观轻盈,可取得较好的景观效果。
1连续曲线钢箱梁的主要特征根据以往城市立交桥设计经验,跨径30~60 m 连续钢箱梁时一般可满足立交桥的总体布置要求,对于这些中等跨径的钢箱梁可采用等高度断面[1]。
与混凝土连续箱梁不同,连续钢箱梁有以下一些明显的特点:①钢结构的自重质量较轻,其单位面积质量要远远低于混凝土连续结构;②钢材凭借其较强的抗拉压性能,可通过调整钢板的厚度来满足受力需求。
③钢箱梁采用工厂加工制作,临时墩支撑,分段吊车安装就位,施工方便快捷,对现况道路交通影响小。
④钢箱梁梁高较小,可取得较好的景观效果。
尽管钢箱梁优点众多,但其加工复杂,技术要求高,需要专业的加工队伍,且造价和后期维护费用较高。
2小半径曲线钢箱梁的常见病害及成因小半径曲线钢箱梁作为曲线梁的一种,自然继承了曲线梁的不足和缺点,同时因其自身的特殊性,其常见病害表现在如下几个方面[2]。
(1)梁体向曲线外侧径向侧移。
曲线匝道桥一般都是单向行驶,在活载的离心力和制动力作用下,主梁容易产生向曲线外侧及汽车制动力方向的水平错位。
当支座布置不合理时,在上述径向力和切线力作用下,严重时可使主梁滑落。
(2)梁体曲线内侧支座脱空及整体倾覆。
钢箱梁相对混凝土梁自重较轻,当支座设置不合理时,可提供的抗扭能力低,在车辆活载作用下曲线内侧的支座往往会出现脱空现象。
在极端偏载情况下甚至可能出现梁体整体倾覆的现象。
现实中经常出现重车列队偏载在一侧行驶或停车的情况,最终导致梁体整体倾覆。
摘要 对于受地形、地表及地下构筑物限制的城市桥梁,曲线钢箱梁因交通影响小且施工工期较短而成为首选。
曲线钢箱梁受力复杂,与直线桥梁相比更具设计难度,一旦设计不合理,将会对后续使用产生一系列后果。
本文通过分析曲线钢箱梁的受力特征、常见病害及成因,结合某小半径曲线钢箱梁的实际设计案例,对其设计要点进行探讨,以期为同类型曲线钢箱梁的设计提供借鉴和参考。
小半径曲线梁桥计算分析摘要:针对曲线梁桥受力的复杂性采用空间梁单元法和梁格法对某一小半径弯桥进行建模计算,并对结果进行对比分析和总结,得出两种方法在设计计算中各自特点,可供工程技术人员设计时参考借鉴。
关键词:曲线梁桥;耦合扭矩;空间梁单元法;梁格法abstract: based on the complexity of the curved girder bridges stress by spatial beam element method and a small radius of grillage method a curved bridge model calculation, and the results are analyzed and compared, it summarizes the two methods in the design and calculation of their own characteristics for the engineering and technical personnel design for reference.keywords: curve beam bridge; coupling torque; space beam element method; grillage method中图分类号:u448文献标识码:a 文章编号:1 引言随着我国交通运输事业的迅速发展以及城市化进程的加快,在公路互通和城市立交中运用曲线梁桥是实现交通联结的必要手段。
曲线梁桥可改善城市交通的紧张状况,有效解决周围环境的限制(例如地下管线、地下文物及沿街建筑干扰),实现各方向交通道路联接,从而节省投资,提高环境美观性和协调性。
相对于直线桥而言,小半径弯桥因受弯、扭耦合效应的影响,使其结构受力、支座反力以及挠度变形更为复杂,从而引起设计人员更大的关注。
2 弯梁桥受力特点及分析方法曲线梁桥的受力特点主要有以下三点[1]:(1)在外部荷载作用下,梁截面内产生弯矩的同时,必然伴随产生“耦合扭矩”,即所称的“弯-扭”耦合作用。
小半径大跨度预应力混凝土曲线箱梁设计【摘要】为了满足社会的交通运输需要,我国的路桥工程建设项目越来越多。
并且随着桥梁设计施工水平的提升,桥梁的结构形式也变得多种多样。
其中小半径大跨度曲线箱梁就是一种较为复杂的桥梁结构,现本文就重点对这一结构的设计问题进行研究分析,指出在其设计中应注意的问题。
【关键词】小半径;大跨度;预应力混凝土;曲线箱梁;设计某桥梁工程采用小半径大跨度预应力混凝土曲线箱梁的结构形式,施工方法则采用悬臂浇筑法,全线均要求实现无缝施工。
其中曲线的最小半径为400m。
由于该工程为小半径大跨度曲线箱梁,且要求无缝结构,所以结构形式较为复杂,给设计人员提出了较高的要求。
以下本文就对其设计过程进行详细的分析探讨。
1.工程设计难点在对本桥梁工程进行设计时,首先考虑到荷载对桥梁结构的要求。
本桥梁需要承受一定的恒载和活载。
其中恒载包括桥梁自重、桥面二期荷载等。
而活载则主要包括了车辆荷载、人群荷载等。
由于桥梁每天所承受的活载并不相同,其负荷情况较为复杂,给设计带来一定难度。
另外,大跨度桥梁自身的高度较大,尤其是在曲线所在的位置,高度更大,使得截面的中心发生了外移,再加上截面外缘尺寸已经超出了内缘尺寸,更是进一步促使了截面的重心偏向外部,引起了一定的扭矩。
在设计中若不消除这一扭矩,则会使曲线箱梁向外侧翻转,影响桥梁的整体结构稳定性。
2.主梁截面设计如上所述,为了消除截面上因重心外移而产生的扭矩,在对主梁的截面进行设计时,我们着重从截面类型的选择、腹板厚度的确定以及梁高的设计等几个方面入手优化设计方案,具体如下:2.1截面类型曲线形式的箱梁结构要比直线梁结构的受力更为复杂,会受到拉压、弯、扭以及畸变等多种作用力而出现变形现象,从而影响曲线梁的整体稳定性。
所以所选择的截面类型应该具有较高的抗扭性能。
而箱型结构正是这样一种截面类型,其不但整体性较好,且具有较大的抗扭刚度。
为此本工程决定采用箱梁作为结构的截面类型。
小半径曲线桥梁设计论文摘要:导致曲线梁出现病害的设计原因很多,包括预应力设置不当、未设置横向限位、温度效应考虑不周等,主要是设计人员对曲线梁的受力特点重视不够,很多桥梁没有按三维受力情况进行结构分析。
通过本文的这些论述,希望能给设计者带来一些解决曲线桥常见问题的方法。
前言在我经济快速发展的今天,公路事业也随着经济的发展而蒸蒸日上,高速公路越来越多,由于高速公路是封闭式交通,为链接道路而使得曲线桥路也得到广泛的使用。
曲线梁的受力比较复杂,近年来,我国经常出现桥梁垮塌等事故。
因此在设计过程中要特别对桥梁受力问题进行分析并采取有效措施。
桥梁中的支座是一个非常重要的结构,他不仅要传递很高的负载,还要保证桥梁的稳定。
在实际中,支座脱空现象经常发生。
当一个支座脱空后,因受力转移使得相邻的支座超负荷而损坏从而降低桥梁的稳定性。
另外梁箱抗扭也是桥梁应该重视的问题。
本文就工程实际情况,提出一些切实可行的处理方法,以供大家参考和借鉴。
1 支座脱空工程实际事例及处理方法某互通式立交工程的桥孔布置为 4 ×(4 ×30)=480m,共计16孔,等截面预应力混凝土连续梁。
箱梁采用单箱单室截面、等高度腹板,跨中设置了一道中横隔梁。
本桥平面处于一个 R = 400m 的右偏圆曲线开始,中间一个 R =125m 的左偏圆曲线和一个 R =400m 的右偏圆曲线终止,其终点以及圆曲线之间采用缓和曲线连接。
上部结构预应力混凝土箱梁左右腹板为等高度。
桥面横坡由箱梁整体旋转一定角度形成。
桥墩支点处设置横隔梁,边跨支点设置端横隔梁,各跨跨中处设置中横隔梁。
由于本桥第二联~第三联是位于R =125m 的平曲线内,这 2 联内的中墩墩顶支座设置了向曲线外侧18cm 的预置偏心,在各联梁边端均设置两个盆式支座,而各中墩支点设置两个固定支座。
预应力混凝土等截面连续梁采用“桥梁博士”(V2.9)程序进行内力分析和配束,采用曲梁网格法划分单元,纵向模拟两道纵梁,施工采用满堂支架现浇,支座沉降按 5mm 计,温度模式按顶板升降温 5℃考虑,设计时按其最不利情况进行组合。
小半径曲线范围铁路桥梁的布置及设计摘要:针对小半径曲线范围铁路桥梁设计而言,其构造要求和受力上在一定程度上都要比常规的桥梁的上部结构和墩台的设计复杂。
所以本文主要针对小半径曲线范围铁路桥梁在设计过程布置设计等进行论述,从而能够让相关的设计人员熟悉以及了解小半径曲线铁路桥梁的相关布设内容,希望能够给与同行业人员提供一定价值的参考。
关键词:小半径;曲线范围;铁路桥梁;设计分析引言在一些车站以及枢纽站线,由于在一定程度上受到地形限制或者是拆迁成本等的制约,线路需要设置相对较小的曲线半径。
对于小半径曲线的桥梁设计要考虑桥梁上部结构和下部结构的设计,小以及对梁缝进行合理的控制和设计。
一般情况下需要进行特殊设计,这样做的目的不仅能满足铁路自身的正常运营,同时还能够满足其养护需要。
如果在设计的过程中存在着不合理问题,例如:无法进行架梁或者是梁体倾覆等一系列比较重大的事故,这就需要我们对小半径曲线范围内的桥梁设计进行较为系统的认识以及了解,只有这样才能够让桥梁在设计的过程中不仅具有合理性、安全性,同时也具有科学性。
一、单线桥梁在曲线上的布置原则1、梁的布置:为了使梁上受力接近均衡,曲线上桥梁的中心线(梁的中心线)一般均采用平分中失(f)法或切线法布置(图1-1),视其跨度及所在曲线半径来确定。
梁与梁间及梁与台间内侧道碴槽最外边缘的最小空隙即梁缝,当跨度L≤16m时为6cm;当跨度L≥20m时为10cm;不等跨时采用10cm,当不等跨均小于16m 时,采用6cm。
在坡道上的梁应考虑坡道布置对空隙的影响;大跨度梁尚应考虑预留拱度和荷载(恒载、远期活载、冲击力等)引起梁的伸缩。
在曲线上的梁布置办法采用f1=f/2~0之间的任何数值时,不需要检算梁的强度。
如采用0>f1>f/2,则必须根据其相应的超载系数,验算内外梁的强度。
在不等跨梁的配合中,比较合理的曲线布置,按大跨梁要求来确定偏距E值。
对于跨度L≤16m的梁,一般中失很小,如按小跨的要求确定E值,则大跨梁的中失稍大于f/2,而超载系数增加有限,不必验算梁的强度。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。